
Cache-Aware Roofline Model:

Performance, Power and Energy-Efficiency

Aleksandar Ilić,

Frederico Pratas and Leonel Sousa

INESC-ID/IST,

Universidade de Lisboa, Portugal

22/23/2016

Introduction

THIS IS ALL ABOUT BUILDING THE ROOFS

32/23/2016

Motivation

HITTING THE ROOF

– Multi-core CPUS, accelerators, diverse compute capabilities, complex

memory hierarchy…

– Complex applications, different compute and memory requirements

– Optimize and characterize applications for specific architectures

MAXIMUM ATTAINABLE PERFORMANCE VS. POWER/ENERGY

CONSUMPTION

 HOW FAR CAN WE GO?

WHAT ARE THOSE MAXIMUMS FOR PERFORMANCE, POWER, ENERGY,

EFFICIENCY…?

: ARCHITECTURES VS. APPLICATIONSGETTING THE MAXIMUM

42/23/2016

... CORE
K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

APPLICATION

ARCHITECTUR

E

52/23/2016

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1
... CORE

K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

APPLICATION

ARCHITECTUR

E

benchmarking

modeling

(computation & communication costs)

62/23/2016

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1
... CORE

K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

APPLICATION

ARCHITECTUR

E

MAPPING

72/23/2016

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

... CORE
K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

DYNAMIC DLT-BASED

SCHEDULING

APPLICATI

ON

DEV #M

GPU #2
D

R

A

M

...CORE
1

CORE
K

CPU

M
a

in

M
e
m

o
ry

GPU #1
D

R

A

M

INTERCONNECTION BUSES

ARCHITECTUR

E

82/23/2016

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

DYNAMIC DLT-BASED

SCHEDULING

APPLICATI

ON

DEV #M

GPU #2
D

R

A

M

...CORE
1

CORE
K

CPU

M
a

in

M
e
m

o
ry

GPU #1
D

R

A

M

INTERCONNECTION BUSES

ARCHITECTUR

E

Initial

MAPPING

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1

... CORE
K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

92/23/2016

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

DYNAMIC DLT-BASED

SCHEDULING

APPLICATI

ON

DEV #M

GPU #2
D

R

A

M

...CORE
1

CORE
K

CPU

M
a

in

M
e
m

o
ry

GPU #1
D

R

A

M

INTERCONNECTION BUSES

ARCHITECTUR

E

Execute;

Build

MODELS

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1

... CORE
K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

102/23/2016

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

DYNAMIC DLT-BASED

SCHEDULING

APPLICATIO

N

DEV #M

GPU #2
D

R

A

M

...CORE
1

CORE
K

CPU

M
a

in

M
e
m

o
ry

GPU #1
D

R

A

M

INTERCONNECTION BUSES

ARCHITECTUR

E

(re)

MAPPING

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1

... CORE
K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

112/23/2016

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

DYNAMIC DLT-BASED

SCHEDULING

APPLICATIO

N

DEV #M

GPU #2
D

R

A

M

...CORE
1

CORE
K

CPU

M
a

in

M
e
m

o
ry

GPU #1
D

R

A

M

INTERCONNECTION BUSES

ARCHITECTUR

E

(re)

MAPPING

Improve

MODELS

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1

... CORE
K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

122/23/2016

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

DYNAMIC DLT-BASED

SCHEDULING

APPLICATI

ON

DEV #M

GPU #2
D

R

A

M

...CORE
1

CORE
K

CPU

M
a

in

M
e
m

o
ry

GPU #1
D

R

A

M

INTERCONNECTION BUSES

ARCHITECTUR

E

(re)

MAPPING

Improve

MODELS

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

0" 1000" 2000" 3000" 4000" 5000" 6000" 7000" 8000"

P
e
rf
o
rm

an
ce
*(
G
Fl
o
p
s)
*

Problem*size*N*(M=K=8400)*

Core0+GPU0* Core1+GPU1* Core*2* Core*3* GPU*0* GPU*1*

Opt
im

al
di

st
rib

ut
ion

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1

... CORE
K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

132/23/2016

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

... CORE
K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

DYNAMIC DLT-BASED

SCHEDULING

APPLICATI

ON

DEV #M

GPU #2
D

R

A

M

...CORE
1

CORE
K

CPU

M
a

in

M
e
m

o
ry

GPU #1
D

R

A

M

INTERCONNECTION BUSES

ARCHITECTUR

E

(re)

MAPPING

Improve

MODELS

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

0" 1000" 2000" 3000" 4000" 5000" 6000" 7000" 8000"

P
e
rf
o
rm

an
ce
*(
G
Fl
o
p
s)
*

Problem*size*N*(M=K=8400)*

Core0+GPU0* Core1+GPU1* Core*2* Core*3* GPU*0* GPU*1*

Opt
im

al
di

st
rib

ut
ion

REACHING THE MAXIMUM IS LIMITED BY

– Application characteristics and demands

– Architecture capabilities to satisfy them

– Trade-offs, assumptions …

HOW FAR CAN WE GO?

142/23/2016

4

2

2

6

1

3

4

1

2

2

2

2

1

3

3

1

6

4
3

1

STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling

... CORE
K

CPU

Main

Memory

CORE
1

...CORE
1

CORE
K

CPU

Main

Memory

...CORE
1

CORE
K

CPU

Main

Memory

INTERCONNECTION BUSES

DYNAMIC DLT-BASED

SCHEDULING

APPLICATI

ON

DEV #M

GPU #2
D

R

A

M

...CORE
1

CORE
K

CPU

M
a

in

M
e
m

o
ry

GPU #1
D

R

A

M

INTERCONNECTION BUSES

ARCHITECTUR

E

(re)

MAPPING

Improve

MODELS

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

0" 1000" 2000" 3000" 4000" 5000" 6000" 7000" 8000"

P
e
rf
o
rm

an
ce
*(
G
Fl
o
p
s)
*

Problem*size*N*(M=K=8400)*

Core0+GPU0* Core1+GPU1* Core*2* Core*3* GPU*0* GPU*1*

Opt
im

al
di

st
rib

ut
ion

152/23/2016

Outline

THE CACHE-AWARE ROOFLINE MODEL:

- PERFORMANCE*

- POWER

- EFFICIENCY

*A. Ilic, F. Pratas and L. Sousa “Cache-ware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2013)

172/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– PARALLELISM ACROSS THE PROCESSING CORES

Multi-core Architectures

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

Multi-core CPU

182/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures

Multi-core CPU

INST 1

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

5 clocks for 1 instruction (5-stage pipeline)

192/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures

Multi-core CPU

INST 1

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

INST 2

INST 3

INST 4

INST 5

5 clocks for 1 instruction (5-stage pipeline)

202/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures

Multi-core CPU

INST 1

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

INST 2

INST 3

INST 4

INST 5

~2 clocks per instruction

5 clocks for 1 instruction (5-stage pipeline)

212/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures

Multi-core CPU

INST 1

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

INST 2

INST 3

INST 4

INST 5

THROUGHPUT: 1 INSTRUCTION PER 1 CLOCK

~2 clocks per instruction

5 clocks for 1 instruction (5-stage pipeline)

222/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures

Multi-core CPU

INST 1

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

INST 2

INST 3

INST 4

INST 5

HANDS-ON: IVY BRIDGE AT 3.5 GHZ (I7

3770K)

- Double-precision Floating-point operation (FLOP)

- Multiplication(MUL) or addition (ADD)

- Throughput: 1 instruction/clock

Instructio

n Type

FLO

PS

per

Instr.

Performance

(GFLOPS/s)

1 Core 4 Cores

64 bits 1
3.5

(1flop x 3.5GHz)
14

128 bits
(SSE)

2 7 28

256 bits
(AVX)

4 14 56

232/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures

Multi-core CPU

INST 1

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

INST 2

INST 3

INST 4

INST 5

HANDS-ON: IVY BRIDGE AT 3.5 GHZ (I7

3770K)

- Double-precision Floating-point operation (FLOP)

- Multiplication(MUL) or addition (ADD)

- Throughput: 1 instruction/clock

Instructio

n Type

FLO

PS

per

Instr.

Performance

(GFLOPS/s)

1 Core 4 Cores

64 bits 1
3.5

(1flop x 3.5GHz)
14

128 bits
(SSE)

2 7 28

256 bits
(AVX)

4 14 56

242/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different

ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X

STOR

E

Port 4
Independent instructions can

run in parallel

252/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different

ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

HANDS-ON: IVY BRIDGE AT 3.5 GHZ (I7

3770K)

- Double-precision FLOPs

- Throughput: 1 instruction/clock
LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X

STOR

E

Port 4

Instructio

n Type

FLO

PS

per

Instr.

Performance

(GFLOPS/s)

1 Core 4 Cores

64 bits 1
3.5

(2flops x 3.5GHz)
14

128 bits
(SSE)

2 7 28

256 bits
(AVX)

4 14 56

262/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different

ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

HANDS-ON: IVY BRIDGE AT 3.5 GHZ (I7

3770K)

- Double-precision FLOPs

- Throughput: 2 FP instructions/clock
LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X

STOR

E

Port 4

Instructio

n Type

FLO

PS

per

Instr.

Performance

(GFLOPS/s)

1 Core 4 Cores

64 bits 1
3.5  7

(2flops x 3.5GHz)
14 28

128 bits
(SSE)

2 7 14 28 56

256 bits
(AVX)

4 14 28 56  112

272/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different

ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X

STOR

E

Port 4

i7 3770K

Ivy

Bridge

Performanc

e

(GFlops/s)*

Bandwidth

L1C

(GB/s)*

1 Core 28 ?

4 Cores 112 ?

*256-bit AVX double-precision floating-point instructions

282/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different

ops)

Multi-core Architectures

Multi-core CPU

LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X

STOR

E

Port 4

i7 3770K

Ivy

Bridge

Performanc

e

(GFlops/s)*

Bandwidth

L1C

(GB/s)*

1 Core 28 ?

4 Cores 112 ?

*256-bit AVX double-precision floating-point instructions

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4L1 L1 L1 L1

292/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different

ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X

STOR

E

Port 4

L1 Data Cache

128 bits 128 bits 128 bits

WHAT IS THE PEAK (THEORETICAL) BANDWIDTH OF THE L1CORE COMMUNICATION

BUS?

i7 3770K

Ivy

Bridge

Performanc

e

(GFlops/s)*

Bandwidth

L1C

(GB/s)*

1 Core 28 ?

4 Cores 112 ?

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

302/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different

ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X

STOR

E

Port 4

L1 Data Cache

128 bits 128 bits 128 bits

WHAT IS THE PEAK (THEORETICAL) BANDWIDTH OF THE L1CORE COMMUNICATION

BUS?

- 3x128bits = 48 bytes can be transferred at the same time (per core)

- bus operates at the frequency of the processor  3.5 GHz

 48 bytes x 3.5 GHz = 168 GB/s (1 Core)

i7 3770K

Ivy

Bridge

Performanc

e

(GFlops/s)*

Bandwidth

L1C

(GB/s)*

1 Core 28 168

4 Cores 112 ?

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

312/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different

ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X

STOR

E

Port 4

L1 Data Cache

128 bits 128 bits 128 bits

WHAT IS THE PEAK (THEORETICAL) BANDWIDTH OF THE L1CORE COMMUNICATION

BUS?

- 3x128bits = 48 bytes can be transferred at the same time (per core)

- bus operates at the frequency of the processor  3.5 GHz

 48 bytes x 3.5 GHz = 168 GB/s (1 Core)

 4 x 168 GB/s = 672 GB/s (4 cores)

i7 3770K

Ivy

Bridge

Performanc

e

(GFlops/s)*

Bandwidth

L1C

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

322/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X

STOR

E

Port 4

L1 Data Cache

128 bits 128 bits 128 bits
i7 3770K

Ivy

Bridge

Performanc

e

(GFlops/s)*

Bandwidth

L1C

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

We can’t get higher than this!

What does it tell about the attainable

performance?

332/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

i7 3770K

Ivy

Bridge

Performanc

e

(GFlops/s)*

Bandwidth

L1C

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

We can’t get higher than this!

What does it tell about the attainable

performance?

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of

flops and bytes:

342/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

i7 3770K

Ivy

Bridge

Performanc

e

(GFlops/s)*

Bandwidth

L1C

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of

flops and bytes:

Memory Operations

(LD+ST)

IF memory operations and computations are serially performed:

Ts

Computations (flops)

BUT they are actually executed in parallel (interleaved):

T

TC

TM

352/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

i7 3770K

Ivy

Bridge

Performanc

e

(GFlops/s)*

Bandwidth

L1C

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of

flops and bytes:

Memory Operations

(LD+ST)

IF memory operations and computations are serially performed:

Ts

Computations (flops)

BUT they are actually executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}

362/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of

flops and bytes:

Memory Operations

(LD+ST)

IF memory operations and computations are serially performed:

Ts

Computations (flops)

BUT they are actually executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP,TM}

TC = #flops/FP

372/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of

flops and bytes:

Memory Operations

(LD+ST)

IF memory operations and computations are serially performed:

Ts

Computations (flops)

BUT they are actually executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP, #bytes/BP}

TM = #bytes/BP

TC = #flops/FP

382/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of

flops and bytes:

Memory operations and computations are executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP, #bytes/BP}

392/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of

flops and bytes:

Memory operations and computations are executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP, #bytes/BP}

Attainable Performance (FA) of the architecture:

FA = #flops/TT

402/23/2016

SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of

flops and bytes:

Memory operations and computations are executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP, #bytes/BP}

Attainable Performance (FA) of the architecture:

FA = #flops/TT

Rooflin

e

model

412/23/2016

CACHE-AWARE ROOFLINE MODEL - insightful performance model of multi-core architectures

relates:

1) Maximum Attainable Performance (FA=#flops/TT)

2) Operational Intensity (I=#flops/#bytes).

Cache-aware Roofline Model

422/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

432/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

442/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

452/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]

462/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]

TC = #flops/FP = 8flops/28 = 0.29 ns

472/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]

482/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

TT = max{TC,TM} = 5.71 ns

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]

492/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

TT = max{TC,TM} = 5.71 ns

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]

502/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

TT = max{TC,TM} = 5.71 ns

FA = #flops/TT = 8flops/5.71 ns = 1.4 Gflops/s

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]

512/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

TT = max{TC,TM} = 5.71 ns

FA = #flops/TT = 8flops/5.71 ns = 1.4 Gflops/s

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]

522/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]

TM = #bytes/BP = ?

TC = #flops/FP = ?

TT = max{TC,TM} = ?

FA = #flops/TT = ?

532/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = ?

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 64flops/28 = 2.29 ns

TT = max{TC,TM} = 5.71 ns

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]

542/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = ?

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 64flops/28 = 2.29 ns

TT = max{TC,TM} = 5.71 ns

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]

552/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 64flops/28 = 2.29 ns

TT = max{TC,TM} = 5.71 ns

FA = #flops/TT = 64flops/5.71 ns = 11.2 Gflops/s

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]

562/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 64flops/28 = 2.29 ns

TT = max{TC,TM} = 5.71 ns

FA = #flops/TT = 64flops/5.71 ns = 11.2 Gflops/s

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]

572/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]

TM = #bytes/BP = ?

TC = #flops/FP = ?

TT = max{TC,TM} = ?

FA = #flops/TT = ?

582/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = ?

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]

592/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = ?

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]

602/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = 160flops/5.71 ns = 28 Gflops/s

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]

612/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = 160flops/5.71 ns = 28 Gflops/s

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]

622/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

RIDGE POINT:
Minimal I to achieve peak FP performance

I = FP/BP

Computations and transfers completely overlapped

TC = TM

FA = #flops/TT = 160flops/5.71 ns = 28 Gflops/s

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]

632/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

I=flops/bytes=1 = 960flops/960bytes [120MAD/(10x(2LD+ST))*]

TM = #bytes/BP = ?

TC = #flops/FP = ?

TT = max{TC,TM} = ?

FA = #flops/TT = ?

642/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

FA = #flops/TT = 960flops/34.29ns = 28 Gflops/s

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 960flops/28 = 34.29 ns

TT = max{TC,TM} = 34.29 ns

I=flops/bytes=1 = 960flops/960bytes [120MAD/(10x(2LD+ST))*]

652/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

FA = #flops/TT = 960flops/34.29ns = 28 Gflops/s

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 960flops/28 = 34.29 ns

TT = max{TC,TM} = 34.29 ns

I=flops/bytes=1 = 960flops/960bytes [120MAD/(10x(2LD+ST))*]

662/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

I=flops/bytes= 64 = 61440flops/960bytes [7680MAD/(10x(2LD+ST))*]

FA = #flops/TT = 28 Gflops/s

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 7680flops/28 = 2194.29 ns

TT = max{TC,TM} = 2194.29 ns

672/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

FA = #flops/TT = 28 Gflops/s

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 7680flops/28 = 2194.29 ns

TT = max{TC,TM} = 2194.29 ns

I=flops/bytes= 64 = 61440flops/960bytes [7680MAD/(10x(2LD+ST))*]

682/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

I=flops/bytes= 8192 = 7864320flops/960bytes [983040MAD/(10x(2LD+ST))*]

FA = #flops/TT = 28 Gflops/s

TM = #bytes/BP = 5.71 ns

TC = #flops/FP = 280868.58 ns

TT = max{TC,TM} = 280868.58 ns

692/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

MEMORY-BOUND

REGION
COMPUTE-BOUND

REGION

APPLICATION

CHARACTERIZATION

– Memory-bound applications

– Compute-bound applications

702/23/2016

Building the Cache-aware Roofline Model

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

MEMORY-BOUND

REGION
COMPUTE-BOUND

REGION

APPLICATION

CHARACTERIZATION

– Memory-bound applications

– Compute-bound applications

Application is a SINGLE POINT

in the Cache-Aware Roofline

Model!

712/23/2016

Building the Cache-aware Roofline Model

MEMORY-BOUND

REGION
COMPUTE-BOUND

REGION

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

MODEL FOR 1 CORE

MODEL FOR 4

CORES?

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4L1 L1 L1 L1

722/23/2016

Building the Cache-aware Roofline Model

MEMORY-BOUND

REGION

COMPUTE-BOUND

REGION

MODEL FOR 4 CORES

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4L1 L1 L1 L1

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

MODEL FOR 1 CORE

732/23/2016

Building the Cache-aware Roofline Model

MEMORY-BOUND

REGION

COMPUTE-BOUND

REGION

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4L1 L1 L1 L1

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

MODEL FOR 4 CORES

MODEL FOR 1 CORE

742/23/2016

Building the Cache-aware Roofline Model

MEMORY-BOUND

REGION

COMPUTE-BOUND

REGION

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4L1 L1 L1 L1

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

As for now, we just considered

L1 bandwidth!

MODEL FOR 4 CORES

MODEL FOR 1 CORE

762/23/2016

MEMORY HIERARCHY

– Set of on-chip caches: private (L1, L2) or shared (L3)

– Global memory (DRAM)

– Caches hide the latency when accessing DRAM (also

between successive cache levels)

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

772/23/2016

MEMORY HIERARCHY

– Set of on-chip caches: private (L1, L2) or shared (L3)

– Global memory (DRAM)

– Caches hide the latency when accessing DRAM (also

between successive cache levels)

CACHE-AWARE ROOFLINE MODEL

– Peak FP performance and L1 bandwidth obtained from

processor’s specifications (bottom table)

– We need bandwidth from all other memory levels to

the Core?

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

782/23/2016

MEMORY HIERARCHY

– Set of on-chip caches: private (L1, L2) or shared (L3)

– Global memory (DRAM)

– Caches hide the latency when accessing DRAM (also

between successive cache levels)

CACHE-AWARE ROOFLINE MODEL

– Peak FP performance and L1 bandwidth obtained from

processor’s specifications (bottom table)

– We need bandwidth from all other memory levels to

the Core?

– MICRO-BENCHMARKS FOR ARCHITECTURE CHARACTERIZATION

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

// AVX Assembly code: 2 Loads + 1

Store

vmovapd 0(%rax), %ymm0

vmovapd 32(%rax), %ymm1

vmovapd %ymm2, 64(%rax)

vmovapd 96(%rax), %ymm3

vmovapd 128(%rax), %ymm4

vmovapd %ymm5, 160(%rax)

…

792/23/2016

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

// AVX Assembly code: 2 Loads + 1

Store

vmovapd 0(%rax), %ymm0

vmovapd 32(%rax), %ymm1

vmovapd %ymm2, 64(%rax)

vmovapd 96(%rax), %ymm3

vmovapd 128(%rax), %ymm4

vmovapd %ymm5, 160(%rax)

…

802/23/2016

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

// AVX Assembly code: 2 Loads + 1

Store

vmovapd 0(%rax), %ymm0

vmovapd 32(%rax), %ymm1

vmovapd %ymm2, 64(%rax)

vmovapd 96(%rax), %ymm3

vmovapd 128(%rax), %ymm4

vmovapd %ymm5, 160(%rax)

…

L1C

L2C

L3C

DRAMC

BP=672

812/23/2016

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

// AVX Assembly code: 2 Loads + 1

Store

vmovapd 0(%rax), %ymm0

vmovapd 32(%rax), %ymm1

vmovapd %ymm2, 64(%rax)

vmovapd 96(%rax), %ymm3

vmovapd 128(%rax), %ymm4

vmovapd %ymm5, 160(%rax)

…

L1C

L2C

L3C

DRAMC

// Configured Performance Counters

CPU_CLK_UNHALTED.CORE/REF

MEM_UOP_RETIRED.ALL_LOADS

MEM_UOP_RETIRED.ALL_STORES

…

How to measure?

822/23/2016

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

L1C

L2C

L3C

DRAMC

How to measure?

832/23/2016

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

// AVX Assembly code: 2 Loads + 1

Store

vmulpd %ymm0, %ymm0, %ymm0

vaddpd %ymm1, %ymm1, %ymm1

vmulpd %ymm2, %ymm2, %ymm2

vaddpd %ymm3, %ymm3, %ymm3

vmulpd %ymm4, %ymm4, %ymm4

vaddpd %ymm5, %ymm5, %ymm5

…

// Configured Performance Counters

CPU_CLK_UNHALTED.CORE/REF

FP_OPS_EXE_SSE_SCALAR_DBL

FP_OPS_EXE_SSE_FP_PACKED_DBL

SIMD_FP_256_PACKED_DBL

…

How to measure?

842/23/2016

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

// AVX Assembly code: 2 Loads + 1

Store

vmulpd %ymm0, %ymm0, %ymm0

vaddpd %ymm1, %ymm1, %ymm1

vmulpd %ymm2, %ymm2, %ymm2

vaddpd %ymm3, %ymm3, %ymm3

vmulpd %ymm4, %ymm4, %ymm4

vaddpd %ymm5, %ymm5, %ymm5

…

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

filling the

pipeline

FP=112

852/23/2016

Cache-Aware Roofline Model

- Putting it all together -

i7 3770K

Ivy

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1C
L2C

L3C
DRAMC

FP

862/23/2016

Cache-aware Roofline Model: Hands On

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

Intel 3770K

(Ivy Bridge)

Cache-aware Roofline Model*

[proposed]

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

872/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of

compute and memory operations

Intel 3770K

(Ivy Bridge)

4 Cores

(AVX MAD)

882/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of

compute and memory operations

Intel 3770K

(Ivy Bridge)

4 Cores

(AVX ADD/MUL)

892/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of

compute and memory operations

4 Cores

(SSE)

902/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of

compute and memory operations

4 Cores

(DBL)

912/23/2016

Cache-Aware Roofline Model

vs. State-of-the-Art

WHAT IS HOT (WHAT IS NOT)?

- APPLICATION CHARACTERIZATION -

922/23/2016

The Original Roofline Model*

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

• Performance: Computations (flops) and communication (bytes) overlap in

time

COMPUTE-BOUND

REGION

MEMORY-BOUND

REGION

Intel 3770K

(Ivy Bridge)

Original Roofline Model*

(state of the art)

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)

932/23/2016

The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Intel 3770K

(Ivy Bridge)

0.125	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	0.03125	 0.125	 0.5	 2	 8	 32	 128	 512	 2048	 8192	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

APP-D	

ADD/MUL	

MAD	(Maximum	Performance	Fp)	

Pe
ak
	D
RA
M

LL
C	b
an
dw
id
th
	

I=16	

I is constant

I=(Σfι)/(Σbι)

f

b

APP-D (data traffic from DRAM)

942/23/2016

The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Intel 3770K

(Ivy Bridge)

I1=f1/b1

b

f

APP-L3 (data fits in L3)

952/23/2016

The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Intel 3770K

(Ivy Bridge)

I1=f1/b1

b=0

f

APP-L3 (data fits in L3)

I2=(f1+f2)/b1

962/23/2016

The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Intel 3770K

(Ivy Bridge)

I1=f1/b1

b=0

f

APP-L3 (data fits in L3)

I2=(f1+f2)/b1

Ii=(Σfi)/b1

I is variable

972/23/2016

The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Intel 3770K

(Ivy Bridge)

b

f

APP-L1 (data fits in L1)

I1=f1/b1

I2=(f1+f2)/b1

Ii=(Σfi)/b1

I is variable

982/23/2016

The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Intel 3770K

(Ivy Bridge)

b

I1=f1/b1

I2=(f1+f2)/b1

Ii=(Σfi)/b1

I is variable
I varies with the problem

size. Memory bound

becomes compute bound.

Fixed I - unexpected

performance for

different $ levels

Does not achieve

maximum attainable

performance

992/23/2016

Cache-aware Roofline Model

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

• Performance: Computations (flops) and communication (bytes) overlap in

time

Intel 3770K

(Ivy Bridge)

filling the

pipeline

1002/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-D (data traffic from DRAM)

0.125	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	0.03125	 0.125	 0.5	 2	 8	 32	 128	 512	 2048	 8192	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

APP-D	

ADD/MUL	

MAD	(Maximum	Performance	Fp)	

Pe
ak
	D
RA
M

LL
C	b
an
dw
id
th
	

I=16	

1012/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L3 (fits in L3)

1022/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L3 (fits in L3)

1032/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L3 (fits in L3)

1042/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L1 (fits in L1)

1052/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L1 (fits in L1)

Achieves maximum

attainable performance is

always memory bound.

‘I’ does not vary. The

performance tends to the

cache level ceiling.

1062/23/2016

Cache-Aware Roofline Model

vs. State-of-the-Art

WHAT IS HOT (WHAT IS NOT)?

APPLICATION CHARACTERIZATION AND

OPTIMIZATION

1072/23/2016

Practical Example: Dense Matrix

Multiplication

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

Cache-aware Roofline Model Original Roofline Model

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N

1) Basic implementation: All matrices stored in row-major order.

1082/23/2016

Practical Example: Dense Matrix

Multiplication

Cache-aware Roofline Model Original Roofline Model

11

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N

1) Basic implementation: All matrices stored in row-major order.

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

1092/23/2016

Practical Example: Dense Matrix

Multiplication

1) Basic implementation: All matrices stored in row-major order.

Cache-aware Roofline Model Original Roofline Model

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

1102/23/2016

Practical Example: Dense Matrix

Multiplication

Cache-aware Roofline Model Original Roofline Model

- app in the compute bound region

- mainly limited by DRAM

- can be optimized to hit higher cache levels

- app in the memory bound region

- mainly limited by DRAM

- can be optimized up to the slanted part

// matrix multiplication example

// VER 1: Row major matrices

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N

1) Basic implementation: All matrices stored in row-major order.

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

11

1112/23/2016

Practical Example: Dense Matrix

Multiplication

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

Cache-aware Roofline Model Original Roofline Model

- app in the compute bound region

- almost hits L3

- can be further optimized to hit higher cache levels

11

- app in the memory bound region

- performance hits the roof of the model

- suggests that the optimization is finished

2) Transposition: One matrix is transposed into column-major

2 2

// matrix multiplication example

// VER 1: Row major matrices

// OPT 2: Transpose B matrix

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N

1122/23/2016

Practical Example: Dense Matrix

Multiplication

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

3) Blocking for L3: All matrices are blocked to efficiently exploit L3

Cache-aware Roofline Model Original Roofline Model

- performance is further improved

- breaking the cache level ceilings towards the roof

11

- optimization process finished

2 2
3

// matrix multiplication example

// OPT 3: Blocking for L3

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N

1132/23/2016

Practical Example: Dense Matrix

Multiplication

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

Cache-aware Roofline Model Original Roofline Model

11

- optimization process finished

2 2
3, 4, 5

// matrix multiplication example

// VER 1: Row major matrices

// OPT 2: Transpose B matrix

// OPT 3: Blocking for L3

// OPT 4: Blocking for L2

// OPT 5: Blocking for L1

A =xM

K

BK

N

CM

N

- performance is further improved

- breaking the cache level ceilings towards the roof

1142/23/2016

Practical Example: Dense Matrix

Multiplication

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

Cache-aware Roofline Model Original Roofline Model

- OPT 6 achieves near theoretical performance

11

- moves to the compute bound region

(shift in operational intensity)

2 2
3, 4, 5

6
3, 4, 5

6

optimizations

suggested by the

cache-aware model

// matrix multiplication example

// VER 1: Row major matrices

// OPT 2: Transpose B matrix

// OPT 3: Blocking for L3

// OPT 4: Blocking for L2

// OPT 5: Blocking for L1

// OPT 6: Highly optimized (MKL)

A =xM

K

BK

N

CM

N

1152/23/2016

Practical Example: Dense Matrix

Multiplication

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

Cache-aware Roofline Model Original Roofline Model

- OPT 6 achieves near theoretical performance

11

- moves to the compute bound region

(shift in operational intensity)

2 2
3, 4, 5

6
3, 4, 5

6

optimizations

suggested by the

cache-aware model

// matrix multiplication example

// VER 1: Row major matrices

// OPT 2: Transpose B matrix

// OPT 3: Blocking for L3

// OPT 4: Blocking for L2

// OPT 5: Blocking for L1

// OPT 6: Highly optimized (MKL)

A =xM

K

BK

N

CM

N

Caches cannot be neglected!

(performance improved ~10x)

1162/23/2016

Cache-aware Roofline Model: Use Cases

Application Characterization

Online Monitoring

single core quad-core

milc tonto LU factorization

* Antão, D., Taniça, L., Ilić, A., Pratas, F., Tomás, P., and Sousa, L., “Monitoring Performance and Power for Application

Characterization with Cache-aware Roofline Model”, PPAM’13

1172/23/2016

Outline

THE CACHE-AWARE ROOFLINE MODEL:

- PERFORMANCE

- POWER*

- EFFICIENCY

• Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores” (submitted)

1182/23/2016

Power Roofline Model

POWER MODELING FOR 3 DIFFERENT DOMAINS

(RAPL-BASED):

1. POWER OF CORES (PC)

– consumed by components within the cores

2. UNCORE POWER (PU)

– consumed by all other (non-processing) parts of the

chip, e.g., off-chip memory controller

3. PACKAGE POWER (PP)

– the power of the complete processor chip

...CORE
1

CORE
K

CPU

Main

Memory

CORE DOMAIN

UNCORE DOMAIN

 (package)

1192/23/2016

Power Roofline Model

...CORE
1

CORE
K

CPU

Main

Memory

CORE DOMAIN

UNCORE DOMAIN

 (package)

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

POWER ROOFLINE MODEL RELATES

POWER CONSUMPTION WITH OPERATIONAL

INTENSITY (I=f/b)

Average Power Consumption must be considered

– during the time interval, T(I), in which the (Roofline)

performance is obtained!

Power Contributions of both memory operations

and FP operations vary with two factors:

1. The number of executed operations

2. The contribution of each during the time interval T(I)

1202/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 1/128

1212/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 1/128

T(I)

1222/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 1/128

T(I)

1232/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 4/128

T(I)

1242/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 4/128

T(I)

1252/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 4/128

T(I)

1262/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 16/128

T(I)

1272/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 16/128

T(I)

1282/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 64/128

T(I)

1292/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 256/128

T(I)

1302/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b ≈ 512/128

T(I)

MAXIMUM OVERLAP = MAXIMUM POWER

1312/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 1024/128

T(I)

1322/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 4096/128

T(I)

1332/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 65536/128

T(I)

1342/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE) T(I)

1352/23/2016

Power Roofline Model

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)

THE MOST “DESIRABLE”

PERFORMANCE POINT IS THE

WORST IN THE POWER DOMAIN

1362/23/2016

Power Roofline Model

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)

1. POWER OF CORES (PC) 3. PACKAGE POWER (PP)2. UNCORE POWER (PU)

THE IMPACT OF THE OFF-CHIP

MEMORY CONTROLLER POWER

REDUCES WITH THE NUMBER OF

MEMORY OPERATIONS AND

THEIR CONTRIBUTION WHEN

COMPARED TO THE FP

OPERATIONS

1372/23/2016

Power Roofline Model

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

PACKAGE

CORES

UNCORE

THE PACKAGE POWER DEPENDS

ON SUPERPOSITION WITH THE

POWER OF CORES, THE

UNCORE POWER, AND THE

OTHER COMPONENTS ON THE

CHIP

1382/23/2016

Power Cache-aware Roofline Model

• Different power domains: Cores + Uncore = Package

Intel 3770K

(Ivy Bridge)

filling the pipeline

1392/23/2016

Power Cache-aware Roofline Model

• Performance: Computations (flops) and communication (bytes) overlap in

time

• Power consumption: Superposed contributions of flops and bytes

C
o

re
s

U
n

c
o

re

Package

1402/23/2016

Power Cache-aware Roofline Model

• Performance: Computations (flops) and communication (bytes) overlap in

time

• Power consumption: Superposed contributions of flops and bytes

• Total Power Cache-aware Roofline model

1412/23/2016

Power Cache-aware Roofline Model

• Performance: Computations (flops) and communication (bytes) overlap in

time

• Power consumption: Superposed contributions of flops and bytes

• Total Power Cache-aware Roofline model

1422/23/2016

Power Cache-aware Roofline Model

• Performance: Computations (flops) and communication (bytes) overlap in

time

• Power consumption: Superposed contributions of flops and bytes

• Total Power Cache-aware Roofline model

1432/23/2016

Power Cache-aware Roofline Model

• Performance: Computations (flops) and communication (bytes) overlap in

time

• Power consumption: Superposed contributions of flops and bytes

• Total Power Cache-aware Roofline model

1442/23/2016

Outline

THE CACHE-AWARE ROOFLINE MODEL:

- PERFORMANCE

- POWER

- EFFICIENCY*

* Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores”

1452/23/2016

Efficiency Cache-Aware Roofline Model

Power-efficiency Energy

EDP-efficiency

Energy-efficiency

1462/23/2016

Efficiency Cache-Aware Roofline Model

Energy-efficiency

1472/23/2016

Application Behavior

Cache-aware Roofline Models*

* Ilić, A., Pratas, F. and Sousa, L., “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer Architecture Letters (2013)

* Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores” (submitted)

1482/23/2016

Application Behavior

Cache-aware Roofline Models*

* A. Ilić, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer Architecture Letters (2013)

** S. Williams, et.al. “Roofline: An insightful visual performance model for multicore architectures”, Comm. of the ACM (2009)

** J. Choi, D. Bedard, R. Fowler, and R. Vuduc. “A roofline model of energy”, IPDPS (2013/2014)

Original Roofline Models**

1492/23/2016

Cache-aware Roofline Model: Use Cases

Application Characterization

Online Monitoring

* Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores” (submitted)

* Antão, D., Taniça, L., Ilić, A., Pratas, F., Tomás, P., and Sousa, L., “Monitoring Performance and Power for Application

Characterization with Cache-aware Roofline Model”, PPAM’13

1502/23/2016

Conclusions

BUNCH OF CACHE-AWARE ROOFLINE MODELS (EXPERIMENTALLY

VERIFIED)
– (Total) Performance

– (Total) Power Roofline Models: for several domains, i.e., power of cores, uncore

power and complete package power

– Energy Roofline Model: Time + Power Domains

– Energy-Efficiency Roofline Model: Performance + Power Domains

– EDP-based Roofline Model: Performance + Energy Domains

ALL MODELS OBTAINED WITHIN A SINGLE TEST PROCEDURE

– THE SAME TIME NEEDED AS FOR CONSTRUCTING THE PERFORMANCE ROOFLINE MODEL

FUTURE WORK

- INTEGRATION OF THE PERFORMANCE CARM IN INTEL TOOLS

– GPUS, ARMS, COMPLETE SYSTEM …

2/23/2016 151

Thank you!

Questions?

Further readings:

A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer

Architecture Letters, CAL (2013)

A. Ilic, F. Pratas, and L. Sousa, “CARM: Cache-Aware Performance, Power and Energy-Efficiency

Roofline Modeling”, Intel CATC (2015)

L. Taniça, A. Ilic, P. Tomás, and L. Sousa, “SchedMon: A Performance and Energy Monitoring Tool for

Modern Multi-cores”, MuCoCoS/Euro-Par (2014)

D. Antão, L. Taniça, A. Ilic, F. Pratas, P. Tomás, and L. Sousa, “Monitoring Performance and Power for

Application Characterization with Cache-aware Roofline Model”, PPAM (2013)

A. Ilic, F. Pratas, and L. Sousa, “Beyond the Roofline: Power, Energy and Efficiency Modeling for

Multicores” (#$%&)

