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Introduction

THIS IS ALL ABOUT BUILDING THE ROOFS



32/23/2016

Motivation

HITTING THE ROOF

– Multi-core CPUS, accelerators, diverse compute capabilities, complex 

memory hierarchy…

– Complex applications, different compute and memory requirements

– Optimize and characterize applications for specific architectures

MAXIMUM ATTAINABLE PERFORMANCE VS. POWER/ENERGY

CONSUMPTION

 HOW FAR CAN WE GO?

WHAT ARE THOSE MAXIMUMS FOR PERFORMANCE, POWER, ENERGY, 

EFFICIENCY…?

:  ARCHITECTURES VS. APPLICATIONSGETTING THE MAXIMUM
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STATIC DAG-BASED SCHEDULING
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STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling
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STATIC DAG-BASED SCHEDULING
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STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling
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STATIC DAG-BASED SCHEDULING

Reaching the Maximum via Scheduling
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REACHING THE MAXIMUM IS LIMITED BY

– Application characteristics and demands

– Architecture capabilities to satisfy them

– Trade-offs, assumptions …

HOW FAR CAN WE GO?
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Outline

THE CACHE-AWARE ROOFLINE MODEL:

- PERFORMANCE*

- POWER

- EFFICIENCY

*A. Ilic, F. Pratas and L. Sousa “Cache-ware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2013)
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SEVERAL (IDENTICAL) PROCESSING CORES

– PARALLELISM ACROSS THE PROCESSING CORES

Multi-core Architectures
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures

Multi-core CPU
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SEVERAL (IDENTICAL) PROCESSING CORES
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures

Multi-core CPU
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THROUGHPUT: 1 INSTRUCTION PER 1 CLOCK

~2 clocks per instruction

5 clocks for 1 instruction (5-stage pipeline)
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– INSTRUCTION LEVEL PARALLELISM (PIPELINING)

Multi-core Architectures
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different 

ops)

Multi-core Architectures
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different 

ops)

Multi-core Architectures
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different 

ops)

Multi-core Architectures

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4

HANDS-ON: IVY BRIDGE AT 3.5 GHZ (I7 

3770K)

- Double-precision FLOPs

- Throughput: 2 FP instructions/clock
LOADLOADADD …MUL … …

Port 0 Port 1 Port 2 Port 3 Port X
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E

Port 4

Instructio

n Type

FLO

PS

per 

Instr.

Performance 

(GFLOPS/s)

1 Core 4 Cores

64 bits 1
3.5  7

(2flops x 3.5GHz)
14 28

128 bits
(SSE)

2 7 14 28 56

256 bits
(AVX)

4 14 28 56  112
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different 

ops)

Multi-core Architectures
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*256-bit AVX double-precision floating-point instructions
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different 

ops)

Multi-core Architectures
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different 

ops)

Multi-core Architectures
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WHAT IS THE PEAK (THEORETICAL) BANDWIDTH OF THE L1CORE COMMUNICATION
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- 3x128bits = 48 bytes can be transferred at the same time (per core)

- bus operates at the frequency of the processor  3.5 GHz

 48 bytes x 3.5 GHz = 168 GB/s (1 Core)
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– IN-CORE PARALLELISM (several ports for different 

ops)

Multi-core Architectures
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WHAT IS THE PEAK (THEORETICAL) BANDWIDTH OF THE L1CORE COMMUNICATION
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- 3x128bits = 48 bytes can be transferred at the same time (per core)

- bus operates at the frequency of the processor  3.5 GHz

 48 bytes x 3.5 GHz = 168 GB/s (1 Core)

 4 x 168 GB/s = 672 GB/s (4 cores)
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures
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*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

We can’t get higher than this!

What does it tell about the attainable 

performance?
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures
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We can’t get higher than this!

What does it tell about the attainable 

performance?

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of 

flops and bytes:
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures
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// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of 

flops and bytes:

Memory Operations 

(LD+ST)

IF memory operations and computations are serially performed:

Ts

Computations (flops)

BUT they are actually executed in parallel (interleaved):

T

TC

TM
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures
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// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of 

flops and bytes:

Memory Operations 

(LD+ST)

IF memory operations and computations are serially performed:

Ts

Computations (flops)

BUT they are actually executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU
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*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of 

flops and bytes:

Memory Operations 

(LD+ST)

IF memory operations and computations are serially performed:

Ts

Computations (flops)

BUT they are actually executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP,TM}

TC = #flops/FP
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU
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*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of 

flops and bytes:

Memory Operations 

(LD+ST)

IF memory operations and computations are serially performed:

Ts

Computations (flops)

BUT they are actually executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP, #bytes/BP}

TM = #bytes/BP

TC = #flops/FP
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU
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*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of 

flops and bytes:

Memory operations and computations are executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP, #bytes/BP}
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU
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1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of 

flops and bytes:

Memory operations and computations are executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP, #bytes/BP}

Attainable Performance (FA) of the architecture:

FA = #flops/TT
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SEVERAL (IDENTICAL) PROCESSING CORES

– Parallelism across the processing cores

– Instruction level parallelism (pipelining)

– In-core parallelism (several ports for different ops)

Multi-core Architectures

Multi-core CPU
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*256-bit AVX double-precision floating-point instructions

L1 L1 L1 L1

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

In general, real applications mix different number of 

flops and bytes:

Memory operations and computations are executed in parallel (interleaved):

TT

TC

TM

=> TT=max{TC,TM}=max{#flops/FP, #bytes/BP}

Attainable Performance (FA) of the architecture:

FA = #flops/TT

Rooflin

e 

model



412/23/2016

CACHE-AWARE ROOFLINE MODEL - insightful performance model of multi-core architectures

relates:

1) Maximum Attainable Performance (FA=#flops/TT)

2) Operational Intensity (I=#flops/#bytes).

Cache-aware Roofline Model
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot
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Building the Cache-aware Roofline Model
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4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]

TC = #flops/FP = 8flops/28 = 0.29 ns
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Building the Cache-aware Roofline Model
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4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

TT = max{TC,TM} = 5.71 ns

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

TT = max{TC,TM} = 5.71 ns

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

log-log scale

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

TT = max{TC,TM} = 5.71 ns

FA = #flops/TT = 8flops/5.71 ns = 1.4 Gflops/s 

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 8flops/28 = 0.29 ns

TT = max{TC,TM} = 5.71 ns

FA = #flops/TT = 8flops/5.71 ns = 1.4 Gflops/s 

I=flops/bytes=0.0083 = 8flops/960bytes [1MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]

TM = #bytes/BP = ?

TC = #flops/FP = ?

TT = max{TC,TM} = ?

FA = #flops/TT = ?
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Building the Cache-aware Roofline Model
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4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = ?

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 64flops/28 = 2.29 ns

TT = max{TC,TM} = 5.71 ns

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = ?

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 64flops/28 = 2.29 ns

TT = max{TC,TM} = 5.71 ns

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 64flops/28 = 2.29 ns

TT = max{TC,TM} = 5.71 ns

FA = #flops/TT = 64flops/5.71 ns = 11.2 Gflops/s 

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 64flops/28 = 2.29 ns

TT = max{TC,TM} = 5.71 ns

FA = #flops/TT = 64flops/5.71 ns = 11.2 Gflops/s 

I=flops/bytes=0.067 = 64flops/960bytes [8MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*
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4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

Roofline plot

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]

TM = #bytes/BP = ?

TC = #flops/FP = ?

TT = max{TC,TM} = ?

FA = #flops/TT = ?
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = ?

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = ?

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = 160flops/5.71 ns = 28 Gflops/s 

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

Roofline plot

FA = #flops/TT = 160flops/5.71 ns = 28 Gflops/s 

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

RIDGE POINT:
Minimal I to achieve peak FP performance

I = FP/BP

Computations and transfers completely overlapped

TC = TM

FA = #flops/TT = 160flops/5.71 ns = 28 Gflops/s 

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 160flops/28 = 5.71 ns

TT = max{TC,TM} = 5.71 ns (TC=TM)

I=flops/bytes=0.016 = 160flops/960bytes [20MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

I=flops/bytes=1 = 960flops/960bytes [120MAD/(10x(2LD+ST))*]

TM = #bytes/BP = ?

TC = #flops/FP = ?

TT = max{TC,TM} = ?

FA = #flops/TT = ?
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Building the Cache-aware Roofline Model

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*
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*256-bit AVX double-precision floating-point instructions

FA = #flops/TT = 960flops/34.29ns = 28 Gflops/s 

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 960flops/28 = 34.29 ns

TT = max{TC,TM} = 34.29 ns

I=flops/bytes=1 = 960flops/960bytes [120MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

FA = #flops/TT = 960flops/34.29ns = 28 Gflops/s 

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 960flops/28 = 34.29 ns

TT = max{TC,TM} = 34.29 ns

I=flops/bytes=1 = 960flops/960bytes [120MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

I=flops/bytes= 64 = 61440flops/960bytes [7680MAD/(10x(2LD+ST))*]

FA = #flops/TT = 28 Gflops/s 

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 7680flops/28 = 2194.29 ns

TT = max{TC,TM} = 2194.29 ns
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

FA = #flops/TT = 28 Gflops/s 

TM = #bytes/BP = 960bytes/168 = 5.71 ns

TC = #flops/FP = 7680flops/28 = 2194.29 ns

TT = max{TC,TM} = 2194.29 ns

I=flops/bytes= 64 = 61440flops/960bytes [7680MAD/(10x(2LD+ST))*]
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

I=flops/bytes= 8192 = 7864320flops/960bytes [983040MAD/(10x(2LD+ST))*]

FA = #flops/TT = 28 Gflops/s 

TM = #bytes/BP = 5.71 ns

TC = #flops/FP = 280868.58 ns

TT = max{TC,TM} = 280868.58 ns
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Building the Cache-aware Roofline Model
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4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

MEMORY-BOUND

REGION
COMPUTE-BOUND

REGION

APPLICATION

CHARACTERIZATION

– Memory-bound applications

– Compute-bound applications
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions

MEMORY-BOUND

REGION
COMPUTE-BOUND

REGION

APPLICATION

CHARACTERIZATION

– Memory-bound applications

– Compute-bound applications

Application is a SINGLE POINT

in the Cache-Aware Roofline 

Model!
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Building the Cache-aware Roofline Model
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*256-bit AVX double-precision floating-point instructions
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Building the Cache-aware Roofline Model

MEMORY-BOUND

REGION

COMPUTE-BOUND

REGION

MODEL FOR 4 CORES

Multi-core CPU

CO
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1
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4L1 L1 L1 L1

i7 3770K
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(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

MODEL FOR 1 CORE
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Building the Cache-aware Roofline Model
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Multi-core CPU
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*256-bit AVX double-precision floating-point instructions

MODEL FOR 4 CORES

MODEL FOR 1 CORE
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Building the Cache-aware Roofline Model

MEMORY-BOUND

REGION

COMPUTE-BOUND

REGION

Multi-core CPU

CO

RE

1

CO

RE

2

CO

RE

3

CO

RE

4L1 L1 L1 L1

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

As for now, we just considered

L1 bandwidth!

MODEL FOR 4 CORES

MODEL FOR 1 CORE
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MEMORY HIERARCHY

– Set of on-chip caches: private (L1, L2) or shared (L3)

– Global memory (DRAM)

– Caches hide the latency when accessing DRAM (also 

between successive cache levels)

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions
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MEMORY HIERARCHY

– Set of on-chip caches: private (L1, L2) or shared (L3)

– Global memory (DRAM)

– Caches hide the latency when accessing DRAM (also 

between successive cache levels)

CACHE-AWARE ROOFLINE MODEL

– Peak FP performance and L1 bandwidth obtained from 

processor’s specifications (bottom table)

– We need bandwidth from all other memory levels to 

the Core?

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions
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MEMORY HIERARCHY

– Set of on-chip caches: private (L1, L2) or shared (L3)

– Global memory (DRAM)

– Caches hide the latency when accessing DRAM (also 

between successive cache levels)

CACHE-AWARE ROOFLINE MODEL

– Peak FP performance and L1 bandwidth obtained from 

processor’s specifications (bottom table)

– We need bandwidth from all other memory levels to 

the Core?

– MICRO-BENCHMARKS FOR ARCHITECTURE CHARACTERIZATION

Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

// AVX Assembly code: 2 Loads + 1 

Store

vmovapd 0(%rax), %ymm0

vmovapd 32(%rax), %ymm1

vmovapd %ymm2, 64(%rax)

vmovapd 96(%rax), %ymm3

vmovapd 128(%rax), %ymm4

vmovapd %ymm5, 160(%rax)

…
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Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

// AVX Assembly code: 2 Loads + 1 

Store

vmovapd 0(%rax), %ymm0

vmovapd 32(%rax), %ymm1

vmovapd %ymm2, 64(%rax)

vmovapd 96(%rax), %ymm3

vmovapd 128(%rax), %ymm4

vmovapd %ymm5, 160(%rax)

…
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Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

// AVX Assembly code: 2 Loads + 1 

Store

vmovapd 0(%rax), %ymm0

vmovapd 32(%rax), %ymm1

vmovapd %ymm2, 64(%rax)

vmovapd 96(%rax), %ymm3

vmovapd 128(%rax), %ymm4

vmovapd %ymm5, 160(%rax)

…

L1C

L2C

L3C

DRAMC

BP=672
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Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

// AVX Assembly code: 2 Loads + 1 

Store

vmovapd 0(%rax), %ymm0

vmovapd 32(%rax), %ymm1

vmovapd %ymm2, 64(%rax)

vmovapd 96(%rax), %ymm3

vmovapd 128(%rax), %ymm4

vmovapd %ymm5, 160(%rax)

…

L1C

L2C

L3C

DRAMC

// Configured Performance Counters

CPU_CLK_UNHALTED.CORE/REF

MEM_UOP_RETIRED.ALL_LOADS

MEM_UOP_RETIRED.ALL_STORES

…

How to measure?
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Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

L1C

L2C

L3C

DRAMC

How to measure?
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Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

// AVX Assembly code: 2 Loads + 1 

Store

vmulpd %ymm0, %ymm0, %ymm0

vaddpd %ymm1, %ymm1, %ymm1

vmulpd %ymm2, %ymm2, %ymm2

vaddpd %ymm3, %ymm3, %ymm3

vmulpd %ymm4, %ymm4, %ymm4

vaddpd %ymm5, %ymm5, %ymm5

…

// Configured Performance Counters

CPU_CLK_UNHALTED.CORE/REF

FP_OPS_EXE_SSE_SCALAR_DBL

FP_OPS_EXE_SSE_FP_PACKED_DBL

SIMD_FP_256_PACKED_DBL

…

How to measure?
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Multi-core Architectures

- Memory Hierarchy -

CO

RE

1L1

L2

L3 Cache

CO

RE

2L1

L2

CO

RE

3L1

L2

CO

RE

4L1

L2

Multi-core CPU

D R A M

// AVX Assembly code: 2 Loads + 1 

Store

vmulpd %ymm0, %ymm0, %ymm0

vaddpd %ymm1, %ymm1, %ymm1

vmulpd %ymm2, %ymm2, %ymm2

vaddpd %ymm3, %ymm3, %ymm3

vmulpd %ymm4, %ymm4, %ymm4

vaddpd %ymm5, %ymm5, %ymm5

…

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

filling the

pipeline

FP=112
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Cache-Aware Roofline Model

- Putting it all together -

i7 3770K

Ivy 

Bridge

Perf. [FP]

(GFlops/s)*

Bwidth L1C 

[BP]

(GB/s)*

1 Core 28 168

4 Cores 112 672

*256-bit AVX double-precision floating-point instructions

L1C
L2C

L3C
DRAMC

FP
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Cache-aware Roofline Model: Hands On

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations 
- not only floating-point

• Useful for:
- Application characterization and optimization 

- Architecture development and understanding

Intel 3770K

(Ivy Bridge)

Cache-aware Roofline Model*

[proposed]

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013
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Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations 
- not only floating-point

• Useful for:
- Application characterization and optimization 

- Architecture development and understanding

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the 

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of 

compute and memory operations

Intel 3770K

(Ivy Bridge)

4 Cores

(AVX MAD)
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Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations 
- not only floating-point

• Useful for:
- Application characterization and optimization 

- Architecture development and understanding

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the 

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of 

compute and memory operations

Intel 3770K

(Ivy Bridge)

4 Cores

(AVX ADD/MUL)



892/23/2016

Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations 
- not only floating-point

• Useful for:
- Application characterization and optimization 

- Architecture development and understanding

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the 

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of 

compute and memory operations

4 Cores

(SSE)
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Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations 
- not only floating-point

• Useful for:
- Application characterization and optimization 

- Architecture development and understanding

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the 

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of 

compute and memory operations

4 Cores

(DBL)
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Cache-Aware Roofline Model

vs. State-of-the-Art

WHAT IS HOT (WHAT IS NOT)?

- APPLICATION CHARACTERIZATION -
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The Original Roofline Model*

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM) 

• Performance: Computations (flops) and communication (bytes) overlap in 

time

COMPUTE-BOUND

REGION

MEMORY-BOUND

REGION

Intel 3770K

(Ivy Bridge)

Original Roofline Model*

(state of the art)

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009)
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The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM) 

Intel 3770K

(Ivy Bridge)
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I=16	

I is constant

I=(Σfι)/(Σbι)

f

b

APP-D (data traffic from DRAM)
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The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM) 

Intel 3770K

(Ivy Bridge)

I1=f1/b1

b

f

APP-L3 (data fits in L3)
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The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM) 

Intel 3770K

(Ivy Bridge)

I1=f1/b1

b=0

f

APP-L3 (data fits in L3)

I2=(f1+f2)/b1
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The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM) 

Intel 3770K

(Ivy Bridge)

I1=f1/b1

b=0

f

APP-L3 (data fits in L3)

I2=(f1+f2)/b1

Ii=(Σfi)/b1

I is variable
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The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM) 

Intel 3770K

(Ivy Bridge)

b

f

APP-L1 (data fits in L1)

I1=f1/b1

I2=(f1+f2)/b1

Ii=(Σfi)/b1

I is variable
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The Original Roofline Model: Hands On

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009)

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM) 

Intel 3770K

(Ivy Bridge)

b

I1=f1/b1

I2=(f1+f2)/b1

Ii=(Σfi)/b1

I is variable
I varies with the problem

size. Memory bound 

becomes compute bound.

Fixed I - unexpected 

performance for 

different $ levels

Does not achieve 

maximum attainable 

performance
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Cache-aware Roofline Model

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM) 

• Performance: Computations (flops) and communication (bytes) overlap in 

time

Intel 3770K

(Ivy Bridge)

filling the

pipeline
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Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-D (data traffic from DRAM)
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Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L3 (fits in L3)
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Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L3 (fits in L3)
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Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L3 (fits in L3)
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Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L1 (fits in L1)
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Cache-aware Roofline Model: Hands On

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L1 (fits in L1)

Achieves maximum 

attainable performance is 

always memory bound.

‘I’ does not vary. The 

performance tends to the 

cache level ceiling.
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Cache-Aware Roofline Model

vs. State-of-the-Art

WHAT IS HOT (WHAT IS NOT)?

APPLICATION CHARACTERIZATION AND

OPTIMIZATION
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Practical Example: Dense Matrix 

Multiplication
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Cache-aware Roofline Model Original Roofline Model

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N

1) Basic implementation: All matrices stored in row-major order.



1082/23/2016

Practical Example: Dense Matrix 

Multiplication

Cache-aware Roofline Model Original Roofline Model

11

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N

1) Basic implementation: All matrices stored in row-major order.
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Practical Example: Dense Matrix 

Multiplication

1) Basic implementation: All matrices stored in row-major order.

Cache-aware Roofline Model Original Roofline Model

// matrix multiplication example

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N
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Practical Example: Dense Matrix 

Multiplication

Cache-aware Roofline Model Original Roofline Model

- app in the compute bound region

- mainly limited by DRAM

- can be optimized to hit higher cache levels

- app in the memory bound region

- mainly limited by DRAM

- can be optimized up to the slanted part

// matrix multiplication example

// VER 1: Row major matrices

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N

1) Basic implementation: All matrices stored in row-major order.
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Practical Example: Dense Matrix 

Multiplication
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Cache-aware Roofline Model Original Roofline Model

- app in the compute bound region

- almost hits L3

- can be further optimized to hit higher cache levels

11

- app in the memory bound region

- performance hits the roof of the model

- suggests that the optimization is finished

2) Transposition: One matrix is transposed into column-major

2 2

// matrix multiplication example

// VER 1: Row major matrices

// OPT 2: Transpose B matrix

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N



1122/23/2016

Practical Example: Dense Matrix 

Multiplication
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3) Blocking for L3: All matrices are blocked to efficiently exploit L3

Cache-aware Roofline Model Original Roofline Model

- performance is further improved 

- breaking the cache level ceilings towards the roof

11

- optimization process finished

2 2
3

// matrix multiplication example

// OPT 3: Blocking for L3

for i=1 to M

for j=1 to N

for k=1 to K

C[i,j] += A[i,k]*B[k,j]

A =xM

K

BK

N

CM

N
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Practical Example: Dense Matrix 

Multiplication
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Cache-aware Roofline Model Original Roofline Model

11

- optimization process finished

2 2
3, 4, 5

// matrix multiplication example

// VER 1: Row major matrices

// OPT 2: Transpose B matrix

// OPT 3: Blocking for L3

// OPT 4: Blocking for L2

// OPT 5: Blocking for L1

A =xM

K

BK

N

CM

N

- performance is further improved 

- breaking the cache level ceilings towards the roof
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Practical Example: Dense Matrix 

Multiplication
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Cache-aware Roofline Model Original Roofline Model

- OPT 6 achieves near theoretical performance

11

- moves to the compute bound region

(shift in operational intensity) 

2 2
3, 4, 5

6
3, 4, 5

6

optimizations 

suggested by the 

cache-aware model

// matrix multiplication example

// VER 1: Row major matrices

// OPT 2: Transpose B matrix

// OPT 3: Blocking for L3

// OPT 4: Blocking for L2

// OPT 5: Blocking for L1

// OPT 6: Highly optimized (MKL)

A =xM

K

BK

N

CM

N
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Practical Example: Dense Matrix 

Multiplication
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Cache-aware Roofline Model Original Roofline Model

- OPT 6 achieves near theoretical performance

11

- moves to the compute bound region

(shift in operational intensity) 

2 2
3, 4, 5

6
3, 4, 5

6

optimizations 

suggested by the 

cache-aware model

// matrix multiplication example

// VER 1: Row major matrices

// OPT 2: Transpose B matrix

// OPT 3: Blocking for L3

// OPT 4: Blocking for L2

// OPT 5: Blocking for L1

// OPT 6: Highly optimized (MKL)

A =xM

K

BK

N

CM

N

Caches cannot be neglected!

(performance improved ~10x)
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Cache-aware Roofline Model: Use Cases

Application Characterization

Online Monitoring

single core quad-core

milc tonto LU factorization

* Antão, D., Taniça, L., Ilić, A., Pratas, F., Tomás, P., and Sousa, L., “Monitoring Performance and Power for Application 

Characterization with Cache-aware Roofline Model”, PPAM’13
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Outline

THE CACHE-AWARE ROOFLINE MODEL:

- PERFORMANCE

- POWER*

- EFFICIENCY

• Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores” (submitted)
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Power Roofline Model

POWER MODELING FOR 3 DIFFERENT DOMAINS

(RAPL-BASED):

1. POWER OF CORES (PC)

– consumed by components within the cores

2. UNCORE POWER (PU)

– consumed by all other (non-processing) parts of the 

chip, e.g., off-chip memory controller 

3. PACKAGE POWER (PP)

– the power of the complete processor chip 

...CORE 
1

CORE 
K

CPU     

Main 

Memory 

CORE DOMAIN

UNCORE DOMAIN

 (package)
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Power Roofline Model 

...CORE 
1

CORE 
K

CPU     

Main 

Memory 

CORE DOMAIN

UNCORE DOMAIN

 (package)

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

POWER ROOFLINE MODEL RELATES

POWER CONSUMPTION WITH OPERATIONAL

INTENSITY (I=f/b)

Average Power Consumption must be considered

– during the time interval, T(I), in which the (Roofline) 

performance is obtained!

Power Contributions of both memory operations 

and FP operations vary with two factors:

1. The number of executed operations

2. The contribution of each during the time interval T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 1/128
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 1/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 1/128

T(I)



1232/23/2016

Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 4/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 4/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 4/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 16/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 16/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 64/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 256/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b ≈ 512/128

T(I)

MAXIMUM OVERLAP = MAXIMUM POWER
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 1024/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 4096/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)
I = f/b = 65536/128

T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE) T(I)
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Power Roofline Model 

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)

THE MOST “DESIRABLE” 

PERFORMANCE POINT IS THE

WORST IN THE POWER DOMAIN
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Power Roofline Model 

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)

1. POWER OF CORES (PC) 3. PACKAGE POWER (PP)2. UNCORE POWER (PU)

THE IMPACT OF THE OFF-CHIP

MEMORY CONTROLLER POWER

REDUCES WITH THE NUMBER OF

MEMORY OPERATIONS AND

THEIR CONTRIBUTION WHEN

COMPARED TO THE FP 

OPERATIONS
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Power Roofline Model 

INTEL 3770K (IVY BRIDGE

ARCHITECTURE)

1. POWER OF CORES (PC)2. UNCORE POWER (PU) 3. PACKAGE POWER (PP)

PACKAGE

CORES

UNCORE

THE PACKAGE POWER DEPENDS

ON SUPERPOSITION WITH THE

POWER OF CORES, THE

UNCORE POWER, AND THE

OTHER COMPONENTS ON THE

CHIP
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Power Cache-aware Roofline Model 

• Different power domains: Cores + Uncore = Package

Intel 3770K

(Ivy Bridge)

filling the pipeline
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Power Cache-aware Roofline Model 

• Performance: Computations (flops) and communication (bytes) overlap in 

time

• Power consumption: Superposed contributions of flops and bytes

C
o

re
s

U
n

c
o

re

Package
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Power Cache-aware Roofline Model 

• Performance: Computations (flops) and communication (bytes) overlap in 

time

• Power consumption: Superposed contributions of flops and bytes

• Total Power Cache-aware Roofline model
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Power Cache-aware Roofline Model 

• Performance: Computations (flops) and communication (bytes) overlap in 

time

• Power consumption: Superposed contributions of flops and bytes

• Total Power Cache-aware Roofline model
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Power Cache-aware Roofline Model 

• Performance: Computations (flops) and communication (bytes) overlap in 

time

• Power consumption: Superposed contributions of flops and bytes

• Total Power Cache-aware Roofline model
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Power Cache-aware Roofline Model 

• Performance: Computations (flops) and communication (bytes) overlap in 

time

• Power consumption: Superposed contributions of flops and bytes

• Total Power Cache-aware Roofline model
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Outline

THE CACHE-AWARE ROOFLINE MODEL:

- PERFORMANCE

- POWER

- EFFICIENCY*

* Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores”
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Efficiency Cache-Aware Roofline Model 

Power-efficiency Energy

EDP-efficiency

Energy-efficiency
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Efficiency Cache-Aware Roofline Model 

Energy-efficiency
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Application Behavior

Cache-aware Roofline Models*

* Ilić, A., Pratas, F. and Sousa, L., “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer Architecture Letters (2013)

* Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores” (submitted)



1482/23/2016

Application Behavior

Cache-aware Roofline Models*

* A. Ilić, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer Architecture Letters (2013)

** S. Williams, et.al. “Roofline: An insightful visual performance model for multicore architectures”, Comm. of the ACM (2009)

** J. Choi, D. Bedard, R. Fowler, and R. Vuduc. “A roofline model of energy”, IPDPS (2013/2014)

Original Roofline Models**
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Cache-aware Roofline Model: Use Cases

Application Characterization

Online Monitoring

* Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores” (submitted)

* Antão, D., Taniça, L., Ilić, A., Pratas, F., Tomás, P., and Sousa, L., “Monitoring Performance and Power for Application 

Characterization with Cache-aware Roofline Model”, PPAM’13
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Conclusions

BUNCH OF CACHE-AWARE ROOFLINE MODELS (EXPERIMENTALLY

VERIFIED)
– (Total) Performance

– (Total) Power Roofline Models: for several domains, i.e., power of cores, uncore

power and complete package power 

– Energy Roofline Model: Time + Power Domains

– Energy-Efficiency Roofline Model: Performance + Power Domains

– EDP-based Roofline Model: Performance + Energy Domains

ALL MODELS OBTAINED WITHIN A SINGLE TEST PROCEDURE

– THE SAME TIME NEEDED AS FOR CONSTRUCTING THE PERFORMANCE ROOFLINE MODEL

FUTURE WORK

- INTEGRATION OF THE PERFORMANCE CARM IN INTEL TOOLS

– GPUS, ARMS, COMPLETE SYSTEM …
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Thank you! 

Questions?

Further readings:

A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer 

Architecture Letters, CAL (2013)

A. Ilic, F. Pratas, and L. Sousa, “CARM: Cache-Aware Performance, Power and Energy-Efficiency 

Roofline Modeling”, Intel CATC (2015)

L. Taniça, A. Ilic, P. Tomás, and L. Sousa, “SchedMon: A Performance and Energy Monitoring Tool for 

Modern Multi-cores”, MuCoCoS/Euro-Par (2014)

D. Antão, L. Taniça, A. Ilic, F. Pratas, P. Tomás, and L. Sousa, “Monitoring Performance and Power for 

Application Characterization with Cache-aware Roofline Model”, PPAM (2013)

A. Ilic, F. Pratas, and L. Sousa, “Beyond the Roofline: Power, Energy and Efficiency Modeling for 

Multicores” (#$%&)


