Exercise Manual

for **Designing with Quartus II**

Exercise 1

Objectives:

- Use the MegaWizard Plug-in Manager and create a multiplier
- Insert wires and pins into design
- Verify that all connections are made correctly.

Pipelined Multiplier Design

Figure 1

Step 1 (Open the project and create schematic file)

In this exercise, you will use a project which has been created for you. This exercise focuses on the schematic design capabilities in Quartus[®] II.

- 1. If it is not already started, launch the **Quartus II** software using the start menu or desktop icon if one exists on your machine.
- 2. Select File ⇒ Open project... Browse to <Quartus II\Lab install directory>\QII4_0\Lab1\. Select the project pipemult.qpf and click on Open.
- 3. Select File \Rightarrow New and select Block Diagram/Schematic File
- 4. Select **File** \Rightarrow **Save As** and save the file as

<Quartus II\Lab install directory>\QII4_0\Lab1\ pipemult

We will now create the design shown in Figure 1.

Step 2 (Build an 8x8 multiplier using the MegaWizard[®] Plug-in Manager)

- 1. Choose **Tools** ⇒ **MegaWizard Plug-In Manager**. In the window that appears, select **Create a new custom megafunction variation**. Click on **Next**.
- 2. On page 2a of the MegaWizard, expand the arithmetic folder and select LPM_MULT.
- 3. From the drop down menu select **Stratix II** for the device family. Choose **Verilog HDL** output.

Name the output file <Quartus II\Lab install directory>\QII4_0\Lab1\mult.

Click on Next.

- 4. On **page 3**, set the width of the **dataa** and **datab** buses to **8** bits. For the remaining settings in this window, use the defaults that appear. Select **Next**.
- 5. On page 4, choose Use default implementation under "Which Multiplier Implementation should be used?" Select Next.
- 6. On page 5, choose Yes, I want an output latency of <u>2</u> clock cycles. Click Next.
- 7. On **page 6**, the following check boxes should be enabled to generate output files:

<u>mult.v</u>

<u>mult.bsf</u>

8. Select **Finish** in the final window that appears. *The multiplier is built*.

Note that the steps you just went through could be applied to any design entry method. One possible modification you might try is to choose the same language output as your design modules. So, if you are using VHDL modules, a VHDL LPM_MULT output can be chosen.

9. In the Graphic Editor, double-click in the screen so that the Symbol Window

appears. Inside the symbol window, **click** on **t** to expand the symbols defined in the **Project** folder. **Double-click** on **mult**. **Click the left mouse button** to put down the symbol inside the schematic file.

The symbol for "mult" now appears in the schematic.

Step 3 (Create symbol for 32 word deep RAM written in VHDL)

1. From the **File** menu, **open** the file **ram.vhd**.

Notice this is a VHDL file inferring a <u>single-port 32-bit synchronous RAM</u>. This file could very well be written in Verilog. This RAM block could also have been easily created using the MegaWizard, selecting LPM_RAM_DP+ in the storage folder or the RAM: 2-PORT in the memory compiler folder.

2. From the **File** menu, go the **Create/Update** menu option and select **Create Symbol Files for Current File**. Click **Yes** to save changes to **pipemult.bdf**.

Quartus II now generates a symbol file based on the port declarations in the VHDL file.

- 3. Once Quartus II is finished creating the symbol, click OK. Close the ram.vhd file.
- 4. In the **Graphic Editor**, **double-click** in the screen so that the **Symbol** Window appears again. **Double-click** on **ram** in the **Project** folder. **Click OK.** Move the mouse to the appropriate location to connect the RAM as shown in the figure. Click the left mouse button to put down the symbol.

The symbol for "ram" now appears in the schematic.

Step 4 (Add Pins to the Design)

Table I. Pin List	
Input	Output
clk1	q[150]
dataa[70]	
datab[70]	
wraddress[40]	
wren	
rdaddress[40]	

For each of the pins listed in Table 1, you must insert a pin and change its name.

- 1. To place pins in the schematic file, go to **Edit** ⇒ **Insert** ⇒ **Symbol** or **double-click** in the **Graphic Editor**.
- Browse to libraries ⇒ primitives ⇒ pin folder. Double-click on input or output.
 Hint: To insert multiple pins select Repeat Insert Mode.

- 3. To rename the pins double-click on the pin name after it has been inserted.
- 4. Type the name in the **Pin name**(s) field and **Click Ok**.

Step 5 (Connect the Pins and Blocks in the Schematic)

1. In the left hand tool bar click on to draw a wire and to draw a bus.

If you place the cursor next to any symbol's port, the wire or bus tool will automatically appear.

2. Connect all of the pins and blocks as shown in **Figure 1**.

Step 6 (Save and check the schematic)

- 1. Click on the **Save** button in the toolbar **b** to save the schematic.
- 2. From the **Processing** menu select **Start** and then **Analysis & Synthesis button**

Analysis and synthesis checks that all the design files are present and connections are made correctly and then synthesizes the design.

3. Click **OK** when analysis and synthesis is completed.

Step 7 (Open the RTL Viewer)

1. If you have any extra time before the start of the next section, open the **RTL Viewer** and explore the Quartus II interpretation of the design you created.

Exercise Summary

- Completed a schematic design in Quartus II
- Used the MegaWizard to create a multiplier
- Generated a symbol from previously created HDL file to incorporate into a schematic
- Used Analysis and Synthesis to check design files

END OF EXERCISE 1

Exercise 2

Objectives:

- Use an existing top-level file to set up a project
- Analyze various timing parameters in the design
- Control the use of DSP Blocks for implementing the multiplier
- Assign I/O Pins and Run I/O Analysis

	With DSP Blocks	Without DSP Blocks
Device Name		
Total Logic Elements		
Total DSP Blocks Elements		
Total Memory Bits		
Worst Fmax		

Step 1 (Setup Project for QII4_0\Lab2)

- 1. Under File, Select New Project Wizard.... A new window appears. If an Introduction screen appears, click Next.
- 2. Page 1 of the wizard should be completed with the following:

working directory for this project	<quartus directory="" ii="" install="" lab="">\QII4_0\Lab2_4\</quartus>
name of project	pipemult
top-level design entity	pipemult

3. Click Next to advance to the Project Wizard: Add Files [page 2 of 6].

1			Add
ame	Туре		Add All
			Remove
			Properties
			Up
			Down
project includes lib	raries of custom functions	, specify their	
project includes lib	raries of custom functions	, specify their	

4. All of the design files are in the current project directory. As shown above, leave everything blank and **Click Next**.

Note: Files located in the project directory do not need to be added to this list. This screen is used for adding design files located in different locations.

Lool tune		Tool name			
)esian entru/su	nthesis	<none></none>			
imulation		<none></none>			25
Timing analysis		<none></none>			
ioard-level formal verificati	on	<nune></nune>			
esynthesis	917	<none></none>			
Tool settings –					
Tool type:	Design ent	ry/synthesis			
Tool name:	<none></none>				•
🗖 Run this to	ol automatica	lly to synthesiz	the current o	lesign	Settings

5. Page 3 allows you to specify any third party EDA tools. These exercises will be done entirely within Quartus II. Click **Next.**

New Project Wizard: Device Family [page 4 of 6]
Which device family do you wish to target?
Family: Stratix
Do you want to assign a specific device?
• Yes
No, I want to allow the Compiler to choose a device
· · · · · · · · · · · · · · · · · · ·
Back Next Finish Cancel

6. On page 4 (as shown above), select **Stratix** for the Family and click **Yes** for specifying the device. Click **Next**.

Available devices: EP1510B672C6 EP1510F672C6 EP1510F780C5 EP1510F780C5ES EP1520B672C6 EP1520F484C5 EP1520F484C5 EP1520F780C5 EP1525F672C6 EP1525F672C6 EP1525F672C6 EP1525F672C6 EP1525F672C6 EP1525F672C6 EP1525F672C6 EP1525F672C6 EP1525F672C6 EP1525F672C6 EP1525F672C6 EP1525F672C6)PY_FPGA_F	Filters Package: Pin <u>c</u> ount: <u>S</u> peed grade Voltage:	Any Any Fastest 1.5V	Y	
	Back	Next	Finish	Cancel	

7. On page 5, make sure all of the Filters on the right side are set to Any. Scroll down and select the **EP1S10F484C5** device. Click **Next**.

The device may already be selected since **Quartus II** copies the device selected in the last open project for the new project being created.

Project directory	
o:\ documents and settings'	agoodara) mu
Project name:	ninemult
Top-level design entity:	pipemult
Number of files added:	0
Number of user libraries added:	0
EDA tools:	
Design entry/synthesis:	<none></none>
Simulation:	<none></none>
Timing analysis:	<none></none>
Board design:	<none></none>
Device assignments:	
Family name:	Stratix
Device:	EP1S10F780C5

8. The summary screen appears as shown. Click Finish. The project is now created.

Step 2 (Compile the design)

- 1. Select **Start Compilation** from the **Processing** menu or **click** on located on the toolbar to perform a full compilation of the design. A dialog box will appear when the compilation is complete.
- 2. Click **OK**.

Step 3 (Gather information from the Compilation Report File)

By default, Quartus II opens the Compilation Report file and has the Summary

Section selected. If this is not open, click on \bowtie .

- 1. From the **Summary** section of the **Compilation Report**, record the **Device** name, **Total logic elements**, **Total memory bits**, and **DSP Block 9-bit elements** in the table above at the beginning of this exercise.
- 2. Expand the **Timing Analyzer** folder in the **Compilation Report**. Click on **Clock Setup: 'clk1'** table under the **Timing Analyzer** folder. In the exercise table, record the worst **Actual fmax** in the clock table.

Step 4 (Implement the multiplier in logic elements instead of a DSP Block)

Stratix and Stratix II DSP Blocks are a valuable resource for implementing multiply, multiply-add, and multiply-accumulate functions in the FPGA. They provide a better usage of resources for multiplication over logic elements. But, DSP Blocks are limited in number. If you design has many multipliers, it may be advantageous to implement smaller or non-speed critical multipliers in logic elements instead. This can be done using an option in the MegaWizard flow, or it can be done on a multiplier-by-multiplier basis using the Assignment Editor logic option.

- 1. Bring **pipemult.bdf** to the foreground.
- 2. Right mouse click on the mult symbol and choose Assignment Editor.

3. In the Assignment Editor expand the Category section (at the top) and select Logic Options.

- 4. In the **Node Filter** section, make sure **Show assignments for specific nodes** is checked.
- 5. **Right-click** in the **Assignment Name** field for **mult:inst** (row 1) and select **Edit Cell**.
- 6. Select **DSP Block Balancing** from the drop down menu.
- 7. **Right-click** in the **Value** field for the **DSP Block Balancing** option and select **Edit Cell**.
- 8. Select **Logic Elements** from the drop down menu.
- 9. Save the Assignment Editor file.

Your Assignment Editor window should look similar to below.

4	Assi	ignment Editor				
×	Category:	tco th tpd tsu Other Timing Logic Options				- - -
×	I Node Filter:	Show assignments	for specific nodes:			Check All Uncheck All Delete All
×	Information:	Allows you to control	the conversion of certain	n DSP block slices during DSP	block balancing.	A
×		Edit: XV	Logic Elements			
1	7	From	To To To mult:inst To mult:inst	Assignment Name DSP Block Balancing	Value Logic Elements	

Step 5 (Recompile the design)

1. Click on to compile the design.

Step 6 (Determine the performance of the design)

- 4. From the **Summary** page inside the **Compilation Report**, record the **Device name**, **Total logic elements**, **Total memory bits**, and **DSP Block 9-bit elements** in the exercise table above.
- 5. Expand the **Timing Analyzer** folder in the **Compilation Report**. Click on the **Clock Setup: 'clk1'** table. In the exercise table above, record the worst fmax.

It is pretty clear the DSP Blocks can greatly improve timing, but as with many options there is a trade-off with regards to resource usage.

Step 7 (Use Assignment Editor to make general pin placement assignments)

- 1. Bring the **Assignment Editor** to the foreground.
- 2. In the Assignment Editor toolbar, make sure the Category Bar and Show I/O

Banks in Color buttons are turned on. Under the **Node Filter**, uncheck the box to **Show assignments for specific nodes**.

All Pin Timing + Logic Options

- 3. **Collapse** the **Category** section of the **Assignment Editor** and then click on the **Pin** button as shown above.
- In the Assignment Editor, double-click on the To cell in row 1 to reveal a drop-down menu of available pins. Select the entire dataa input bus (^{™dataa}).
- 5. In the Location cell of row 1, double-click and assign the dataa bus to I/O Bank 2.
- 6. In the **I/O Standard** cell of row 1, double-click to assign the **dataa** bus as **2.5** V.
- 7. Double-click on the **To** cell of row 2 and select the entire **datab** input bus (**b**^{datab}).
- Assign the datab bus to I/O Bank 2 by double-clicking on the Location cell of row 2.
- 9. Set the value for the **datab** bus to **1.8 V** by double-clicking on the **I/O Standard** cell of row 2.
- 10. Double-click on the **To** cell of row 3 and select the **q** output bus.
- 11. Assign the **q** output bus to **I/O Bank 3**.

Your Assignment Editor window should look as shown below. Notice that the *q* output bus is shown in a different color to indicate it is being assigned to a different I/O Bank than the dataa and datab busses.

🎸 As	signment Edito	ur -				
× .	Category:	Pin			🗑 All 🖻 Pin 💍 T	iming 🔹 Logic Options
× .	Information:	This category displays all pin	assignments for the targ	et device family. Pin assignn	nents assign node and enti	ties to pins or regions on the
×	Edit:	X J dataa				
	Name	Location	I/O Bank	I/O Standard	General Function	Special Function
1	🔂 dataa	IOBANK_2	2	2.5 V		
2	i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	IOBANK_2	2	1.8 V		
3	💿 q	IOBANK_3	3	LVTTL		
4	< <new>></new>	< <new>></new>				
•						1

12. Save the Assignment Editor file.

Step 8 (Analyze I/O assignments)

Now you have made simple I/O assignments, you can check the validity of those assignments without running a full compilation. This way you can quickly and easily find I/O placement issues and correct them.

1. From the **Processing** menu, go to **Start** and select **Start I/O Assignment Analysis**. Click **OK** once the analysis is complete.

Was the analysis successful? Check the messages in the **Message** window or the **Fitter Messages** in the **Compilation Report**. They should as show below.

2. Review the I/O Analysis Messages and determine the cause of the error. Expand the error messages to get more detail as to why each pin of the dataa bus is not being placed successfully.

Determining the cause of the I/O placement failure requires reading the error messages carefully and having a little understanding of **Stratix** or general FPGA I/O blocks. See if you can understand and correct the cause of the errors on your own. If you do not have a lot of **Stratix** or FPGA experience, then #'s 3-5 will show you how correct the errors.

3. Bring the Assignment Editor to the foreground again.

Notice that you have assigned **dataa** and **datab** input busses to **I/O Bank 2**, but set different **VCCIO** (**1.8 & 2.5**) voltage levels for them. **Stratix**, like all Altera FPGA families, allow for only <u>one VCCIO per I/O bank</u>.

- 4. Double-click on the **I/O Standard** cell for the **datab** input bus. Change the setting setting to **2.5** V.
- 5. Save the Assignment Editor and re-run the I/O Assignment Analysis. Click OK when complete.

See how quickly and easily you can check you I/O placement assignments without running a full compilation!

Step 9 (Back-annotate pin assignments to lock placement)

This is the step you would use once you have produced a verified pin-out to begin board design. Now you need to make sure that **Quartus II** does not move the pin locations during successive compilations.

- 1. From the Assignments menu, select Back-Annotate Assignments to open the Back-Annotate Assignments dialog box.
- 2. In the Assignments to back-annotate window, enable Pin & device assignments as shown below. Click OK.

Acci	annotation type:	Default		
	Device assignmen Pin & device assig Pin, cell & device Demote cell & Pin, cell, routing & Delay chains	nt assignments assignments to: device assignment	B\$ \$	
- Save	e intermediate synth	hesis results netlist into a Verilog	Quartus Mapping File	

3. Bring the **Assignment Editor** to the foreground. Click on the **Pin Category** button again.

Notice this time that to all I/O bank assignments have been added specific I/O pin locations. These are the locations carried from the last I/O analysis performed by the fitter. Now at this point, you have a verified pin-out to begin board design.

Exercise Summary

- Created a project
- \circ $\,$ Compiled and gathered information from the compilation report
- Used the Assignment Editor to control logic options
- Used I/O analysis to quickly verify I/O placement

END OF EXERCISE 2

Objectives:

• Analyze a design for timing

Please summarize your results in the tables as you complete the exercise:

Fmax

Worst Fmax	
Worst Fmax's Clock Period	
Register to Register Delay	
Smallest Clock Skew	
Micro Clock to Output	
Micro Setup Delay	
Solve the equation below with the a	bove information:
Clock Period (Worst Fmax) = Register to	Register Delay – Smallest Clock Skew
	+Micro Clock to Output + Micro Setup Delay

Tsu

Worst tsu	
Longest pin to memory delay	
Micro setup delay	
Shortest Clock Path to	
Destination Register	

Solve the equation below with the above information:

Setup Time (Worst tsu) = Longest pin to memory delay – Shortest Clock Path to

Destination Register + Micro Setup Delay

Тсо

Worst tco

Step 1 (Recompile the design)

1. Click on to do a full recompilation of the design.

A full recompilation is necessary to re-run the place and route and to generate timing files.

Step 2 (Gather fmax timing information from the Compilation Report File)

- 1. Click on Clock Setup:'clk1' under the Timing Analyzer section of the Compilation Report. In the exercise table above, enter the slowest fmax.
- 2. Right mouse click on the slowest fmax and select **List Paths**. Go to the **Message Window** and record the **clock period** in the exercise table.
- 3. In the **Message** window, click on the plus sign to expand the fmax delay. Record the **Longest** register to register delay, Smallest clock skew delay, Micro setup delay, and Micro clock to output delay in the exercise table. Verify that:

Clock period = Register-to-Memory – Clock Skew Delay + Micro Setup Delay + Micro Clock to Output Delay

- 4. Click on the plus sign on the **Longest register to register**. Quartus II will list the number of nodes in this register-to-register path.
- 5. Click on the **longest register-to-register** to hightlight. Now **right-click** and select **Locate**. In the **Floorplan View** will graphically display the critical path along with timing information..

Step 3 (Gather tsu timing information from the Compilation Report File)

- 1. Click on tsu under the Timing Analyzer section of the Compilation Report. A table is generated showing you the tsu for all your input and bidir pins. The longest tsu is listed at the very top of the table.
- 2. In the exercise table, enter the **longest tsu**.
- 3. Right mouse click on the longest tsu and select List Paths. The Message Window displays the tsu.
- 4. In the **Message** window, click on the plus sign to expand the tsu. Record the **Pin to memory delay**, **Micro setup delay**, and **Shortest clock path delay** in the exercise table. Verify that:

Setup Time =

Longest Pin to Register Delay + Micro Setup Delay – Shortest Clock Path to Destination Register

5. Click on the **Longest pin to register delay** to highlight. Now **right-click** and select **Locate**. Identify the tsu path in the Floorplan View.

Step 4 (Gather tco Timing information from the Compilation Report File)

- 1. Click on **tco** under the **Timing Analyzer** section of the Compilation Report File. A table is generated showing you the tco for all your output and bidir pins. The **largest tco** listed at the very top of the table.
- 2. In the exercise table, enter the **largest tco**.

This number may seem large, but this is an unconstained clock to output. Much better times can be achieved by adding timing assignments to I/O. This will be discussed in the next section.

Exercise Summary

- Performed single clock timing analysis
- Viewed timing paths information and details
- Located timing information in floorplanner

END OF EXERCISE 3

Exercise 4

Objectives:

- Create clock settings and apply settings to clock pins
- Multi-cycle timing
- Interpret the Slack Times Table

In addition, we'll have a better understanding of

- Required Time
- The relationship between Required Time, Actual Time and Slack

Please summarize your results in this table as you complete the exercise:

Destination Clock	Required Longest P2P Time (ns)	Actual Longest P2P Time (ns)	Slack(ns)
clk1			
clk2			

What is the relationship between Required Longest P2P Time, Actual Longest P2P Time, and Slack?

Why does this design have two Required Longest P2P Times?

Setting	Destination Clock	Required Setup Relationship
No Multi-cycle Assignment		
Multi-cycle = 2		

Step 1 (Add a 16-bit register and second clock to design)

- 1. Choose **Tools > MegaWizard Plug-In Manager**. In the window that appears, select **Create a new custom megafunction variation**. Click on **Next**.
- In the window that appears, expand the storage folder and select LPM_FF. Choose VHDL output. Name the output file <Quartus II Lab install directory>\QII4_0\Lab2_4_QII\flip. Click on Next.
- 3. Set the number of the **flipflops** bus to be **16** and the **type of the flipflop** to be **D flipflop** bits. For the remaining settings in this window, use the defaults.
- 4. Select Next.
- 5. For the next window that appears, simply use the default settings by selecting Next.
- 6. Select **Finish** in the final window that appears.
- 7. In the **Graphic Editor**, **double-click** in the screen so that the **Symbol** Window appears. Inside the symbol window, expand the **Project** folder. Double-click on **flip**. **Move the mouse** to the appropriate location to connect the multiplier as shown in the figure. **Click the left mouse button** to put down the symbol.

The symbol for "flip" should now appear in the schematic.

- 8. Add an output pin **mult_out[15..0**], the new input clock pin **clk2** and connect the flip flop as shown in the figure.
- 9. Save the schematic.

Step 2 (Perform analysis and synthesis)

1. From the **Processing** menu select **Start** and click on the **Start Analysis and Synthesis**

This will extract node names necessary for making timing assignments.

Step 3 (Make clock requirements for clk1 and clk2 assign to the clock nodes)

- 1. In the Assignments menu and choose Timing Settings.
- 2. In the **Clock Settings** section, click on **Settings for individual clock signals**. Click on the **Clocks...** button.
- 3. In the **Clocks** dialog box, click on the **New** button.
- 4. In the **New Clock Settings** dialog box, type **clk1** in the **Clock setting name** and **Applies to node** fields in the dialog box.

Notice the **Node Finder** ... *can be invoked to search for internally generated clocks.*

5. In the **Relationship to other clock settings** section, type the **required fmax** for **clk1** as **150 MHz**. Click **OK**.

You are now back at the **Clocks** dialog box you see the clock settings for the base clock (**clk1**) that you have just entered. Now, we will enter a clock setting for the second clock, **clk2**, which is derived from the base clock, **clk1**.

- 6. In the Clocks dialog box, click on New again.
- 7. Type clk2 in the Clock setting name and Applies to node fields in the dialog box.
- 8. This time, in the **Relationship to other clock settings** section, click **Based on** and ensure **clk1** is specified as the base clock. Click on the **Derived Clock Requirements...** button.
- 9. In the **Derived Clock Requirements** dialog box, specify that **clk2** must be a <u>4/3</u> **ratio** (multiply base clock frequency by 4 and divide the base clock frequency by 3) of the base clock with an offset of <u>0 ns</u>. Click **OK**.
- 10. In the New Clock Settings dialog box, click OK.

You should see two clock settings as shown below, one as an absolute and the other as a derived.

sting clock se lame	ttings: Type	fmax	Period	Offset	Nod	New
k1 k2	absolute derived	150 200	6.666 ns 4.999 ns	0 ps	clk1 clk2	Edit
						Delete

11. In the Clocks dialog box, click OK. Click OK one last time to close the Settings dialog box.

Step 4 (Check the clock settings in the Assignment Editor)

The *Timing Wizard* creates the clock settings and has automatically assigns them to the clock nodes in the Assignment Editor. To verify:

- 1. Bring the Assignment Editor to the foreground.
- 2. In the **Category** section, select **Timing**.

Here you should see the two clock settings listed and being applied to input pins clk1 and clk2.

Step 5 (Analyze timing results)

- 1. **Compile** the design
- 2. Look at the clock tables for **clk1** and **clk2** in the **Timing Analyzer** section.
- Look over the Required Longest P2P Times listed in the table. For the worst case signals of each clock, Record the Required Longest P2P Time, Actual Longest P2P Time, and Slack in the exercise table.
- 4. What is the relationship between **Required Longest P2P Time**, **Actual Longest P2P Time**, and **Slack**? Please answer this question below the exercise table.
- 5. Can you explain why this design has two (2) **Required P2P Times**? Please answer this question below the exercise table. Hint: Look at the design again.
- 6. Record the Required Setup Relationship for clk2 in the second exercise table.

The **Required Setup Relationship** corresponds to the shortest setup time from **clk1** to **clk2**, based upon the Clock Settings ratio, as circled in the diagram below.

The **Required Longest P2P Time** subtracts the source register's clock-to-output time and the destination register's setup time from the **Required Setup Relationship**. Analyzing any **clk1** path (**List Paths**) will show this. Notice that for the **clk2** requirement, the values are in red to indicate that all of the registers driven by **clk2** will incur setup violations and the circuit will fail at this time.

Step 6 (Make multi-cycle assignment)

- 1. Bring the **Assignment Editor** to the foreground.
- 2. Select **Timing** in the **category** section and click on <<new>> in the **To** field. Right click and select **Node Finder**.
- 3. In the **Node Finder** dialog box make sure that **Pins:all** has been selected in Filter field. Click on **List**.
- 4. **Double-click** on **clk2** from under *Nodes Found:* to add it to the *Selected Nodes:* window. Click **OK**.
- 5. Under the **From** field, right-click and select **Node Finder**.
- 6. In the **Node Finder** dialog box make sure that **Pins:all** has been selected in Filter field Click on **List**.
- 7. **Double-click** on **clk1** from under *Nodes Found:* to add it to the *Selected Nodes:* window. Click **OK**.
- 8. In the **Options** field of the **Assignment Editor** right-click and select **Edit Cell**. From the drop down menu select **Multicycle**

I/O Bank Wref Group I/O Standard Reserve Pin Image: Serve Pin <	I/O Bank Wref Group Custom region I/O Standard Reserve Pin Image: Imag	<u>- 0 ×</u>					gnment Editor	🎸 Assiq
X Image: Check All Uncheck All U	Image: Second	×					I/O Bank Vref Group Custom region I/O Standard Reserve Pin Timing	Category:
Check All Check	Image: Second Foundation Provided Foundation Image: Second Foundation					for specific podes:	Show assignment	× - I
Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the clock settings Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the clock settings Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the clock settings Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the clock settings Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the clock settings Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the clock settings Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the clock settings Image: Specifies the number of clock cycles clock settings clock Image: Specifies the number of clock cycles clock settings clock Image: Specifies the number of clock cycles clock settings Image: Specifies the number of clock cycles clock settings Image: Specifies the number of clock cycles clock s	B Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register or a clocked registe	Check All				Tor specific fieldest		
Image: Control of the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the first should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the value. For example, setting Mu	Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register or a clocked re	Unchock All						lode
Main Delete Al Main Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the field of the fiel	All Information: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register or All Image: Clock Settings click Image: Clock Settings click click Image: Clock Settings <td>UTICHECK AII</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	UTICHECK AII	-					1
Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the state of the sta	Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles. X Edit: X 2 Prom To Assignment Name Value 1 Polk1 Clock Settings clk2 3 Polk1 Polk2 Multicycle 2 4 < <new>> <<new>></new></new>	Delete All	_					1 2
Information: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register overrides the number of clock cycles required before a register overrides the number of clock cycles required before a register overrides the number of clock cycles required before a register overrides the number of clock cycles required before a register overrides the number of clock cycles required before a register overrides the number of clock cycles required before a register overrides the number of clock cycles required before a register overrides the number o	Information: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of a clock definition of the clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of the clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles. Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles. Image: Specifies the number of clock cycles required before a register should latch a value. For example, setting Multicycle to 2 on a clocked register of clock cycles. Value Image: Specifies the number of clock cycles required before a register of clock cycles. Value Value Image: Specifies the number of clock cycles. Value Value Value Image: Specifies the number of clock cycles. Value Value Value Image: Specifies the number of clock cycles. Value Value Value Image: Specifies the number of clock cycles. Value Value Value							
Edit: I Z From To Assignment Name Value 1 Image: Clock Settings dkl Clock Settings dkl 2 Image: Clock Settings dkl Clock Settings dkl 3 Image: Clock Settings dkl Clock Settings dkl 4 <cnew>> <cnew>> <cnew>> <cnew>></cnew></cnew></cnew></cnew>	Edit: Image: Constraint of the second seco	overrides the o	. For example, setting Multicycle to 2 on a clocked register	ster should latch a val	cycles required before a reg	fies the number of clock o	Information: Speci	×
From To Assignment Name Value 1 Implki Clock Settings dk1 2 Implki Clock Settings dk2 3 Implki Implki Clock Settings dk2 4 < <new>> <<new>></new></new>	From To Assignment Name Value 1 Inckl Clock Settings clkl 2 Inckl Clock Settings clkl 3 Inckl Inckl2 Multicycle 2 4 < <new>> <<new>></new></new>					d la		×
From To Assignment Name Value 1 IP IP Clock Settings clk1 2 IP IP Clock Settings clk2 3 IP IP Klx2 Clock Settings clk2 4 < <new>> <<new>> <</new></new>	From To Assignment Name Value 1 Impletion Clock Settings dk1 2 Impletion Clock Settings dk1 1 Impletion Clock Settings dk1 2 Impletion Impletion Clock Settings dk2 1 Impletion Impletion Clock Settings dk2 4 < <new>> <<new>></new></new>					2]] '
Image:	1 Image: Clk1 Clock Settings clk1 2 Image: Clcck Settings clc2 clc2 3 Image: Clcck Settings clc2 clc2 4 < <new>> <<<new>> <</new></new>			Value	Assignment Name	То	From	
2 Image: Clock Settings clk2 3 Image: Clock Settings clk2 4 <cnew>> <cnew>></cnew></cnew>	2 Image: Clock Settings Clock Settin			clk1	Clock Settings	i clk1		1
3 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	3 IDP clk1 IDP clk2 Multicycle 2 4 < <new>> <<new>> <</new></new>			clk2	Clock Settings	iiii≥dk2	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2
4 < <new>> <<new>> <<new>></new></new></new>	4 < <new>> <<new>></new></new>			2	Multicycle	iller clk2	🗈 clk1	3
					< <new>></new>	< <new>></new>	< <new>></new>	4

9. In the Value field right click and select Edit Cell and enter 2

- 10. Save the Assignment Editor settings.
- 11. Re-compile the design by clicking the compile button 上 .

Step 7 (Analyze timing results)

1. After compilation has finished, expand the **Timing Analyzer** section. Select **Clock Setup: 'clk2'** and record the **Required Setup Relationship** in the second table.

Notice that one whole destination clock period has been added to the **Required Setup Relationship**. Remember that this design should already need to be accounting for the clock domain transfers using synchronizers, hand-shaking or some other control logic. Creating a multi-cycle assignment merely tells the timing analyzer what you have already accounted for in logic.

So, were you yet able to meet timing? No? Notice the amount of slack by which you are missing your timing. Now you will try another Quartus II option to improve your results.

Step 8 (Enable physical synthesis)

- 1. From the Assignments menu, select Settings. Go to Physical Synthesis Optimizations found in the Fitter Settings options.
- 2. In the Fitter optimizations box, enable Perform register retiming. Click OK.

This feature will now to try to balance the combinatorial logic between registers to improve the system performance.

3. Re-compile the design again by clicking the compile button

4. Review the slack analysis tables for **clk1** & **clk2** to see if timing has now been met.

How was timing able to be met now? How is that possible? Think of the multiplier and where the pipeline registers should be for maximum performance.

Exercise Summary

- Enabled multi-clock timing analysis
 - Slack analysis
- Used the Timing Wizard to define clocks
- Made Multi-cycle timing assignments
- Enabled register retiming (physical synthesis)

END OF EXERCISE 4

33

<u>Objectives</u>:

- Create a Vector Waveform (.vwf) file input stimulus file
- Run a functional simulation
- Examine the simulation output for verification of the design

Step 1 (Set up Simulator)

- 1. **Open** the project *<Quartus II lab install>*\QII4_0\Lab5\pipemult.qpf.
- 2. From the Assignments menu select Settings.
- 3. In the **Simulator** category, click on the **Simulator mode**. Select **Functional** from the drop-down menu.
- 4. For simulation input, type **pipemult.vwf**. Click **OK**.

ettings - pipemult	<u> </u>
Category:	
General Files User Libraries Device Timing Requirements & Options EDA Tool Settings Design Entry & Synthesis Simulation Timing Analysis Board-Level Formal Verification Desumthania	Simulator Select options for simulations. Simulation mode: Functional Simulation input Simulation input Functional Simulation until all vector stimuli are used Find simulation at Summation at
Resynthesis Compilation Process Analysis & Synthesis Settings VHDL Input Verilog HDL Input Default Parameters Synthesis Netlist Optimizations Fitter Settings Physical Synthesis Optimizations Timing Analyzer Design Assistant SignalTap II Logic Analyzer SignalTap II Logic Analyzer	Simulation options Automatically add pins to simulation output waveforms Check outputs Setup and hold time violation detection Glitch detection: 1.0 Simulation coverage reporting Overwrite simulation input file with simulation results
 SignalProbe Settings Simulator Software Build Settings Stratix GX Registration HardCopy Settings 	uPCore Transaction Model File Name:

5. From the **Processing menu** select **Generate Functional Simulation Netlist**.

Step 2 (Create .vwf file)

1. From the **File** menu select **New**. From the **New** dialog box select the **Other Files** tab. In the **Other Files** tab, select **Vector Waveform File** and click on **OK**.

Step 3 (Enter Signals)

- 1. From the **Edit** menu select **Insert Node or Bus**. In the **Insert Node or Bus** dialog box click on the **Node Finder** Button.
- 2. In the **Node Finder**, go to the **Filter** box and select **Pins: all** from the drop down menu. Now click on the **List** button.
- 3. Select **clk1**, **dataa**, **datab**, **wraddress**, **rdaddres**s, wren, and q. Click on the > button to copy these pins to the Selected Nodes area. Click **OK**. Click **OK** again in the **Insert Node or Bus** dialog box.
- 4. In the .vwf file, highlight **dataa**, **datab**, **wraddress**, **rdaddress** and **q**. Right-click and select **Properties**. Change the radix from **Binary** to **Hexadecimal**. Click **OK**.
- 5. From the **Edit** menu, set the **End Time** to **100 ns**.

Step 4 (Set Stimulus)

- 1. The .vwf file should contain all the nodes you have selected.
- 2. <u>Enter the input waveforms for clk1, dataa, datab, wraddress, rdaddress and</u> wren as shown below.

Mas	ter Time Bar: 15.0 i	ns 🔸	Pointer:	15.19 (ns I	nterval:	190 ps	Sta	rt:	0 ps	End:	100.0 ns
		Ops 1	0.0 ns	20.0 ns	30.0 ns	40.0 ns	50.Ç) ns 61).() ns	70.0 ns	80.0 ns	90.0 ns 100.0 ns
	Name		15.0 n I	S								
D	clk1											
Ď	🗉 dataa	00	X of	<u>) (</u>		03 X	04	05	X 06	X 07	X 08	X 09
Ď	🗉 datab	00	X of	<u>) (</u>	×.	03 X	04	05	X 06	X 07	X 08	X 09
Ď	🗉 wraddress	00	X of	X 02	_X_	03 🚶	04	05	X 06	X 07	X 08	X 09
Ď	🗄 rdaddress		00	<u>X</u> 01		02 🗶	03	04	X 05	X 06	<u>, 07</u>	(08)
Þ	wren											
6	🛨 q						*******	*****				

Step 5 (Save and simulate stimulus file)

- 1. Save simulation file as pipemult.vwf.
- 2. From the **Processing** menu select **Start Simulation .**
- 3. Once simulation is complete, a box appears "Simulation was Successful". Click OK.

Step 6 (Examine result)

- 1. The **Simulation Report** automatically opens when simulation begins.
- 2. The **Simulation Waveform** in the simulator report should match the image below.

Simu	lation Waveforms												
Mast	er Time Bar: 20.0 n	ns _	Pointer:	20.41	ns I	nterval:	410 p	0\$	Start		End:		
		0 ps	10.0 ns	20.0 ns	30.0 ns	40	.0 ns 5	0.0 ns	60.0 ns	70.0 ns	: 80.0 n	s 90.0 ns	: 100.0 ns
	Name			20.0 ns 1									
	clk1												
3	🔳 dataa	00	X O	1 ((12 X	03	X 04	X OE	5 X	06 X	07 X	08 X	09)
	🗉 datab	00	X O	1 ((12 X	03	X 04	X 05	5 X	06 X	07 X	08 X	09)
	🗉 wraddress	00	X O	1 / (12 X	03	X 04	X 05	5 X	06 X	07 X	08 X	09)
	rdaddress		00	XC	<u>n X</u>	02	X 03	X 04	⊾ <u>X</u>	05 X	06 X	07 X	08)
	wren												
\bigcirc	₽ E		XXX)		0000		X	0001 X	0004	<u>X 0009</u>	X 0010	X 0019	(0024)
			ŝ.		<u>s</u>		8	1					

Exercise Summary

- Created a .VWF file
- Performed functional simulation
- Used simulation report to view simulation results

END OF EXERCISE 5

Exercise 6 (Optional Cubic Cyclonium Programming Lab)

<u>Objectives</u>:

- Create a chain description file (CDF) to use in programming a JTAG chain
- Use Programmer tool to configure a device

40

This exercise is a quick demonstration of how to set up the programmer and program a device.

Step 1 (Connect Cubic Cyclonium Board & Open Quartus II Project)

1. Take out your Cubic Cyclonium board and connect it to the USB port of your PC.

This will power the board and cause the default hardware and software images to be loaded. These images interface with the **Cubic Cyclonium** application loaded on your PC. But before you get to experiment with that, you will load a simple counter program to demonstrate the **Quartus II** programmer tool.

Note: If the Found New Hardware Wizard opens, then please alert your instructor. The USB drivers might not have been loaded on your PC.

2. **Open** the project *<Quartus II lab install directory>*\QII4_0\Lab6\counter_cc\counter_100.qpf.

This project contains only a simple 2-digit decimal counter.

Step 2 (Open and Set Up Programmer to Configure Device)

1. From the **Tools** menu or toolbar , select **Programmer**.

This will open a blank **CDF** as shown below. The **CDF** file lists all of the devices in your configuration or JTAG chain along with their associated programming or configuration files.

- 2. If not already named, save the CDF as **counter_100.cdf**.
- 3. Locate the **Hardware Setup** button at the top of the **CDF** file. The field to the right of this button should read **Cubic Cyclonium [USB-0**].

If this window reads anything else, click on the **Hardware Setup** button and select **Cubic Cyclonium** from the list of **Available Hardware**. Click on the **Select Hardware** button and then **Close**.

If **Cubic Cyclonium** is not listed in the **Available Hrdware** window, please let the instructor know as the drivers may not have been loaded correctly onto your PC.

4. Back in the **CDF** file, use the drop-down **Mode** field to choose **JTAG**.

How does this work? USB control logic has been loaded into the MAX 7000 device. The MAX 7000 device thus allows you to communicate with the JTAG chain via the USB cable.

5. In the main programming window, you should see the file **counter_100.sof** listed along with its target device, the **EP1C6F256**.

If you do not see the **counter_100.sof** configuration file listed in the programmer window, click on the **Add File** button and select it.

6. Enable the **Program/Configure** option for the **counter_100.sof** file.

Remember if you want to bypass any devices in your JTAG chain, you can simply leave this option unchecked for those devices.

7. Your **counter_100.cdf** file should look as below. If so, click on the **Start** button to begin configuration.

Counter_100.cd										
🌲 Hardware Setup.	Cubic Cyclonium [USB-0]			Mode: JT	AG		• P	Progress: 0 %		
Mu Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit	
Stop	1unter/counter_100.sof	EP1C6F256	000944DC	FFFFFFF						
Auto Detect										
🗙 Delete										
🍰 Add File										
🞬 Change File										
🗳 Save File										
😂 Add Device										
🜓 Up										
Down										

The LED Matrix should begin counting from 0 to 99.

Step 3 (Optional : Program the Cubic Cyclonium Demo)

You have officially completed the final exercise. If you have some extra time and want to see an example of a **Nios** embedded processor running on a **Cyclone** device, follow the steps below. You will be loading the original design back into the device.

- 1. In your **CDF** file, highlight the **counter_100.sof** file.
- Click on the Change File button. Browse to the *Quartus II lab install directory*>\QII4_0\Lab6\cubic cyclonium\cc_quartus_project directory and select the thrifty_32.sof file.
- 3. Click on the **Start** button to program the **Cyclone** device.

Step 3 (Optional : Run the Cubic Cyclonium User Application)

 Using Windows Explorer, locate the Cubic Cyclonium.exe file. It should be located in the *Quartus II lab install directory*>\QII4_0\Lab6\cubic cyclonium directory. After a splash screen, the window below should be available.

Iser Apps Games Config. Display User Message Go to www.altera.com and lea experience! Enable User Message	arn ab Set a	out th	e Cut	o <mark>ic Cyc</mark> ubic Cγ	lonium vcloniu	um Me	ssage
Real Time Clock	•		Janu	jary, 3	2004		►
3:40:38 PM	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	28	29	30	31	1	2	3
🦳 Military Time	4	5	6	7	8	9	10
Set Date/Time (RTC)	11	12	13	14	15	16	17
Epable Data/Time Dicolay	18	19	20	21	22	23	24
Enable Data/Time Display	25	26	27	28	29	30	31
	1	2	3	4	5	6	7
Stock Ticker (Enter Perferred Enter New Symbol ALTR Symbol List Enable Stock Ticker	Symbo	ols) —		р р р	idd Ne Remov	w Syr e Syr	mbol
Cubic Cyclonium Connection Status :	inecte	d.					
	Evit	1		åooly	1		

2. Once the application has begun, feel free to do any of the following. Click **Apply** to have your information transmitted to the **Nios** processor.

Enable User Messages (User Apps tab)

Set Date/Time Display (User Apps tab)

Tetris (Games tab)

LED Savers (Games tab)

Exercise Summary

- Created a Chain Description File (CDF)
- Programmed a Cyclone device

END OF EXERCISE 6

(Optional Nios Development Board Programming Lab)

<u>Objectives</u>:

- Create a chain description file (CDF) to use in programming a JTAG chain
- Use Programmer tool to configure a device

This exercise is a quick demonstration of how to set up the programmer and program a device.

Step 1 (Connect Cubic Cyclonium Board & Open Quartus II Project)

- 1. Take out your **Nios Stratix** or **Cyclone** development board. Power the board and connect the **ByteBlasterII** download cable to the parallel port of your PC or laptop. Connect the 10-pin female connector of the **ByteBlasterII** download cable to the development board. You will find the 10-pin header near the top left corner of the board.
- Open the project counter.qpf located in the <Quartus II lab install directory>\QII4_0\Lab7\counter_nios\ directory.

This project contains a simple 2-digit decimal counter.

 From the Project menu, select Revisions. Choose either counter_stratix or counter_cyclone depending on your Nios board. If not already checked, click on the Set Current button to place a check next to the correct revision. Click on Close when finished.

Step 2 (Open and Set Up Programmer to Configure Device)

1. From the **Tools** menu or toolbar , select **Programmer**.

This will open a **CDF** as shown below. The **CDF** file lists all of the devices in your configuration or JTAG chain along with their associated programming or configuration files.

- 2. If not already named, save the CDF as **counter_nios.cdf**.
- 3. Locate the **Hardware Setup** button at the top of the **CDF** file. The field to the right of this button should read **ByteBlasterII**.

If this window reads anything else, click on the **Hardware Setup** button and select **ByteBlasterII** from the list of **Available Hardware**. Click on the **Select Hardware** button and then **Close**.

If **ByteBlasterII** cable is not listed in the **Available Hardware** window, please let the instructor know as the drivers may not have been loaded correctly onto your PC.

- 4. Back in the **CDF** file, use the drop-down **Mode** field to choose **JTAG**.
- 5. In the main programming window, you should see the file **counter_stratix.sof** or **stratix_cyclone.sof** listed along with its target device.

If you do not see the **counter_<device>.sof** configuration file listed in the programmer window, click on the **Add File** button and select it.

6. Enable the **Program/Configure** option for the configuration file and target device.

Remember if you want to bypass any devices in your JTAG chain, you can simply leave this option unchecked for those devices.

7. Your **CDF** file should look similar to the figure below. If so, click on the **Start** button to begin configuration.

ucounter_nios.cd	P#								-O×
🔔 Hardware Setup.	ByteBlasterII [LPT1]		N	Mode: JTAG Progress:					0%
Mu Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit
🖬 Stop	1nios/counter_cyclone.sof	EP1C20F400	001B7D52	FFFFFFF					
Auto Detect									
X Delete									
🍰 Add File									
👺 Change File									
Save File									
😂 Add Device									
1 Up									
Down									

The LED display should begin counting from 0 to 99 when configuration is complete.

Exercise Summary

- Created a Chain Description File (CDF)
- Programmed an FPGA device

END OF EXERCISE 7

