
1

Introduction to VHDL

A-MNL-IVHDL-08

1
Copyright © 2004 Altera Corporation

Introduction to VHDL

2
Copyright © 2004 Altera Corporation

Course Objectives

� Learn the Basic Constructs of VHDL
� Learn the Modeling Structure of VHDL
� Understand the Design Environments

– Simulation
– Synthesis

3
Copyright © 2004 Altera Corporation

Course Outline
� Introduction to Altera Devices & Altera Design Software
� VHDL Basics

– Overview of Language

� Design Units
– Entity
– Architecture
– Configurations
– Packages (Libraries)

� Architecture Modeling Fundamentals
– Signals
– Processes

• Sequential Statements



2

Introduction to VHDL

A-MNL-IVHDL-08

4
Copyright © 2004 Altera Corporation

Course Outline

� Understanding VHDL and Logic Synthesis
– Process Statement
– Inferring Logic

� Model Application 
– State Machine Coding

� Hierarchical Designing
– Overview
– Structural Modeling
– Application of Library of Parameterized Modules (LPMs)

5
Copyright © 2004 Altera Corporation

Introduction to Altera Devices 
& Design Software

6
Copyright © 2004 Altera Corporation

The Programmable Solutions Company®

� Programmable Devices
� Design Software
� Intellectual Property (IP)



3

Introduction to VHDL

A-MNL-IVHDL-08

7
Copyright © 2004 Altera Corporation

� Programmable Logic Families
– High & Medium Density FPGAs

• Stratix™ II, Stratix, APEX™ II, APEX 
20K, & FLEX® 10K

– Low-Cost FPGAs
• Cyclone™ & ACEX® 1K

– FPGAs with Clock Data Recovery
• Stratix GX & Mercury™

– CPLDs
• MAX® 7000 & MAX 3000

– Embedded Processor Solutions
• Nios™, ExcaliburT™

– Configuration Devices
• EPC

Introduction to Altera Devices

8
Copyright © 2004 Altera Corporation

Introduction to Altera Design Software

� Software & Development Tools: 
– Quartus II

• Stratix II, Stratix, Stratix GX, Cyclone, APEX II, 
APEX 20K/E/C, Excalibur, & Mercury Devices

• FLEX 10K/A/E, ACEX 1K, FLEX 6000,  MAX 
7000S/AE/B, MAX 3000A Devices

– Quartus II Web Edition
• Free Version 
• Not All Features & Devices Included

– MAX+PLUS® II
• All FLEX, ACEX, & MAX Devices

9
Copyright © 2004 Altera Corporation

Intellectual Property MegaStoreTM



4

Introduction to VHDL

A-MNL-IVHDL-08

10
Copyright © 2004 Altera Corporation

VHDL 
Basics

11
Copyright © 2004 Altera Corporation

VHDL

VHSIC (Very High Speed Integrated Circuit)

Hardware 

Description

Language

12
Copyright © 2004 Altera Corporation

What is VHDL?

� IEEE Industry Standard Hardware Description 
Language

� High-level Description Language for Both Simulation 
& Synthesis



5

Introduction to VHDL

A-MNL-IVHDL-08

13
Copyright © 2004 Altera Corporation

VHDL History

� 1980 - U.S. Department of Defense (DOD) Funded a 
Project to Create a Standard Hardware Description 
Language Under the Very High Speed Integrated 
Circuit (VHSIC) Program

� 1987 - the Institute of Electrical and Electronics 
Engineers (IEEE) Ratified As IEEE Standard 1076

� 1993 - the VHDL Language Was Revised and 
Updated to IEEE 1076 ‘93

14
Copyright © 2004 Altera Corporation

Terminology

� HDL - Hardware Description Language Is a Software 
Programming Language That Is Used to Model a 
Piece of Hardware

� Behavior Modeling - A Component Is Described by 
Its Input/Output Response

� Structural Modeling - A Component Is Described by 
Interconnecting Lower-level Components/Primitives

15
Copyright © 2004 Altera Corporation

Behavior Modeling

input1, .., inputn
output1, .., outputn

IF shift_left THEN
FOR j IN high DOWNTO low LOOP

shft(j) := shft(j-1);
END LOOP;

output1 <= shft AFTER 5ns;

� Only the Functionality of the Circuit, No Structure
� No Specific Hardware Intent
� For the Purpose of Synthesis, As Well As Simulation

Left Bit Shifter



6

Introduction to VHDL

A-MNL-IVHDL-08

16
Copyright © 2004 Altera Corporation

Structural Modeling

input1

inputn

output1

outputn

Higher-level Component

Lower-level
Component1

Lower-level
Component1

� Functionality and Structure of the Circuit
� Call Out the Specific Hardware
� For the Purpose of Synthesis

17
Copyright © 2004 Altera Corporation

More Terminology

� Register Transfer Level (RTL) - A Type of Behavioral 
Modeling, for the Purpose of Synthesis
– Hardware Is Implied or Inferred 
– Synthesizable

� Synthesis - Translating HDL to a Circuit and Then 
Optimizing the Represented Circuit

� RTL Synthesis - The Process of Translating a RTL 
Model of Hardware Into an Optimized Technology 
Specific Gate Level Implementation 

18
Copyright © 2004 Altera Corporation

RTL Synthesis

Process (a, b, c, d, sel)
begin

case (sel) is
when “00” => mux_out <= a;
when “01” => mux_out <= b;
when “10” => mux_out <= c;
when “11” => mux_out <= d;

end case;

a

d

a

d

Translation

Optimization

a

d
sel

2

binferred mux_out
c



7

Introduction to VHDL

A-MNL-IVHDL-08

19
Copyright © 2004 Altera Corporation

VHDL Synthesis Vs. Other HDL Standards

� VHDL
– “Tell Me How Your Circuit Should Behave and I Will Give 

You Hardware That Does the Job.”

� Verilog
– Similar to VHDL 

� ABEL, PALASM, AHDL
– “Tell Me What Hardware You Want and I Will Give It to 

You”

20
Copyright © 2004 Altera Corporation

VHDL Synthesis vs. Other HDL Standards

� VHDL
– “Give me a circuit whose output only changes when there is 

a low-to-high transition on a particular input. When the 
transition happens, make the output equal to the input until 
the next transition.”

– Result: VHDL Synthesis provides a positive edge-triggered 
flipflop

� ABEL, PALASM, AHDL
– “Give me a D-type flipflop.”
– Result: ABEL, PALASM, AHDL synthesis provides a D-type 

flipflop. The sense of the clock depends on the synthesis 
tool.

21
Copyright © 2004 Altera Corporation

Typical Synthesis Design Flow

Synthesis
Compiler

Simulation
Waveform

VHDL
Library

Netlist

Text Output
Test 

Vectors

Timing Analysis Place/Route

Technology
Library

VHDL
Model



8

Introduction to VHDL

A-MNL-IVHDL-08

22
Copyright © 2004 Altera Corporation

Typical Simulation Design Flow

Simulation
Compiler

VHDL
Simulation

Waveform

VHDL
Library

VHDL
TestBench

Simulation
Model

Text Output

Test 
Vectors

Optional

VHDL
Model

23
Copyright © 2004 Altera Corporation

VHDL Basics

� Two Sets of Constructs:
– Synthesis 
– Simulation

� The VHDL Language Is Made up of Reserved Keywords
� The Language Is, for the Most Part, Not Case Sensitive
� VHDL Statements Are Terminated With a ; 
� VHDL Is White Space Insensitive.  Used for Readability.
� Comments in VHDL Begin With “--” to Eol
� VHDL Models Can Be Written:

– Behavioral
– Structural
– Mixed

24
Copyright © 2004 Altera Corporation

VHDL
Design Units



9

Introduction to VHDL

A-MNL-IVHDL-08

25
Copyright © 2004 Altera Corporation

VHDL Basics

� VHDL Design Units
– Entity

• Used to Define External View of a Model. I.E. Symbol
– Architecture 

• Used to Define the Function of the Model. I.E. Schematic
– Configuration

• Used to Associate an Architecture With an Entity
– Package 

• Collection of Information That Can Be Referenced by 
VHDL Models. I.E. Library 

• Consist of Two Parts Package Declaration and Package 
Body

26
Copyright © 2004 Altera Corporation

Entity Declaration
ENTITY  <entity_name>  IS

Generic Declarations
Port Declarations

END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; ( 1076-1993 version)

� Analogy : Symbol
� <Entity_name> Can Be Any Alpha/Numerical Name

– Note: MAX+PLUS II Requires That the <Entity_name> and <File_name> Be the 
Same; Not Necessary in Quartus II

� Generic Declarations 
– Used to Pass Information Into a Model
– Quartus II & MAX+PLUS II Place Some Restriction on the Use of Generics

� Port Declarations
– Used to Describe the Inputs and Outputs i.e. Pins

27
Copyright © 2004 Altera Corporation

Entity : Generic Declaration

� New Values Can Be Passed During Compilation
� During Simulation/Synthesis a Generic Is Read Only

ENTITY <entity_name> IS
Generic ( constant tplh , tphl : time := 5 ns;

-- Note constant is assumed and is not required
tphz, tplz : time := 3 ns;
default_value : integer := 1;
cnt_dir : string := “up”

);
Port Declarations

END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; ( 1076-1993 version)



10

Introduction to VHDL

A-MNL-IVHDL-08

28
Copyright © 2004 Altera Corporation

Entity : Port Declarations

� Structure : <Class> Object_name : <Mode> <Type> ; 
• <Class> : What Can Be Done to an Object
• Object_name : Identifier
• <Mode> : Directional 

– in (Input) Out (Output) 
– Inout (Bidirectional) Buffer (Output W/ Internal Feedback)

• <Type> : What Can Be Contained in the Object

ENTITY  <entity_name>  IS
Generic Declarations
Port ( signal clk : in  bit;

--Note: signal is assumed and is not required
q : out bit

);
END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; ( 1076-1993 version)

29
Copyright © 2004 Altera Corporation

Architecture 

� Analogy : Schematic
� Describes the Functionality and Timing of a Model
� Must Be Associated With an ENTITY
� ENTITY Can Have Multiple Architectures
� Architecture Statements Execute Concurrently (Processes)
� Architecture Styles

– Behavioral : How Designs Operate
• RTL : Designs Are Described in Terms of Registers
• Functional : No Timing 

– Structural : Netlist
• Gate/Component Level 

– Hybrid : Mixture of the Above

30
Copyright © 2004 Altera Corporation

Architecture
ARCHITECTURE <Identifier> OF <Entity_identifier> IS
--Architecture Declaration Section (List Does Not Include All)

SIGNAL Temp : Integer := 1; -- Signal Declarations :=1 Is Default Value Optional
CONSTANT Load : Boolean := True; --Constant Declarations
TYPE States IS ( S1, S2, S3, S4) ; --Type Declarations
--Component Declarations Discussed Later
--Subtype Declarations
--Attribute Declarations
--Attribute Specifications
--Subprogram Declarations
--Subprogram Body

BEGIN
Process Statements
Concurrent Procedural Calls
Concurrent Signal Assignment
Component Instantiation Statements
Generate Statements

END <Architecture Identifier> ; (1076-1987 Version)
End ARCHITECTURE;  (1076-1993 Version)



11

Introduction to VHDL

A-MNL-IVHDL-08

31
Copyright © 2004 Altera Corporation

VHDL - Basic Modeling Structure

ENTITY entity_name IS
generics
port declarations

END entity_name;

ARCHITECTURE arch_name OF entity_name IS
enumerated data types
internal signal declarations
component declarations

BEGIN
signal assignment statements
process statements
component instantiations

END arch_name;

32
Copyright © 2004 Altera Corporation

VHDL : Entity - Architecture
input1

inputn

output1

outputn
Symbol

Entity

CLRN
ENA

D Q

clk

clr

mux_out
a

d
sel

2

b
c

Schematic

Architecture

33
Copyright © 2004 Altera Corporation

Configuration

� Used to Make Associations Within Models
– Associate a Entity and Architecture
– Associate a Component to an Entity-Architecture

� Widely Used in Simulation Environments
– Provides a Flexible and Fast Path to Design Alternatives

� Limited or No Support in Synthesis Environments

CONFIGURATION <identifier> OF <entity_name> IS
FOR <architecture_name>
END FOR;

END; (1076-1987 version)
END CONFIGURATION; (1076-1993 version)



12

Introduction to VHDL

A-MNL-IVHDL-08

34
Copyright © 2004 Altera Corporation

Putting It All Together 

ARCHITECTURE

a

b

sel

x

a

b

sel

y

a

b

sel

z

a

b

sel

x

y

z

ENTITYENTITY cmpl_sig IS
PORT ( a, b, sel : IN bit;

x, y, z : OUT bit);
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);

-- conditional signal assignment
y <= a WHEN sel='0' ELSE

b;
-- selected signal assignment

WITH sel SELECT
z <= a WHEN '0',

b WHEN '1',
'0' WHEN OTHERS;

END logic;
CONFIGURATION cmpl_sig_conf OF cmpl_sig IS

FOR logic
END FOR;

END cmpl_sig_conf;

35
Copyright © 2004 Altera Corporation

Packages

� Packages Are a Convenient Way of Storing and 
Using Information Throughout an Entire Model

� Packages Consist Of: 
– Package Declaration (Required)

• Type Declarations
• Subprograms Declarations

– Package Body (Optional)
• Subprogram Definitions

� VHDL Has Two Built-in Packages
– Standard
– Textio

36
Copyright © 2004 Altera Corporation

Packages
PACKAGE <package_name> IS

Constant Declarations
Type Declarations
Signal Declarations
Subprogram Declarations
Component Declarations
--There are other Declarations

END <package_name> ; (1076-1987)
END PACKAGE <package_name> ; (1076-1993)
PACKAGE BODY <package_name> IS 

Constant Declarations
Type Declarations
Subprogram Body

END <package_name> ; (1076-1987)
END PACKAGE BODY <package_name> ; (1076-1993)



13

Introduction to VHDL

A-MNL-IVHDL-08

37
Copyright © 2004 Altera Corporation

Package Example

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
PACKAGE filt_cmp IS

TYPE state_type IS (idle, tap1, tap2, tap3, tap4);
COMPONENT acc

port(xh : in std_logic_vector(10 downto 0);
clk, first: in std_logic;
yn : out std_logic_vector(11 downto 4));

END COMPONENT;
FUNCTION compare (SIGNAL a , b : integer) RETURN boolean;
END filt_cmp;
PACKAGE BODY filt_cmp IS
FUNCTION compare (SIGNAL a , b : integer) RETURN boolean IS

VARIABLE temp : boolean;
Begin 

If a < b then 
temp := true;

else 
temp := false;

end if;
RETURN temp;

END compare;
END filt_cmp;

Package Declaration

Package Body

38
Copyright © 2004 Altera Corporation

Libraries

� Contains a Package or a Collection of Packages
� Resource Libraries

– Standard Package
– IEEE Developed Packages
– Altera Component Packages
– Any Library of Design Units That Are Referenced 

in a Design
� Working Library

– Library Into Which the Unit Is Being Compiled

39
Copyright © 2004 Altera Corporation

Model Referencing of Library/Package

� All Packages Must Be Compiled
� Implicit Libraries

– Work
– Std 
� Note: Items in These Packages Do Not Need to Be 

Referenced, They Are Implied

� LIBRARY Clause
– Defines the Library Name That Can Be Referenced
– Is a Symbolic Name to Path/Directory
– Defined by the Compiler Tool

� USE Clause
– Specifies the Package and Object in the Library That You 

Have Specified in the Library Clause



14

Introduction to VHDL

A-MNL-IVHDL-08

40
Copyright © 2004 Altera Corporation

Example

� LIBRARY <Name>, <Name> ;
– Name Is Symbolic and Defined by 

Compiler Tool
� Note: Remember That WORK 

and STD Do Not Need to 
Be Defined.

� Use
Lib_name.Pack_name.Object; 
– All Is a Reserved Word

� Placing the Library/Use Clause 
First Will Allow All Following 
Design Units to Access It

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY cmpl_sig IS
PORT ( a, b, sel : IN std_logic;

x, y, z : OUT std_logic);
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);

-- conditional signal assignment
y <= a WHEN sel='0' ELSE

b;
-- selected signal assignment

WITH sel SELECT
z <= a WHEN '0',

b WHEN '1',
'0' WHEN OTHERS;

END logic;
CONFIGURATION cmpl_sig_conf OF cmpl_sig IS

FOR logic
END FOR;

END cmpl_sig_conf;

41
Copyright © 2004 Altera Corporation

Libraries  

� Library Std;
– Contains the Following Packages:

• Standard (Types: Bit, Boolean, Integer, Real, and Time; 
All Operator Functions to Support Types)

• Textio (File Operations)

– An Implicit Library (Built-in)
• Does Not Need to Be Referenced in VHDL Design

42
Copyright © 2004 Altera Corporation

Types Defined in Standard Package

� Type BIT
– 2  Logic Value System (‘0’, ‘1’) 

Signal A_temp : Bit;
– Bit_vector Array of Bits

Signal Temp : Bit_vector(3 Downto 0); 
Signal Temp : Bit_vector(0 to 3) ;

� Type Boolean
– (False, True)

� Integer
– Positive and Negative Values in Decimal

Signal Int_tmp : Integer; -- 32 Bit Number
Signal Int_tmp1 : Integer Range 0 to 255; --8 Bit Number

� Note: Standard Package Has Other Types



15

Introduction to VHDL

A-MNL-IVHDL-08

43
Copyright © 2004 Altera Corporation

Libraries

� Library IEEE;
– Contains the Following Packages:

• Std_logic_1164 (Std_logic Types & Related Functions)
• Std_logic_arith (Arithmetic Functions)
• Std_logic_signed (Signed Arithmetic Functions)
• Std_logic_unsigned (Unsigned Arithmetic Functions)

44
Copyright © 2004 Altera Corporation

Types Defined in Std_logic_1164 Package

� Type STD_LOGIC
– 9 Logic Value System (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’)

• ‘W’, ‘L’, ‘H” Weak Values (Not Supported by Synthesis)
• ‘X’ - Used for Unknown
• ‘Z’ - (Not ‘z’) Used for Tri-state
• ‘-’ Don’t Care

– Resolved Type: Supports Signals With Multiple Drives

� Type STD_ULOGIC
– Same 9 Value System As STD_LOGIC
– Unresolved Type: Does Not Support Multiple Signal Drives; 

Error Will Occur

45
Copyright © 2004 Altera Corporation

User-defined Libraries/Packages

� User-defined Packages Can Be in the Same Directory 
As the Design
Library Work;  --Optional
USE WORK.<Package Name>.All;

� Or Can Be in a Different Directory From the Design
LIBRARY <Any_name>;
Use <Any_name>.<Package_name>.All;



16

Introduction to VHDL

A-MNL-IVHDL-08

46
Copyright © 2004 Altera Corporation

Architecture
Modeling 

Fundamentals

47
Copyright © 2004 Altera Corporation

Section Overview

� Understanding the Concept and Usage of Signals
– Signal Assignments
– Concurrent Signal Assignment Statements
– Signal Delays

� Processes
– Implied
– Explicit

� Understanding the Concept and Usage of Variables
� Sequential Statement

– If-then
– Case
– Loops

48
Copyright © 2004 Altera Corporation

Using Signals

� Signals Represent Physical Interconnect (Wire) That 
Communicate Between Processes (Functions)

� Signals Can Be Declared in Packages, Entity and Architecture

Functional
Block:
MUX

(signals)

Functional
Block:

REGISTERS
(signals)

process process
signals

signals signals

signals



17

Introduction to VHDL

A-MNL-IVHDL-08

49
Copyright © 2004 Altera Corporation

Assigning Values to Signals

� All Bits:
Temp  <= “10101010”;
Temp <= X”aa” ; (1076-1993)

� Single Bit:
Temp(7)  <= ‘1’;  

� Bit-slicing:
Temp (7 Downto 4)  <= “1010”; 

� Single-bit:  Single-quote (‘)
� Multi-bit:  Double-quote (“)

SIGNAL   temp  : STD_LOGIC_VECTOR (7 downto 0);

50
Copyright © 2004 Altera Corporation

Signal Used As an Interconnect

r

t

g

h

qb

Signal Declaration 
Inside Architecture

• r, t, g, h, and  qb Are Signals (by Default)
• qa Is a Buried Signal and Needs to Be

Declared

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp IS
PORT(r, t, g, h : IN STD_LOGIC;

qb : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL qa : STD_LOGIC;

BEGIN

qa <= r or t;
qb <= (qa and not(g xor h));

END logic;

51
Copyright © 2004 Altera Corporation

Signal Assignments

� Signal Assignments Are Represented By:   <=
� Signal Assignments Have an Implied Process (Function) 

That Synthesizes to Hardware

CLRN

ENA

D Q
Signal

Signal Assignment <= Implied Process



18

Introduction to VHDL

A-MNL-IVHDL-08

52
Copyright © 2004 Altera Corporation

Concurrent Signal Assignments

� Three Concurrent Signal Assignments:
– Simple Signal Assignment
– Conditional Signal Assignment
– Selected Signal Assignment

53
Copyright © 2004 Altera Corporation

Simple Signal Assignments

� Format: <signal_name>  <=  <expression>;

� Example:

r

t

g

h

qb

� VHDL Operators Are Used to Describe the Process

Implied Process
qa <= r or t ;
qb <= (qa and not(g xor h));

� Parenthesis ( ) Give the 
Order of Operation

54
Copyright © 2004 Altera Corporation

VHDL Operators

Operator Type Operator Name/Symbol
and or nand nor 

Logical xor xnor(1)

Relational =  /=  <  <=  >  >=

Addition & Concatenation +  - &

Signing +  -

Multiplying *  /  mod  rem

Miscellaneous **  abs  not

(1) Supported in VHDL ‘93 Only



19

Introduction to VHDL

A-MNL-IVHDL-08

55
Copyright © 2004 Altera Corporation

VHDL Operators

� VHDL Defines Arithmetic & Boolean Functions Only 
for Built-in Data Types (Defined in Standard
Package)
– Arithmetic Operators Such As +, -, <, >, <=, >= Are Defined 

Only for INTEGER Type
– Boolean Operators Such As AND, OR, NOT Are Defined 

Only for BIT Type

� Recall: VHDL Implicit Library (Built-in)
– Library STD

• Types Defined in the Standard Package:
– Bit, Boolean, Integer

� Note: Items in This Package Do Not Need to Be Referenced, 
They Are Implied

56
Copyright © 2004 Altera Corporation

Arithmetic Function

The VHDL Compiler Can 
Understand This Operation 
Because an Arithmetic 
Operation Is Defined for 
the Built-in Data Type
Integer

ENTITY opr IS
PORT ( a   : IN  INTEGER RANGE 0 TO 16;

b   : IN  INTEGER RANGE 0 TO 16;
sum : OUT  INTEGER RANGE 0 TO 32);

END opr;

ARCHITECTURE example OF opr IS
BEGIN

sum <= a + b;
END example;

� Note: Remember the Library STD and the Package 
Standard Do Not Need to Be Referenced

57
Copyright © 2004 Altera Corporation

Operator Overloading

� How Do You Use Arithmetic & Boolean Functions 
With Other Data Types?
– Operator Overloading - Defining Arithmetic & Boolean 

Functions With Other Data Types

� Operators Are Overloaded by Defining a Function 
Whose Name Is the Same As the Operator Itself
– Because the Operator and Function Name Are the Same, 

the Function Name Must Be Enclosed Within Double Quotes 
to Distinguish It From the Actual VHDL Operator

– The Function Is Normally Declared in a Package So That It 
Is Globally Visible for Any Design



20

Introduction to VHDL

A-MNL-IVHDL-08

58
Copyright © 2004 Altera Corporation

Operator Overloading Function/package

� Packages That Define These Operator Overloading 
Functions Can Be Found in the LIBRARY IEEE

� For Example, the Package std_logic_unsigned
Defines Some of the Following Functions

package std_logic_unsigned is

function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

59
Copyright © 2004 Altera Corporation

Use of Operator Overloading

Include These Statements
At the Beginning of a 
Design File

This Allows Us to Perform
Arithmetic on Non-built-in 
Data Types

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

ENTITY overload IS
PORT ( a   : IN STD_LOGIC_VECTOR (4 downto 0);

b   : IN STD_LOGIC_VECTOR (4 downto 0);
sum : OUT STD_LOGIC_VECTOR (4 downto 0));

END overload;

ARCHITECTURE example OF overload IS
BEGIN

sum <= a + b;
END example;

60
Copyright © 2004 Altera Corporation

Exercise 1
Please go to Exercise 1



21

Introduction to VHDL

A-MNL-IVHDL-08

61
Copyright © 2004 Altera Corporation

Concurrent Signal Assignments

� Three Concurrent Signal Assignments:
– Simple Signal Assignment
– Conditional Signal Assignment
– Selected Signal Assignment

62
Copyright © 2004 Altera Corporation

Conditional Signal Assignments

<signal_name>  <= <signal/value> when <condition1> else 
<signal/value> when <condition2> else

.

.
<signal/value> when <condition3> else
<signal/value>;

� Format:

� Example:
c

b

selb a
sela

q

Implied Process

q <= a WHEN sela = ‘1’ ELSE
b WHEN selb = ‘1’ ELSE
c;

63
Copyright © 2004 Altera Corporation

Selected Signal Assignments

with  <expression>  select
<signal_name>  <=         <signal/value>  when  <condition1>,

<signal/value>  when <condition2>,

.

.
<signal/value>  when others;

� Format:

� Example:
a

d
sel

2

b
c

q

Implied Process

WITH sel SELECT
q <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;



22

Introduction to VHDL

A-MNL-IVHDL-08

64
Copyright © 2004 Altera Corporation

Selected Signal Assignments

� All Possible Conditions Must Be Considered
� WHEN OTHERS Clause Evaluates All Other 

Possible Conditions That Are Not Specifically Stated

SEE NEXT SLIDE

65
Copyright © 2004 Altera Corporation

Selected Signal Assignment

• What are the Values for a 
STD_LOGIC Data Type

• Answer:  {‘0’,’1’,’X’,’Z’}

• Therefore, is the WHEN OTHERS
Clause Necessary?

• Answer:  YES

sel Has a STD_LOGIC Data Type 

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY cmpl_sig IS
PORT ( a, b, sel : IN STD_LOGIC;

z : OUT STD_LOGIC);
END cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
b WHEN '1',
'0' WHEN OTHERS;

END logic;

66
Copyright © 2004 Altera Corporation

VHDL Model - Concurrent Signal Assignments

ARCHITECTURE

a

b

sel

x

a

b

sel

y

a

b

sel

z

a

b

sel

x

y

z

ENTITY

• The Signal Assignments Execute in 
Parallel, and Therefore the Order We List 
the Statements Should Not Affect the 
Outcome

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY cmpl_sig IS
PORT ( a, b, sel : IN STD_LOGIC;

x, y, z : OUT STD_LOGIC);
END cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);

-- conditional signal assignment
y <= a WHEN sel='0' ELSE

b;
-- selected signal assignment

WITH sel SELECT
z <= a WHEN '0',

b WHEN '1',
'0' WHEN OTHERS;

END logic;



23

Introduction to VHDL

A-MNL-IVHDL-08

67
Copyright © 2004 Altera Corporation

Explicit Process Statement

� Process Can Be Thought of 
As 
– Implied Processes
– Explicit Processes

� Implied Process Consist of 
– Concurrent Signal 

Assignment Statements
– Component Statements
– Processes’ Sensitivity Is 

Read Side of Expression 
� Explicit Process

– Concurrent Statement
– Consist of Sequential 

Statements Only

-- Explicit Process Statement
PROCESS (sensitivity_list)

Constant Declarations
Type Declarations
Variable Declarations

BEGIN
-- Sequential statement #1;
-- ……..
-- Sequential statement #N ;
END PROCESS;

68
Copyright © 2004 Altera Corporation

Execution of Process Statement

� Process Statement Is Executed 
Infinitely Unless Broken by a 
WAIT Statement or Sensitivity 
List 
– Sensitivity List Implies a WAIT 

Statement at the End of the 
Process

– Process Can Have Multiple 
WAIT Statements

– Process Can Not Have Both a 
Sensitivity List and WAIT 
Statement

� Note: Logic Synthesis Places 
Restrictions on WAIT and 
Sensitivity List

PROCESS (a,b)
BEGIN

--sequential statements
END PROCESS; 

PROCESS
BEGIN

-- sequential statements
WAIT ON (a,b) ; 
END PROCESS;

69
Copyright © 2004 Altera Corporation

Multi-Process Statements

Process 1
Sequential
Statement

Process N
Sequential
Statement

SignalsSignals

� An Architecture Can 
Have Multiple 
Process Statements

� Each Process 
Executes in Parallel 
With Each Other

� However, Within a 
Process, the 
Statements Are 
Executed 
Sequentially

A
R
C
H
I
T
E
C
T
U
R
E

• Describes the Functionality of Design



24

Introduction to VHDL

A-MNL-IVHDL-08

70
Copyright © 2004 Altera Corporation

VHDL Model - Multi-Process Architecture

• The Process Statements Execute in Parallel and 
Therefore, the Order in Which We List the Statements
Should Have No Affect on the Outcome 

• Within a Process,
the Statements Are 
Executed Sequentially

case_label: PROCESS(a, b, c, d, sel)
BEGIN

CASE sel IS
WHEN "00" =>

z <= a;
WHEN "01" =>

z <= b;
WHEN "10" =>

z <= c;
WHEN "11" =>

z <= d;
WHEN OTHERS =>

z <= '0';
END CASE;

END PROCESS case_label;
END logic;

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY if_case IS
PORT ( a, b, c, d : IN STD_LOGIC;

sel : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
y, z : OUT STD_LOGIC);

END if_case;

ARCHITECTURE logic OF if_case IS
BEGIN
if_label: PROCESS(a, b, c, d, sel)

BEGIN
IF sel="00" THEN

y <= a;
ELSIF sel="01" THEN

y <= b;
ELSIF sel="10" THEN

y <= c;
ELSE

y <= d;
END IF;

END PROCESS if_label;
• Signal Assignments Can Also Be 

Inside Process Statements

71
Copyright © 2004 Altera Corporation

Signal Assignment - Delay

� Signal Assignments Can Be Inside Process 
Statements or Outside (Like the Three Concurrent 
Signal Assignments)

� Signal Assignments Incur Delay
– Two Types of Delays

• Inertial Delay (Default)
– A Pulse That Is Short in Duration of the Propagation 

Delay Will Not Be Transmitted
– Ex.     a <= b AFTER 10 ns;

• Transport Delay
– Any Pulse Is Transmitted No Matter How Short
– Ex.     a <= TRANSPORT b AFTER 10 ns;

� In VHDL, There Are Exceptions to This Rule That Will Not 
Be Discussed

72
Copyright © 2004 Altera Corporation

Initialize Signals

Execute
all

Processes

Advance Time

Update Signals

Execute
sensitive
Processes

Initialization
Phase

Simulation
CycleDelta

VHDL Simulation

� Event - A Change in Value:  
From 0 to 1; Or From X to 1, Etc.

� Simulation Cycle
– Wall Clock Time  
– Delta

• Process Execution Phase 
• Signal Update Phase

� When Does a Simulation Cycle 
End and a New One Begin?
� When: 

– All Processes Execute
– Signals Are Updated

� Signals Get Updated at the 
End of the Process



25

Introduction to VHDL

A-MNL-IVHDL-08

73
Copyright © 2004 Altera Corporation

Equivalent Functions

• c and  y Get Executed and Updated in 
Parallel at the End of the Process 
Within One Simulation Cycle

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp IS
PORT(a, b : IN STD_LOGIC;

y : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL c : STD_LOGIC;

BEGIN

c <= a and b;
y <= c;

END logic;

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a,b : IN STD_LOGIC;

y : OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c : STD_LOGIC;

BEGIN
process1: PROCESS(a, b)

BEGIN
c <= a and b;

END PROCESS process1;
process2: PROCESS(c)

BEGIN
y <= c;

END PROCESS process2;
END logic;

74
Copyright © 2004 Altera Corporation

Equivalent Functions?

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp IS
PORT(a, b : IN STD_LOGIC;

y : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL c : STD_LOGIC;
BEGIN

c <= a and b;

y <= c;

END logic;

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a, b : IN STD_LOGIC;

y: OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c: STD_LOGIC;

BEGIN
PROCESS(a, b)

BEGIN
c <= a and b;
y <= c;

END PROCESS;
END logic;

75
Copyright © 2004 Altera Corporation

Variable Declarations

� Variables Are Declared Inside a Process
� Variables Are Represented By:  :=
� Variable Declaration

VARIABLE <Name> : <DATA_TYPE> := <Value>;
Variable Temp  :  Std_logic_vector (7 Downto 0);

� Variable Assignments Are Updated Immediately
– Do Not Incur a Delay

No Delay

Temporary Storage



26

Introduction to VHDL

A-MNL-IVHDL-08

76
Copyright © 2004 Altera Corporation

Assigning Values to Variables

� All Bits:
Temp  := “10101010”; 
Temp := X”aa” ; (1076-1993)

� Single Bit:
Temp(7)  := ‘1’; 

� Bit-slicing:
Temp (7 downto 4)  := “1010”; 

� Single-bit:  Single-quote (‘)
� Multi-bit:  Double-quote (“)

VARIABLE  temp  : STD_LOGIC_VECTOR (7 downto 0);

77
Copyright © 2004 Altera Corporation

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY var IS
PORT (a, b : IN STD_LOGIC;

y : OUT  STD_LOGIC);
END var;

ARCHITECTURE logic OF var IS
BEGIN

PROCESS (a, b)
VARIABLE c  :  STD_LOGIC;
BEGIN
c := a AND b;

y <= c;

END PROCESS;
END logic;

Variable Assignment

Variable Declaration

Variable Assignment

Variable is Assigned to a
Signal to Synthesize to  a
Piece of Hardware

78
Copyright © 2004 Altera Corporation

Use of a Variable

val Is a Variable That Is Updated
at the Instant an Assignment
Is Made to It

Therefore, the Updated Value 
of val Is Available for the 
CASE Statement

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY cmb_var IS
PORT(i0, i1, a : IN BIT;

q : OUT BIT);
END cmb_var;
ARCHITECTURE logic OF cmb_var IS
BEGIN

PROCESS(i0, i1, a)
VARIABLE val : INTEGER RANGE 0 TO 1;
BEGIN

val := 0;
IF (a = '0') THEN

val := val;
ELSE 

val := val + 1;
END IF;
CASE val IS 

WHEN 0 =>
q <= i0;

WHEN 1 =>
q <= i1;

END CASE;
END PROCESS;

END logic;



27

Introduction to VHDL

A-MNL-IVHDL-08

79
Copyright © 2004 Altera Corporation

Signal and Variable Scope

ARCHITECTURE

label1: PROCESS
{VARIABLE Declarations}

label2: PROCESS
{VARIABLE Declarations}

{SIGNAL Declarations}
Declared Outside of the 
Process Statements
(Globally Visible to All
Process Statements)

Declared Inside the 
Process Statements
(Locally Visible to the
Process Statements)

80
Copyright © 2004 Altera Corporation

Review - Signals vs. Variables

Represent Circuit 
Interconnect

Global Scope
(Communicate Between       

PROCESSES)
Updated at End of 
Process Statement
(New Value Not Available)

SIGNALS ( <= )

UTILITY

SCOPE

BEHAVIOR

VARIABLES ( := )

Represent Local
Storage

Local Scope 
(Inside PROCESS)

Updated Immediately
(New Value Available)

assignee <= assignment assignee := assignmentASSIGN

81
Copyright © 2004 Altera Corporation

Sequential Statements

� Sequential Statements
– IF-THEN Statement
– CASE Statement
– Looping Statements



28

Introduction to VHDL

A-MNL-IVHDL-08

82
Copyright © 2004 Altera Corporation

If-then Statements

IF <condition1> THEN
{sequence of statement(s)}

ELSIF <condition2> THEN
{sequence of statement(s)}

.

.
ELSE

{sequence of statement(s)}
END IF;

� Format: � Example:

c

b
selb a

sela

q

PROCESS(sela, selb, a, b, c)
BEGIN

IF sela=‘1’ THEN
q <= a;

ELSIF selb=‘1’ THEN
q <= b;

ELSE 
q <= c;

END IF;
END PROCESS;

83
Copyright © 2004 Altera Corporation

If-then Statements

� Conditions Are Evaluated in Order From Top to 
Bottom
– Prioritization

� The First Condition That Is True Causes the 
Corresponding Sequence of Statements to Be 
Executed

� If All Conditions Are False, Then the Sequence of 
Statements Associated With the “ELSE” Clause Is 
Evaluated

84
Copyright © 2004 Altera Corporation

If-then Statements 

� Similar to Conditional Signal Assignment

PROCESS(sela, selb, a, b, c)
BEGIN

IF sela=‘1’ THEN
q <= a;

ELSIF selb=‘1’ THEN
q <= b;

ELSE 
q <= c;

END IF;
END PROCESS;

q <= a WHEN sela = ‘1’ ELSE
b WHEN selb = ‘1’ ELSE
c;

c

b

selb a
sela

q

Implied Process Explicit Process



29

Introduction to VHDL

A-MNL-IVHDL-08

85
Copyright © 2004 Altera Corporation

Exercise 2

Please go to Exercise 2

86
Copyright © 2004 Altera Corporation

Case Statement

CASE {expression} IS
WHEN <condition1> =>

{sequence of statements}
WHEN <condition2> =>

{sequence of statements}

.

.
WHEN OTHERS => -- (optional)

{sequence of statements}
END CASE;

� Format: � Example:

a

d
sel

2

b
c

q

PROCESS(sel, a, b, c, d)
BEGIN

CASE sel IS
WHEN “00” =>

q <= a;
WHEN “01” =>

q <= b;
WHEN “10” =>

q <= c;
WHEN OTHERS =>

q <= d;
END CASE;

END PROCESS;

87
Copyright © 2004 Altera Corporation

Case Statement

� Conditions Are Evaluated at Once
– No Prioritization

� All Possible Conditions Must Be Considered
� WHEN OTHERS Clause Evaluates All Other 

Possible Conditions That Are Not Specifically Stated



30

Introduction to VHDL

A-MNL-IVHDL-08

88
Copyright © 2004 Altera Corporation

Case Statement

� Similar to Selected Signal Assignment

PROCESS(sel, a, b, c, d)
BEGIN

CASE sel IS
WHEN “00” =>

q <= a;
WHEN “01” =>

q <= b;
WHEN “10” =>

q <= c;
WHEN OTHERS =>

q <= d;
END CASE;

END PROCESS;

WITH sel SELECT
q <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;

a

d
sel

2

b
c

q

Implied Process Explicit Process

89
Copyright © 2004 Altera Corporation

Exercise 3
Please go to Exercise 3

90
Copyright © 2004 Altera Corporation

Sequential LOOPS

� Infinite Loop
– Loops Infinitely Unless EXIT 

Statement Exists

� While Loop
– Conditional Test to End 

Loop

� For Loop
– Iteration Loop

[loop_label]LOOP
--sequential statement

EXIT loop_label ;
END LOOP; 

WHILE <condition> LOOP
--sequential statements

END LOOP;

FOR <identifier> IN <range> LOOP
--sequential statements

END LOOP;



31

Introduction to VHDL

A-MNL-IVHDL-08

91
Copyright © 2004 Altera Corporation

FOR LOOP Using a Variable: 4-bit Left Shifter

Variable Declaration

Variable is Initialized

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY shift4 IS
PORT (  shft_lft : in std_logic;

d_in : in std_logic_vector(3 downto 0);
q_out : out std_logic_vector(7 downto 0));

END shift4;
ARCHITECTURE logic OF shift4 IS
BEGIN

PROCESS(d_in, shft_lft)
VARIABLE shft_var : std_logic_vector(7 DOWNTO 0);

BEGIN
shft_var(7 downto 4) := "0000";
shft_var(3 downto 0) := d_in;

92
Copyright © 2004 Altera Corporation

FOR LOOP Using a Variable: 4-bit Left Shifter

Enables Shift-Left

i Is the Index for the FOR LOOP
and Does Not Need to Be Declared

Shifts Left by 4

Fills the LSBs with Zeros

No Shifting

Variable is Assigned to a Signal
Before the End of the Process to 
Synthesize to a Piece of 
Hardware

IF shft_lft = '1' THEN
FOR i IN 7 DOWNTO 4 LOOP

shft_var(i) := shft_var(i-4);
END LOOP;

shft_var(3 downto 0) := "0000";
ELSE 

shft_var := shft_var;
END IF;

q_out <= shft_var;

END PROCESS;
END logic;

93
Copyright © 2004 Altera Corporation

FOR LOOP: ‘1’s Counter

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
USE IEEE.std_logic_arith.all;

ENTITY bc IS PORT (invec: in std_logic_vector(31 downto 0);
outvec: out std_logic_vector(7 downto 0));

END bc;
ARCHITECTURE rtl OF bc IS
BEGIN
PROCESS(invec)

VARIABLE count: std_logic_vector(7 downto 0);

Variable Declaration



32

Introduction to VHDL

A-MNL-IVHDL-08

94
Copyright © 2004 Altera Corporation

FOR LOOP: ‘1’s Counter

BEGIN
Count:=(others=>’0’);
FOR i IN invec’right TO Invec’left LOOP

IF (invec(i)/’0’) THEN
count:=count+1;

END IF;
END LOOP;

outvec<=count;
END PROCESS;
END rtl;

Variable Is Initialized

i Is the Loop Index
This Loop Examines All 32 Bits of invec.  If 
the Current Bit Does Not Equal Zero, 
Count is Incremented. 

Variable is Assigned to a Signal
Before the End of the Process to 
Synthesize to a Piece of 
Hardware

95
Copyright © 2004 Altera Corporation

Exercise 4
Please go to Exercise 4

96
Copyright © 2004 Altera Corporation

Understanding VHDL 
and 

Logic Synthesis



33

Introduction to VHDL

A-MNL-IVHDL-08

97
Copyright © 2004 Altera Corporation

VHDL Model - RTL Modeling

a

d
sel

2

b
c

y

a

d
sel

2

b
c

z

ARCHITECTURE

a

c

sel

y

z

ENTITY

b

d

2

� RTL - Type of 
Behavioral Modeling 
that Implies or Infers 
Hardware

� Functionality and 
Somewhat Structure 
of the Circuit

� For the Purpose of 
Synthesis, As Well As 
Simulation

Result:

98
Copyright © 2004 Altera Corporation

Recall - RTL Synthesis

IF sel=“00” THEN
mux_out <= a;

ELSIF sel=“01” THEN
mux_out <= b;

…………
ELSE sel=“11” THEN

mux_out <= d;

a

d

a

d

Translation

Optimization

a

d
sel

2

b
c

Inferred

99
Copyright © 2004 Altera Corporation

Two Types of Process Statements

a

b

sel

c

CLRN
ENA

D Qd

clk

clr

q

Sensitivity List Includes All Inputs Used 
in the Combinatorial Logic

Sensitivity List Does Not Include the d Input, 
Only the Clock or/and Control Signals

• Sequential Process
– Sensitive to a Clock or/and 

Control Signals
• Example

PROCESS(clr, clk)

• Combinatorial Process
– Sensitive to All Inputs Used In

the Combinatorial Logic
• Example

PROCESS(a, b, sel)



34

Introduction to VHDL

A-MNL-IVHDL-08

100
Copyright © 2004 Altera Corporation

Latch

Sensitivity List Includes Both Inputs

data

gate

q
Transparent

Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY latch1 IS
PORT ( data : IN std_logic;

gate : IN std_logic;
q : OUT std_logic

);
END latch1;

ARCHITECTURE behavior OF latch1 IS
BEGIN

label_1: PROCESS (data, gate)
BEGIN
IF gate = '1' THEN

q <= data;
END IF;

END PROCESS;

END behavior;

What Happens if Gate = ‘0’?
� Implicit Memory

101
Copyright © 2004 Altera Corporation

DFF With WAIT Statement

Note: There is No Sensitivity List

wait until
– Acts Like the Sensitivity 
List

CLRN

ENA

D Qd

clk

q

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY wait_dff IS
PORT ( d, clk : in std_logic;

q : out std_logic
);

END wait_dff;

ARCHITECTURE behavior OF wait_dff IS
BEGIN
PROCESS 

BEGIN
wait until clk = '1';

q <= d;
END PROCESS;
END behavior;

102
Copyright © 2004 Altera Corporation

DFF - Clk’event and Clk=‘1’

clk’event and clk=‘1’
– clk Is the Signal Name (Any Name)
– ‘event Is a VHDL Attribute, 

Specifying That There Needs
to Be a Change in Signal Value

– clk=‘1’ Means Positive-Edge 
Triggered

CLRN

ENA

D Qd

clk

q

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY dff_a IS
PORT ( d : in std_logic;

clk : in std_logic;
q : out std_logic

);
END dff_a;

ARCHITECTURE behavior OF dff_a IS
BEGIN
PROCESS (clk) 

BEGIN
IF clk'event and clk = '1' THEN

q <= d;
END IF;

END PROCESS;
END behavior;



35

Introduction to VHDL

A-MNL-IVHDL-08

103
Copyright © 2004 Altera Corporation

DFF - Rising_edge

rising_edge 
– IEEE Function That is Defined in 
the std_logic_1164 Package
– Specifies That the Signal Value   

must be 0 to 1
– X, Z to 1 Transition Is Not Allowed

CLRN

ENA

D Qd

clk

q

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY dff_b IS
PORT ( d : in std_logic;

clk : in std_logic;
q : out std_logic

);
END dff_b;

ARCHITECTURE behavior OF dff_b IS
BEGIN
PROCESS(clk)

BEGIN
IF rising_edge(clk) THEN

q <= d;
END IF;

END PROCESS;
END behavior;

104
Copyright © 2004 Altera Corporation

DFF With Asynchronous Clear

– This is How to Implement Asynchronous 
Control Signals for the Register

– Note:  This IF-THEN Statement 
Is Outside the IF-THEN Statement 
that Checks the Condition rising_edge

– Therefore, clr=‘1’ Does Not Depend
on the Clock

CLRN

ENA

D Qd

clk

clr

q

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

ENTITY dff_clr IS
PORT (  clr : in bit;

d, clk : in std_logic;
q : out std_logic
);

END dff_clr;

ARCHITECTURE behavior OF dff_clr IS
BEGIN
PROCESS(clk, clr)

BEGIN

IF clr = '0' THEN
q <= '0';

ELSIF rising_edge(clk) THEN
q <= d;

END IF;
END PROCESS;
END behavior;

105
Copyright © 2004 Altera Corporation

How Many Registers?

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY reg1 IS

PORT ( d : in STD_LOGIC;
clk : in STD_LOGIC;
q : out STD_LOGIC);

END reg1;

ARCHITECTURE reg1 OF reg1 IS
SIGNAL a, b : STD_LOGIC;
BEGIN

PROCESS (clk)
BEGIN

IF rising_edge(clk) THEN
a <= d;
b <= a;
q <= b;

END IF;
END PROCESS;

END reg1;



36

Introduction to VHDL

A-MNL-IVHDL-08

106
Copyright © 2004 Altera Corporation

How Many Registers?

CLRN

ENA

D Q

clk

qb

CLRN

ENA

D Q

clk

CLRN

ENA

D Qd

clk

a

� Signal Assignments Inside the IF-THEN Statement 
That Checks the Clock Condition Infer Registers

107
Copyright © 2004 Altera Corporation

How Many Registers?

Signal 
Assignment 
Moved

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY reg1 IS

PORT ( d : in STD_LOGIC;
clk : in STD_LOGIC;
q : out STD_LOGIC);

END reg1;
ARCHITECTURE reg1 OF reg1 IS
SIGNAL a, b : STD_LOGIC;
BEGIN

PROCESS (clk)
BEGIN

IF rising_edge(clk)  THEN
a <= d;
b <= a;

END IF;
END PROCESS;
q <= b;

END reg1;

108
Copyright © 2004 Altera Corporation

How Many Registers?

� B to Q Assignment Is No Longer Edge-sensitive 
Because It Is Not Inside the If-then Statement That 
Checks the Clock Condition

q

CLRN

ENA

D Q

clk

CLRN

ENA

D Qd

clk

a



37

Introduction to VHDL

A-MNL-IVHDL-08

109
Copyright © 2004 Altera Corporation

How Many Registers?

Signals Changed to Variables

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY reg1 IS

PORT ( d : in STD_LOGIC;
clk : in STD_LOGIC;
q : out STD_LOGIC);

END reg1;

ARCHITECTURE reg1 OF reg1 IS
BEGIN

PROCESS (clk)
VARIABLE a, b : STD_LOGIC;
BEGIN

IF rising_edge(clk) THEN
a := d;
b := a;
q <= b;

END IF;
END PROCESS;

END reg1;

110
Copyright © 2004 Altera Corporation

How Many Registers?

� Variable Assignments Are Updated Immediately
� Signal Assignments Are Updated on Clock Edge

CLRN

ENA

D Qd

clk

q

111
Copyright © 2004 Altera Corporation

Variable Assignments in Sequential Logic

� Variable Assignments Inside the IF-THEN Statement, That 
Checks the Clock Condition, Usually Don’t Infer Registers
– Exception:  If the Variable Is on the Right Side of the Equation in a 

Clocked Process Prior to Being Assigned a Value, the Variable Will 
Infer a Register(s)

� Variable Assignments Are Temporary Storage and Have No 
Hardware Intent

� Variable Assignments Can Be Used in Expressions to 
Immediately Update a Value
– Then the Variable Can Be Assigned to a Signal



38

Introduction to VHDL

A-MNL-IVHDL-08

112
Copyright © 2004 Altera Corporation

Example - Counter Using a Variable

� Counters Are Accumulators That 
Always Add a ‘1’ or Subtract a ‘1’

� This Example Takes 17 LEs

Arithmetic Expression Assigned to a 
Variable

Variable Assigned to a Signal

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY count_a IS
PORT (clk, rst, updn : in std_logic;

q : out std_logic_vector(15 downto 0));
END count_a;
ARCHITECTURE logic OF count_a IS 
BEGIN
PROCESS(rst, clk)
VARIABLE tmp_q : std_logic_vector(15 downto 0);
BEGIN

IF rst = '0' THEN
tmp_q := (others => '0');

ELSIF rising_edge(clk) THEN
IF updn = '1' THEN

tmp_q := tmp_q + 1;
ELSE

tmp_q := tmp_q - 1;
END IF;

END IF;
q <= tmp_q;

END PROCESS;
END logic;

113
Copyright © 2004 Altera Corporation

Exercise 5
Please go to Exercise 5

114
Copyright © 2004 Altera Corporation

Model 
Application



39

Introduction to VHDL

A-MNL-IVHDL-08

115
Copyright © 2004 Altera Corporation

Finite State Machine (Fsm) - State Diagram
RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

Inputs:
reset
nw

Outputs:
select
first
nxt

116
Copyright © 2004 Altera Corporation

Enumerated Data Type

� Recall the Built-in Data Types:
– Bit
– Std_logic
– Integer

� What About User-defined Data Types?:
– Enumerated Data Type:

TYPE <your_data_type>  IS 
(items or values for your data type separated by commas)

117
Copyright © 2004 Altera Corporation

Writing VHDL Code for FSM

� State Machine States Must Be an Enumerated Data 
Type:

TYPE State_type IS (Idle, Tap1, Tap2, Tap3, Tap4 );

� Object Which Stores the Value of the Current State Must 
Be a Signal of the User-defined Type:

SIGNAL Filter :  State_type;



40

Introduction to VHDL

A-MNL-IVHDL-08

118
Copyright © 2004 Altera Corporation

Writing VHDL Code for FSM

� To Determine Next State Transition/Logic:
– Use a CASE Statement Inside IF-THEN Statement That 

Checks for the Clock Condition
• Remember: State Machines Are Implemented Using Registers

� To Determine State Machine Outputs:
– Use Conditional and/or Selected Signal Assignments
– Or Use a Second Case Statement to Determine the State 

Machine Outputs

119
Copyright © 2004 Altera Corporation

FSM VHDL Code - Enumerated Data Type
RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

Enumerated Data Type

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
USE IEEE.std_logic_arith.all;

ENTITY state_m2 IS
PORT(clk, reset, nw : in std_logic;

sel: out std_logic_vector(1 downto 0);
nxt, first: out std_logic);

END state_m2;

ARCHITECTURE logic OF state_m2 IS
TYPE state_type IS 

(idle, tap1, tap2, tap3, tap4);
SIGNAL filter : state_type;

120
Copyright © 2004 Altera Corporation

FSM VHDL Code - Next State Logic
RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

BEGIN
PROCESS (reset, clk)

BEGIN
IF reset = '1' THEN

filter <= idle;
ELSIF clk'event and clk = '1' THEN

CASE filter IS
WHEN idle => 

IF nw = '1' THEN
filter <= tap1;

END IF;
WHEN tap1 => 

filter <= tap2;
WHEN tap2 => 

filter <= tap3;
WHEN tap3 =>

filter <= tap4;
WHEN tap4 =>

IF nw = '1' THEN
filter <= tap1;

ELSE
filter <= idle;

END IF;

END CASE;

END IF;
END PROCESS;



41

Introduction to VHDL

A-MNL-IVHDL-08

121
Copyright © 2004 Altera Corporation

FSM VHDL Code - Outputs

nxt <= '1' WHEN filter=tap4 ELSE
'0';

first <= '1'  WHEN filter=tap1 ELSE
'0';

WITH filter SELECT
sel <= "00" WHEN tap1,

"01" WHEN tap2,
"10" WHEN tap3,
"11" WHEN tap4,
"00" WHEN others;

END logic;

RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

Conditional 
Signal Assignments

Selected
Signal Assignments

122
Copyright © 2004 Altera Corporation

FSM VHDL Code - Outputs Using a Case
RESET

nw = 1

Tap1
select = 0
first = 1

Idle
nxt = 0
first = 0

Tap2
select = 1
first = 0

Tap3
select = 2

Tap4
select = 3
nxt = 1

nw = 1

nw = 0

output: PROCESS(filter)
BEGIN 
CASE  filter IS

WHEN idle =>  
nxt <= '0';
first <= '0';

WHEN tap1 =>
sel <= "00";
first <= '1';

WHEN tap2 =>
sel <= "01";
first <= '0';

WHEN tap3 =>
sel <= "10";

WHEN tap4 =>
sel <= "11";
nxt <= '1';

END CASE; 
END PROCESS output;

END logic;

123
Copyright © 2004 Altera Corporation

Designing
Hierarchically



42

Introduction to VHDL

A-MNL-IVHDL-08

124
Copyright © 2004 Altera Corporation

Recall - Structural Modeling

input1

inputn

output1

outputn

Higher-Level Component

Lower-Level
Component1

Lower-Level
Component1

� Functionality and Structure of the Circuit
� Call Out the Specific Hardware, Lower-Level Components
� For the Purpose of Synthesis

125
Copyright © 2004 Altera Corporation

Design Hierarchically - Multiple Design Files

� VHDL Hierarchical Design Requires Component 
Declarations and Component Instantiations

top.vhd
entity-architecture “top”
component “mid_a”
component “mid_b”

mid_a.vhd
entity-architecture “mid_a”
component “bottom_a”

mid_b.vhd
entity-architecture “mid_b”
component “bottom_a”
component “bottom_b”

bottom_a.vhd
entity-architecture “bottom_a”

bottom_b.vhd
entity-architecture “bottom_b”

126
Copyright © 2004 Altera Corporation

� Component Declaration - Used to Declare the Port Types and 
the Data Types of the Ports for a Lower-level Design

COMPONENT <Lower-level_design_name> IS
PORT  ( <Port_name> :  <Port_type> <Data_type>;

.

.
<Port_name> :  <Port_type> <Data_type>);

END COMPONENT;
� Component Instantiation - Used to Map the Ports of a Lower-

level Design to That of the Current-level Design
<Instance_name> : <Lower-level_design_name>
PORT MAP(<lower-level_port_name> => <Current_level_port_name>,  

…,<Lower-level_port_name> =>
<Current_level_port_name>); 

Component Declaration and Instantiation



43

Introduction to VHDL

A-MNL-IVHDL-08

127
Copyright © 2004 Altera Corporation

� Upper-level of Hierarchy Design Must Have a Component 
Declaration for a Lower-level Design Before It Can Be Instantiated

Component Declaration

Component InstantiationInstance Label/Name

Component Declaration and Instantiation

Positional Association

ARCHITECTURE tolleab_arch OF tolleab IS
COMPONENT tollv
PORT( clk : IN STD_LOGIC;

cross, nickel, dime, quarter  : IN  STD_LOGIC;
green, red  : OUT  STD_LOGIC;
sout  : OUT STATE_TYPE;
state_in : IN  STATE_TYPE);

END COMPONENT;
BEGIN
u1 :  tollv  PORT MAP ( tclk, tcross, tnickel, tdime,

tquarter, tgreen, tred,
tsout, tstate);

128
Copyright © 2004 Altera Corporation

Component Declaration and Instantiation

dime => tdime

Lower-Level Port

Current-Level Port

LIBRARY IEEE;
USE  IEEE.std_logic_1164.all;
ENTITY tolleab IS
PORT( tclk : IN STD_LOGIC;

tcross, tnickel, tdime, tquarter : IN STD_LOGIC;
tgreen, tred : OUT STD_LOGIC);

END tolleab;
ARCHITECTURE tolleab_arch OF tolleab IS
TYPE STATE_TYPE IS (cent0, cent5, cent10, cent15, cent20, cent25, cent30,

cent35, cent40, cent45, cent50, arrest);
SIGNAL connect : STATE_TYPE;

COMPONENT tollv
PORT( clk: IN STD_LOGIC;

cross, nickel, dime, quarter : IN STD_LOGIC;
green, red : OUT STD_LOGIC;
sout : OUT STATE_TYPE;
state_in : IN STATE_TYPE);

END COMPONENT;

BEGIN

u1 :  tollv PORT MAP (clk => tclk, cross => tcross, nickel => tnickel, dime => tdime,
quarter => tquarter, green => tgreen, red => tred,
sout => connect, state_in => connect);

END tolleab_arch;

129
Copyright © 2004 Altera Corporation

Benefits of Hierarchical Designing

Designing Hierarchically
� In a Design Group, Each Designer Can Create 

Separate Functions (Components) in Separate 
Design Files

� These Components Can Be Shared by Other 
Designers or Can Be Used for Future Projects

� Therefore, Designing Hierarchically Can Make 
Designs More Modular and Portable

� Designing Hierarchically Can Also Allow Easier and 
Faster Alternative Implementations
– Example:  Try Different Counter Implementations by 

Replacing Component Declaration and Component 
Instantiation



44

Introduction to VHDL

A-MNL-IVHDL-08

130
Copyright © 2004 Altera Corporation

Vendor Libraries

� Silicon Vendors Often Provide Libraries of 
Macrofunctions & Primitives
– Altera Library

• Maxplus2
• Megacore

� Can Be Used to Control Physical Implementation of 
Design Within the PLD

� Vendor-specific Libraries Improve Performance & 
Efficiency of Designs

� Altera Provides a Collection of Library of 
Parameterized Modules (LPMs) Plus Other 
Megafunctions and Primitives

131
Copyright © 2004 Altera Corporation

Library Altera/LPM

� Library Altera ;
– Contains the Following Packages:

• Maxplus2 (Component Declarations for All Primitives and Old-
style Megafunction Altera Libraries)

• Megacore (Component Declarations for Some Altera Megacores)

� Library LPM;
– Contains the Following Packages:

• Lpm_components (Component Declarations for All Altera LPM 
Functions)

� Note: See MAX+PLUS II or Quartus II Online Help for More 
Information

132
Copyright © 2004 Altera Corporation

LPMs

� Library of Parametrized Modules
– Large Building Blocks That Are Easily Configurable 

By Using the MegaWizard Plug-In Manager

� Altera’s LPMs Have Been Optimized to Access the 
Architectural Features of Altera Devices



45

Introduction to VHDL

A-MNL-IVHDL-08

133
Copyright © 2004 Altera Corporation

LPM Instantiation

� All of the Altera LPM Macrofunctions Are Declared in 
the Package lpm_components.all in the     
LIBRARY lpm; 

� The MegaWizard Plug-in Manager in Quartus II and 
MAX+plus II Creates the VHDL Code Instantiating 
the LPM or Megafunction 

� After the Code Is Created You Will See at Top of the 
VHDL Code:

LIBRARY lpm;
Use lpm.lpm_components.all;

134
Copyright © 2004 Altera Corporation

Manual LPM Instantiation – LPM_MUX
• Quartus II or MAX+plus II Online HELP:  VHDL Component Declaration:

COMPONENT lpm_mux
GENERIC (LPM_WIDTH: POSITIVE;

LPM_WIDTHS: POSITIVE;
LPM_PIPELINE: INTEGER:= 0;
LPM_SIZE: POSITIVE;
LPM_HINT: STRING := UNUSED);

PORT (data: IN STD_LOGIC_2D(LPM_SIZE-1 DOWNTO 0, LPM_WIDTH-1 DOWNTO 0);
aclr: IN STD_LOGIC := '0';
clock: IN STD_LOGIC := '0';
sel: IN STD_LOGIC_VECTOR(LPM_WIDTHS-1 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0));

END COMPONENT;

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;
USE IEEE.std_logic_signed.all;

LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY tst_mux IS
PORT (a : in std_logic_2d (3 downto 0, 15 downto 0);

sel : in std_logic_vector(1 downto 0);
y : out std_logic_vector (15 downto 0));

END tst_mux;

ARCHITECTURE behavior OF tst_mux IS
BEGIN

u1: lpm_mux GENERIC MAP(lpm_width => 16, lpm_size => 4, lpm_widths => 2)
PORT MAP (data => a, sel => sel,  result => y);

END behavior;

135
Copyright © 2004 Altera Corporation

Manual LPM Instantiation – LPM_MULT
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY tst_mult IS
PORT ( a, b : in std_logic_vector(7 downto 0);

q_out  : out std_logic_vector(15 downto 0));
END tst_mult;

ARCHITECTURE behavior OF tst_mult IS

BEGIN

u1 : lpm_mult GENERIC MAP (lpm_widtha => 8, lpm_widthb => 8,
lpm_widths => 16, lpm_widthp => 16)

PORT MAP(dataa => a, datab => b, result => q_out);

END behavior;



46

Introduction to VHDL

A-MNL-IVHDL-08

136
Copyright © 2004 Altera Corporation

Select MegaWizard Plug-In Manager

Accessing the MegaWizard

� Altera’s IP, Megafunction, & LPMs Accessed and 
Edited through the MegaWizard Plug-In Manager

137
Copyright © 2004 Altera Corporation

MegaWizard Files

� The MegaWizard Plug-In Manager Produces Three 
Files Relevant to VHDL
– my_ram.vhd

• Instantiation and parameterisation of Megafunction
– my_ram.cmp
– Component declaration for use in higher level file
– my_ram_inst.vhd

• Instantiation of my_ram for use in higher level file

138
Copyright © 2004 Altera Corporation

Benefits of LPMs

� Industry Standard
� Larger Building Blocks, So You Don’t Have to Start 

From Scratch
– Reduces Design Time
– Therefore, Faster Time-to-market

� Easy to Change the Functionality by Using the 
MegaWizard

� Consistent Synthesis



47

Introduction to VHDL

A-MNL-IVHDL-08

139
Copyright © 2004 Altera Corporation

Exercise 6
Please go Exercise 6

140
Copyright © 2004 Altera Corporation

Altera Technical Support

� Reference Quartus II On-Line Help 
� Consult Altera Applications (Factory Applications Engineers)

– Hotline:  (800) 800-EPLD (7:00 a.m. - 5:00 p.m. PST)
– MySupport:  http://www.altera.com/mysupport

� Field Applications Engineers: Contact Your Local Altera Sales Office
� Receive Literature by Mail: (888) 3-ALTERA
� FTP: ftp.altera.com
� World-Wide Web: http://www.altera.com

– Use Solutions to Search for Answers to Technical Problems  
– View Design Examples

141
Copyright © 2004 Altera Corporation

Instructor-Led Training

With Altera's instructor-led training courses, you can:

�Listen to a lecture from an Altera technical training 
engineer (instructor) 

�Complete hands-on exercises with guidance from an 
Altera instructor 

�Ask questions and receive real-time answers from 
an Altera instructor 

�Each instructor-led class is one day in length (8 
working hours).

Learn More Through Technical Training 

On-Line Training

With Altera's on-line training courses, you can: 

�Take a course at any time that is convenient for you

�Take a course from the comfort of your home or 
office (no need to travel as with instructor-led courses) 

�Each on-line course will take approximately 2-3 
hours to complete. 

www.altera.com/training
View Training Class Schedule & Register for a Class



48

Introduction to VHDL

A-MNL-IVHDL-08

142
Copyright © 2004 Altera Corporation

Appendix

143
Copyright © 2004 Altera Corporation

ATTRIBUTES

� ‘HIGH - 7 
� ‘LOW - 0
� ‘RIGHT - 0
� ‘LEFT - 7
� ‘RANGE - 7 DOWNTO 0
� ‘REVERSE RANGE - 0 TO 7
� ‘LENGTH - 8

<signal_name> : IN STD_LOGIC_VECTOR(7 DOWNTO 0) 

144
Copyright © 2004 Altera Corporation

Subprograms

� Functions
� Procedures



49

Introduction to VHDL

A-MNL-IVHDL-08

145
Copyright © 2004 Altera Corporation

Subprograms

PARAMETERS

PARAMETERS

RETURN VALUE

OUT PARAMETERS

FUNCTION

PROCEDURE

ARCHITECTURE
begin

end 

146
Copyright © 2004 Altera Corporation

Functions

� Format:
Function <Function_name> (<Input_parameters>)
Return <DATA_TYPE> Is

{Any Declarations}
Begin

{Functionality}
Return <Name_of_a_declaration>

End <Function_name>;

147
Copyright © 2004 Altera Corporation

Functions

� For Functions:
– Only Allowable Mode for Parameters Is in
– Only Allowed Object Classes Are Constant or 

Signal
– If the Object Class Is Not Specified, Constant Is 

Assumed



50

Introduction to VHDL

A-MNL-IVHDL-08

148
Copyright © 2004 Altera Corporation

Procedures

� Format:
Procedure <Procedure_name> (<Mode_parameters>)

Begin
{Functionality}

End <Procedure_name>;

149
Copyright © 2004 Altera Corporation

Procedures

� For Procedures:
– Allowable Modes for Parameters Are In, Out, and 

Inout
– Allowable Object Classes for Parameters Are 

Constant, Variable and Signal
– If the Mode Is in and No Object Class Is Specified, 

Then Constant Is Assumed
– If the Mode Is Inout or Out and If No Object Class Is 

Specified, Then Variable Is Assumed

150
Copyright © 2004 Altera Corporation

Signal Assignment Inside a Process - Delay

• Delta Cycle has 2 Phases:
– Process Execution
– Signal Update

• Delta Cycle is Non-Visible Delay
(Very Small, Close to Zero)

simulation cycle1 simulation cycle2

• y Does Not Get the Newest Value of c Until a 
Simulation Cycle Later

(visible delay)(visible delay)

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a, b : IN STD_LOGIC;

y: OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c: STD_LOGIC;

BEGIN
PROCESS(a, b)

BEGIN
c <= a and b;
y <= c;

END PROCESS;
END logic;

1

a = 1, b = 1

c and y
executed

1

c updated (c=1)

a,b changes  
a = 0, b = 1

y updated (y=X)

c and y
executed

c updated (c=0)

a,b changes  
a = 0, b = 1

y updated (y=1)

c and y
executed



51

Introduction to VHDL

A-MNL-IVHDL-08

151
Copyright © 2004 Altera Corporation

2 Processes Vs.  1 Process

1

a = 1, b = 1

c and y
executed

1

c updated (c=1)

a,b changes  
a = 0, b = 1

y updated (y=X)

c and y
executed

c updated (c=0)

a,b changes  
a = 0, b = 1

y updated (y=1)

c and y
executed

PROCESS(a, b)
BEGIN
c <= a and b;
y <= c;

END PROCESS;

simulation cycle1 simulation cycle2

• y Does Not Get the Newest Value of c Until a 
Simulation Cycle Later

(visible delay)(visible delay)

a = 1
b = 1

c
executed

c
updated
(c=1)

y
executed

a,b changes  
a = 0
b = 1

c
executed

y updated
(y=1)

c
updated
(c=0)

y
executed

a,b changes  
a = 1
b = 1

c
executed

y updated
(y=0)

1 2 21
simulation cycle1 simulation cycle2

• c and y Gets Executed and Updated Within the 
Same Simulation Cycle

(visible delay) (visible delay)

process1: PROCESS(a, b)
BEGIN

c <= a and b;
END PROCESS process1;

process2: PROCESS(c)
BEGIN

y <= c;
END PROCESS process2;

152
Copyright © 2004 Altera Corporation

Variable Assignment - No Delay

1

simulation cycle1 simulation cycle2

• Delta Cycle has 2 Phases:
– Process Execution
– Signal Update

• c and y Gets Executed and Updated Within the 
Same Simulation Cycle (at the End of the Process)

• Delta Cycle is Non-Visible Delay
(Very Small, Close to Zero)

a = 1, b = 1

y
executed

c
executed

and
updated
(c=1) c executed and  

updated (c=0)

a,b changes  
a = 0, b = 1

y
executed

y updated
(y=1)

1

(visible delay)(visible delay)

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY var IS
PORT (a, b : IN STD_LOGIC;

y : OUT  STD_LOGIC);
END var;
ARCHITECTURE logic OF var IS
BEGIN
PROCESS (a, b)
VARIABLE   c  :  STD_LOGIC;
BEGIN
c := a AND b;
y <= c;

END PROCESS;
END logic;

a,b changes  
a = 1, b = 1

y
executed

y updated
(y=0)

c executed and  
updated (c=1)

153
Copyright © 2004 Altera Corporation

2 Processes Vs.  1 Process

1

a = 1, b = 1

c and y
executed

1

c updated (c=1)

a,b changes  
a = 0, b = 1

y updated (y=X)

c and y
executed

c updated (c=0)

a,b changes  
a = 0, b = 1

y updated (y=1)

c and y
executed

PROCESS(a, b)
BEGIN
c <= a and b;
y <= c;

END PROCESS;

simulation cycle1 simulation cycle2

• y Does Not Get the Newest Value of c Until a 
Simulation Cycle Later

(visible delay)(visible delay)

a = 1
b = 1

c
executed

c
updated
(c=1)

y
executed

a,b changes  
a = 0
b = 1

c
executed

y updated
(y=1)

c
updated
(c=0)

y
executed

a,b changes  
a = 1
b = 1

c
executed

y updated
(y=0)

1 2 21
simulation cycle1 simulation cycle2

• c and y Gets Executed and Updated Within the 
Same Simulation Cycle

(visible delay) (visible delay)

process1: PROCESS(a, b)
BEGIN

c <= a and b;
END PROCESS process1;

process2: PROCESS(c)
BEGIN

y <= c;
END PROCESS process2;


