

Nios 3.1 Exercise Manual

NB: Throughout these labs it is important to enter the names of any peripherals or memories
within SOPC Builder EXACTLY as shown. These are referenced by pin settings and C–Code
examples and as such are CASE SENSITIVE.

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

2

Lab 1
My First Nios System

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

3

Hardware set up requirements:

ByteBlaster cable connected to LPT and ByteBlaster connection on the board
Serial cable connected to COM and Console connection on the board
Power supply connected to the board

1. Start the Quartus II Software and open the Quartus II project via the menu option

File => Open Project… Browse to directory c:\nios_lab and select the project
nios.quartus. Click Open.

2. This series of exercises is designed for use on multiple editions of Nios

development boards. This step involves running a TCL script to set the correct
device settings and pinout for the board being used. From the Tools menu select
Tcl Scripts then select the relevant script from the project folder and click Run.
If unsure of which script to run please consult the workshop co-ordinator.

3. Start SOPC Builder via the menu option Tools => SOPC Builder… In the next

window provide the system name nios and choose VHDL as the implementation
language. Choose. The blank SOPC builder window opens. Set the Target Device
Family to Stratix or Cyclone depending upon the board being used and ensure
that the System Clock Frequency is set to 50 MHz.

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

4

4. From the left hand window pane select Nios Processor and click Add. For the
processor architecture select Nios-32. Select the preset configuration Standard
features / Average LE usage. Tick the box marked Enable advanced
configuration controls and also tick the box marked Smart Regeneration. Click
the Debug tab.

5. Tick the box marked Enable Nios OCI Debug Module and click Finish.

6. Rename the processor by right clicking on the current name and selecting
rename. Type in cpu and hit enter.

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

5

7. From the left hand window pane select On-Chip Memory (RAM or ROM) from

the Memory section and click Add. Select ROM (read only) with a Data Width
of 32 bits and Total Memory Size of 2 Kbytes. Click Next. Select GERMS
Monitor and click Finish. Rename the memory to boot_rom

8. From the left hand window pane select UART (RS-232 serial port) from the

Communication section and click Add. The default baud rate should be 115200.
Accept the defaults. The screen should appear as shown. Click Finish. Rename
the peripheral to uart1.

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

6

9. From the left hand window pane select PIO (Parallel I/O) and click Add. Enter a
width of 8 bits, with output ports only. Click Finish. Rename this peripheral
led_pio.

10. From the left hand window pane select PIO (Parllel I/O) and click Add. Enter a
width of 4 bits, with Input ports only and click Finish. Rename this peripheral
button_pio.

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

7

11. From the left hand window pane select On-Chip Memory (RAM or ROM) from

the Memory section and click Add. Select RAM (Writeable) with a Data Width
of 32 bits and Total Memory Size of 8 Kbytes. Click Finish. Rename the memory
to ram.

12. From the left hand window pane select Interval timer from the Other section and
click Add. Accept the default options by clicking Finish and rename the
peripheral to timer1.

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

8

13. To ensure that all base addresses are valid, right click on any of the base addresses
in the table and select Auto-Assign Base Addresses. This step should result in
the following view within SOPC Builder.

14. Click Next. This page is where several system settings are made. Untick the

Altera Plugs TCP/IP Networking Library. Set the Reset Location to
boot_rom. Set the Program Memory, Data Memory, and Vector Table
selections to ram. Set the offset for the Vector Table at 0x00001F00. Change
the Primary Serial Port (printf, GERMS) to uart1. Type in your name for the
System Boot ID. Click Next.

15. All checkboxes should be checked by default. Uncheck the Simulation box.

16. Now click Generate. SOPC Builder will now produce the parameterized Nios
processor system. Once completed click Exit.

17. Now start compilation in Quartus by selecting Start Compilation from the

Processing menu.

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

9

Do not wait for compilation to complete. We will continue from this point during the
next lab.

END OF LAB 1

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

10

Lab 2
Software Flow

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

11

1. We will now download the Nios design created in the previous lab to the Nios
development board. Within Quartus select the Programmer from the Tools
menu. Tick the Program/Configure checkbox and then click the Start
Programming icon .

2. Open a Nios SDK Shell via the Windows Start Menu (Start, Programs, Altera,

Nios Development Kit 3.10, Nios SDK Shell). Change directory with the
command cd c:/nios_labs/cpu_sdk/my_src.

3. Enter terminal mode with the command nr –t. Now press the Escape key on the

PC to reset GERMS within the Nios core on the development board. Nios should
respond by sending the Boot ID (your name) to the SDK Shell. Press Ctrl-C to
exit terminal mode.

4. Compile example code with the command nb simple.c.

5. Download the program with the command nr simple.srec. Each press of any of

the buttons on the board should shift the lit LED one space right. When finished
press the CPU Reset button on the board and press Ctrl-C on the PC.

6. Now compile the same code without optimisation with the command

nb –O0 simple.c. NB: O0 is the capital letter O followed by the digit zero.

7. Now start the debugger with the command nd simple.srec. The debugger will
launch, connect to the target and download the program ready for debug.

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

12

8. The following windows should be open. Registers, Memory and Local
Variables. Move and resize these windows to make viewing easier. If not, they
can be opened using the view menu.

9. Set a breakpoint on line 20. Simply place the cursor on top of 20 and click. The

cursor changes to a circle when positioned correctly. You should see a red dot
appear next to line 20. Click on the continue button . Notice that execution
stops at this line and the PC and other register values have changed to blue to
denote a change in value.

10. Click next . Notice that the buttons have been read as shown in the Local
Variables window. Change this view to hexadecimal by right-clicking on the
buttons value and selecting Format =>Hex.

11. Click next again. As the if expression is false (no buttons pressed) the statements
within the curly braces are not executed. Click continue.

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

13

12. Hold down switch SW3 on the board and click next. A new value is stored in the
variable buttons.

13. Click next. We now dive into the if curly braces since the condition is true.

14. Click continue and notice the LEDs on the board change. Click next.

15. Right-click on buttons within the local variables window and select edit. Now

change the value to 0xe and press enter. Click next. The if statement is executed
as true because we forced that condition.

This is useful for emulating external hardware events or other conditions that are
difficult to replicate.

16. Change the range shown in the memory window by editing the value shown in

the Address box. Change it to the value shown for ledpio in the local variables
window.

17. Type values in the memory window at location of ledpio between 0x00 and 0xff.

Type in new values and hit enter. Notice the LEDs change state.

Because the LED PIO is a memory mapped peripheral, by editing the correct
memory location we can write directly to the PIO and change the status of the
LEDs.

18. Close the debugger by selecting File => Exit. A new dialog box appears to ask if

this is really what you wanted, click yes.

19. Close the Programmer window within Quartus. When asked if the nios.cdf file
should be saved click No.

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

14

IF YOU HAVE TIME….

Simulate the running of the Simple.c program in ModelSim using the test suite
automatically generated by Modelsim.

20. Return to SOPC Builder and edit the ram component so that it remains writeable
but is initialised with the build of the simple.c file.

21. Edit the uart1 component so that the input character stream g0↵↵↵↵ is simulated.

This input will be interpreted by the GERMS monitor causing execution to
continue from the ram component which has been initialised with our program
during the step above. NB this assumes that the ram component appears at base
address 0x0. If this is not the case then the input character stream should be
edited accordingly.

22. On the generation page of SOPC Builder enable simulation and re-generate the

System.

23. Once generated launch ModelSim from SOPC Builder. Once started enter the
command s↵↵↵↵ to compile and load the testbench. Then enter the command w↵↵↵↵ to
display a wave window with appropriate signals.

24. Run simulation with the command run 10us. Note that UART communication is

echoed to the ModelSim console and that the simple.c program was run, indicated
by the display of the “Simple” message.

25. Try to find the point in the simulation where the Simple.c program started

execution. Hint: look for the point where the instruction address matches the base
address of the component where the simple.c program is stored.

END OF LAB 2

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

15

Lab 3
User Peripheral

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

16

1. Return to Quartus and select SOPC Builder from the tools menu.

2. Double-click on the led_pio. Cange the number of output bits to 7 and click
Finish. One of the LEDs on the board will now be driven from a PWM
peripheral that we are about to create.

3. From the left hand window pane select Interface to User Logic and click Add.

4. Select Avalon Register Slave as the Bus Interface Type. Check the box marked
Import Verilog, VHDL, EDIF or Quartus II Schematic file and click Add.

5. Browse to the directory c:\nios_labs and select the file avalon_pwm.vhd. Click

Open.

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

17

6. Click Read port-list from files. This reads in the ports of the imported design.
Now fill in the Type column as shown below. You do this by clicking in the type
area and picking the correct signal type. Click Next.

7. Select Simulate User Logic and click Next.

8. The default values for Setup, Wait and Hold Cycles should be set to 0. Click
Add to System.

9. Rename the peripheral to my_pwm.

Leave SOPC Builder Open. We will return to this stage during the next lab.

END OF LAB 3

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

18

Lab 4
Custom Instruction

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

19

1. Double click on the cpu module within SOPC Builder to open the cpu dialog box.
Select the Custom Instructions tab.

2. In the right hand window pane select the USR2 Opcode. In the left hand window

pane click Import. This will bring up a new dialog box.

3. Click Add. Select the file crc.vhd and click Open. Enter crc for the Top
module.

4. Click Read port-list from files and check that the port list looks as shown below.

Click Add to system. Change the Cycle Count to 2 and click Finish. Click
Next.

5. Change the Boot ID to your name space Custom eg My Name Custom and click
Generate.

The Workshop co-ordinator will now continue with the presentation whilst this new
Nios system is generating. At a convenient time you will be asked to compile the
design in Quartus. To compile the design select Start Compilation from the
Processing menu.

END OF LAB 4

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

20

Lab 5
Run Custom Design

Designing With Nios & SOPC Builder

 Copyright © 2003 Altera Corporation

21

1. We will now download the Nios design created in the previous lab to the Nios
development board. Within Quartus select the Programmer from the Tools
menu. Tick the Program/Configure checkbox and then click the Start
Programming icon .

2. Open a Nios SDK Shell via the Windows Start Menu (Start, Programs, Altera,

Nios Development Kit 3.10, Nios SDK Shell). Change directory with the
command cd:/nios_labs/cpu_sdk/my_src.

3. Enter terminal mode with the command nr –t. Now press the Escape key on the

PC to reset GERMS within the Nios core on the development board. Nios should
respond by sending the Boot ID (your name Custom) to the SDK Shell. Press
Ctrl-C to exit terminal mode.

4. Compile PWM example code with the command nb pwm.c.

5. Download the program with the command nr pwm.srec. Each press of the keys 1

to 4 on the PC keyboard should set a different brightness setting on LED 7 of the
Nios development board. When finished press the CPU Reset button on the
board and press Ctrl-C on the PC.

6. Compile CRC example code with the command nb crc.c.

7. Download the program with the command nr crc.srec. This program calculates

the CRC of the internal boot ROM multiple times and lights LEDs to indicate
progress. Make a note of the time taken for this calculation and the CRC result
reported. When finished press the CPU Reset button on the board and press Ctrl-
C on the PC.

8. Compile CRC custom instruction example code with the command nb crcci.c.

9. Download the program with the command nr crcci.srec. This program is similar

to the previous one but makes use of the custom instruction that was created
during the previous lab. Note that increase in performance. Compare the CRC
result with the previous program and the time reported. When finished press the
CPU Reset button on the board and press Ctrl-C on the PC.

Designing With Nios & SOPC Builder

Copyright © 2003 Altera Corporation

22

IF YOU HAVE TIME…..

Further accelerate the CRC application by adding a DMA Engine and CRC Peripheral. In this
scenario Nios will set up a DMA transfer to the dedicated CRC peripheral, wait for the transfer
to complete and then read back the result. Because we are moving the loop control function from
software to hardware a dramatic speed up in computation is expected.

10. Add a new interface to user logic as an Avalon Register Slave and import the file
C:\nios_labs\crc_peripheral.vhd. For the instantiation select simulate user logic and
select 0 for all timing options. Call the peripheral my_crc.

11. Add a DMA from the other section. Ensure that the width of the DMA register is 13 and

that all transactions are allowed within the Advanced tab. Call this peripheral
avalon_dma.

12. Connect the slaves and masters within the patch panel such that the DMA can read from

the boot_rom component and write to the my_crc component.

13. Change the System Boot ID to your name space Advanced eg My Name Advanced and
re-generate the system.

14. Once generation is completed, compile the design in Quartus, reprogram the board and

run the crcdma.c program. Check that the CRC result reported is the same as before and
note the reduction in time for the calculation.

END OF LAB 5

