Ni1os 3.1 Exercise Manual

NB: Throughout these labs it is important to enter the names of any peripherals or memories
within SOPC Builder EXACTLY as shown. These are referenced by pin settings and C—Code
examples and as such are CASE SENSITIVE.

Designing With Nios & SOPC Builder

Lab 1
My First N1os System

’ /ANO TS RYAN
Copyright © 2003 Altera Corporation ®

Hardware set up requirements:

Designing With Nios & SOPC Builder

ByteBlaster cable connected to LPT and ByteBlaster connection on the board
Serial cable connected to COM and Console connection on the board
Power supply connected to the board

1. Start the Quartus II Software and open the Quartus II project via the menu option
File => Open Project... Browse to directory c:\nios_lab and select the project
nios.quartus. Click Open.

2. This series of exercises is designed for use on multiple editions of Nios
development boards. This step involves running a TCL script to set the correct
device settings and pinout for the board being used. From the Tools menu select
Tcl Scripts then select the relevant script from the project folder and click Run.
If unsure of which script to run please consult the workshop co-ordinator.

3. Start SOPC Builder via the menu option Tools => SOPC Builder... In the next
window provide the system name nios and choose VHDL as the implementation
language. Choose. The blank SOPC builder window opens. Set the Target Device
Family to Stratix or Cyclone depending upon the board being used and ensure

that the System Clock Frequency is set to S0 MHz.

t8 Altera SOPC Builder - Nios O] x|
File Spstern Module View Help
E_'r'S i Syztem Generationl
Il Atera SOPC Builder .
d @ Interface o Liser Logic Target Device Family: IStratix vl Systemn Clock Freguency: ISD MHz
[=-Avalon Modules
. Mios Processor - Altera Usze fodule Mame I Description I Base End I IRQI

E---Bridges

: Altera PCIF2 Mios Ts
Awalon To AHE Brid
Avalon Tri-State Bric
L@ Atera Time Limited F
[=-Communication

o @ SPIC3VYire Serisl)
L @ UART (RS-232 serie
[=-EP1C20 Hios Developmer
“ @ AMD 2000550 Fla:

. Active Serial Memor|
K1 I _'l_I

Installed components

Add.. | &) Check |

& fWoye e

W flave Lo

Exit

=iPrey

(i) Problem checking for web-updates [Unable to download compaonent catalog; try again later.)

Mext =

GEfAErEE

Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

4. From the left hand window pane select Nios Processor and click Add. For the
processor architecture select Nios-32. Select the preset configuration Standard
features / Average LE usage. Tick the box marked Enable advanced
configuration controls and also tick the box marked Smart Regeneration. Click
the Debug tab.

¥ altera Mios 3.1 - nios_0

Architecture i Hardware | Software | Debug | Custom Instructions |

Processar Architecture

" Nioz-16 % hio=-32

= [16 [Le (=) = s F2-bit ALLL registers, and data bus
32-hit addressing (maximum).
Programmers Reference Manusl

Pragrarmitn

Configuration Cptions:

Preset Configurations:]Standard features § &verage LE usage_:j

[V Enable advanced configuration cortrols

Cancel | = Hrey i Mext = | Firiizh i

5. Tick the box marked Enable Nios OCI Debug Module and click Finish.

p Altera Nios 3.0 - nios_0 ! X

Architecturel Hardwarel Software Debug | Custom Instructions

On-Chip Instrumentstion (QC1 Module from First Silicon Solutions

I Enahle Mios DC| debug madule:
— Advahced Debug Festures
These features reguire additionsl softvware andior hardware from First Silicon Solutions
[~ Hardweare breskpoirts (required when using trace festures)
- Real-Time Trace -

[~ On-chip trace memory

[~ orii-chip trace capture (154-MiozT)

Cancel | = Prew | Mext = | Finizh |

6. Rename the processor by right clicking on the current name and selecting
rename. Type in cpu and hit enter.

! /ANO TS RYAN
Copyright © 2003 Altera Corporation ®

Designing With Nios & SOPC Builder

7. From the left hand window pane select On-Chip Memory (RAM or ROM) from
the Memory section and click Add. Select ROM (read only) with a Data Width
of 32 bits and Total Memory Size of 2 Kbytes. Click Next. Select GERMS
Monitor and click Finish. Rename the memory to boot_rom

0n-chip Memory - boot_rom

antents 3

Memary Type
' RAM (writeakle) & ROM (read-only)

I Dual-Port Access

Block Type: iAutomatic v;
Size
Drata wyicth: ;32 V; bits

Total Mermory Size:] 2 ;I-(bytes v;

|[D Automatically choosing Mak blocks

Cancel i = Prey I hlext = I Finizh !

8. From the left hand window pane select UART (RS-232 serial port) from the
Communication section and click Add. The default baud rate should be 115200.
Accept the defaults. The screen should appear as shown. Click Finish. Rename
the peripheral to uartl.

x|
Sirnulation |
- Baud Rate
|Baud Rate thps): 115200 o

Input Clock Frequency (MHz): S0
| Baud error: =0.01%

-l- Baud rate can be changed by software
(divizor regizter is writeshle)

I parity data bits - stop bits —
INone YI IB vl |1 YI
Flowy Cortral —

[Include CTSIRTS pins and cortrol register bits

Strearming Data (DA control

™ Include end-of-packet register

Cancel = Brey Mext = Finish

/ANO TS RYAN 5
® Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

9. From the left hand window pane select PIO (Parallel I/0) and click Add. Enter a
width of 8 bits, with output ports only. Click Finish. Rename this peripheral

led_pio.

¥ avalon PIO - pio_0 i x|

- Wickth -

[6 " bits

PIC wyidth must be betvween 1 and 32 hits

- Direction
i Eiclirectional (tri-state) parts
™ Input parts only

" Bath input and output parts

& Qutput parts only

Carcel = HErey [Hext = Finish

10. From the left hand window pane select P10 (Parllel I/O) and click Add. Enter a
width of 4 bits, with Input ports only and click Finish. Rename this peripheral

button_pio.

1M Avalon PIO - pio_O I x|

- Wictth -

[+ bits

PIO wwicith must be hetween 1 ahd 32 bits

- Direction
- Bidirectional (tri-state) ports
& Input ports only

" Both input and output parts

" Cutput ports only

Cancel = Hrew | et = Firizh |

6
Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

11. From the left hand window pane select On-Chip Memory (RAM or ROM) from
the Memory section and click Add. Select RAM (Writeable) with a Data Width

of 32 bits and Total Memory Size of 8 Kbytes. Click Finish. Rename the memory
to ram.

1™ on-chip Memory - ram

X
| Contentsl
— Memory Type
o RamM (writeable) " ROM (read-only)
[~ Dual-Port &ccess
Block Type: IAutomatic VI
- Size
Crata Wyickth: |32 vl hit=
Total Memory Size: I g IKb\,-'tes VI
’@ aukomatically choosing M4k blocks
Cancel | = Erey | Mext = | Finizh |

12. From the left hand window pane select Interval timer from the Other section and

click Add. Accept the default options by clicking Finish and rename the
peripheral to timerl.

¥ pvalon Timer - timer_0

x|

 Titnzout Period

Initial Period: I 1 Imsec vl

Input Clock Frequency: 50 MHz
— Hardweare Options

Preset Configurations: |Fu||-featured (w1 .O-compatible) LI
- Registers

[v wiiteable period
[w Readable snapshot

[StartiStop cortral bits

— Output Signals

[Timeout pulse (1 clack wide)

[~ System reset on timeout (Watchdog)

Cancel = Brev, [HEEE= Finish

Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

13. To ensure that all base addresses are valid, right click on any of the base addresses
in the table and select Auto-Assign Base Addresses. This step should result in
the following view within SOPC Builder.

Use | Module Marme Description Base End El
3 cpu Mios Processor - Alkera Corporation 0x00002E00 EleIDEID28F
3 boot_rom On-Chip Memory (RAM or ROM) 0x00002000| Ox000027FF
v uart! UART (R3-232 serial port) 0x00002900 | 0x0000251F | 16
v led_pio FIO (Parallel HO) 0x00002940 | 0x0000294F
v button_pio FIO (Parallel 1O) 0x00002950 | 0x0000295F
3 ram On-Chip Memory (RAM or ROM) 0x00000000 | Ox00001FFE
"] timer1 Interwval tirner 0x00002920| 0x0000233F | 17

14. Click Next. This page is where several system settings are made. Untick the
Altera Plugs TCP/IP Networking Library. Set the Reset Location to
boot_rom. Set the Program Memory, Data Memory, and Vector Table
selections to ram. Set the offset for the Vector Table at 0x00001F00. Change
the Primary Serial Port (printf, GERMS) to uartl. Type in your name for the
System Boot ID. Click Next.

~ Mios Systetn Seftings

Function Mol Offset | Address |
Feset Location boot_rarm O=00000000 [Cx00002000
“ectar Tahle (256 by CEI De00001 FOO | Q00004 Foo
Program Mermary rarn
Diata Metnaty rarm
Prirnary Serial Port (printf, GERMS] uartl Q00002900
ALxiliary Serial Port Lart1 000002300
System Boot ICr IM‘f Matne (25 chars max)

~ Software Components

Uze Marne Description

15. All checkboxes should be checked by default. Uncheck the Simulation box.

1M sltera SOPC Builder - nios

Filz System Module ‘iew Help

Syskem Cnntentsl Mios More "cpu” Settings 3stem Generation |

Options
[W SDH. Generate header files, library files, and memary contents for CPUCE) and petipherals in your system,

[v HOL. Generate bus and system logic in %HOL .

[Sitnulation. Create ModelSimite) project files | Furm Madelzim |

16. Now click Generate. SOPC Builder will now produce the parameterized Nios
processor system. Once completed click Exit.

17. Now start compilation in Quartus by selecting Start Compilation from the

F 1 OCGSSiIlg menu.
8 Mm ®
I

Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

Do not wait for compilation to complete. We will continue from this point during the
next lab.

END OF LAB 1

/ANO TS RYAN :
® Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

[Lab 2
Software Flow

10
Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

1. We will now download the Nios design created in the previous lab to the Nios
development board. Within Quartus select the Programmer from the Tools
menu. Tick the Program/Configure checkbox and then click the Start

Programming icon W

2. Open a Nios SDK Shell via the Windows Start Menu (Start, Programs, Altera,
Nios Development Kit 3.10, Nios SDK Shell). Change directory with the
command cd c:/nios_labs/cpu_sdk/my_srec.

3. Enter terminal mode with the command nr —t. Now press the Escape key on the
PC to reset GERMS within the Nios core on the development board. Nios should
respond by sending the Boot ID (your name) to the SDK Shell. Press Ctrl-C to
exit terminal mode.

4. Compile example code with the command nb simple.c.

5. Download the program with the command nr simple.srec. Each press of any of
the buttons on the board should shift the lit LED one space right. When finished
press the CPU Reset button on the board and press Ctrl-C on the PC.

6. Now compile the same code without optimisation with the command
nb -00 simple.c. NB: OO0 is the capital letter O followed by the digit zero.

7. Now start the debugger with the command nd simple.srec. The debugger will
launch, connect to the target and download the program ready for debug.

@ simple_c - Source Window _ O] x|
File Bun Miew Contiol Preferences Help
06N DG BASOM-TE [e 7 o o al
1 #include “excalibur.h™ /7 for debug support, memory addresses and peripheral structure =l
2
3 #define MONE_PRESSED BxF // Value read from button PIO when no buttons pressed
4 fdefine DEBOUNCE 38 // Time in Milliseconds to wait for switch debounce
5
6 int main{void)
|] ¥{
=] int buttons; // Use to hold button pressed value
9 int led = 8x81; /7 Use to write to led
18
- N np_pio xbuttonpio = na_butten_pio; // create variable buttonpio of type np_pi
- 12 np_pio *ledpio = na_led_pio;
13
= 14 printf{’Simplein™}; /7 print a message to show that program is running
15
- 16 ledpio->np_piodata = led; // write initial value to pio
17
e 18 while (1)
19 {
- 28 buttons = buttonpio->np_piodata; // read buttons via pio
21
b 22 if (buttons *= NOME_PRESSED) // if button pressed
23 {
= 24 if (led >= 8x88) //F if pattern is 00068681 on board {(leds in r
E 25 led = Bx01; // reset pattern
26 else
= 27 led = led << 1; //f shift right on board (led® is far 1
28
- 29 ledpio->np_piodata = led; // write new value to pio
an

/ANO TS RYAN !
® Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

8. The following windows should be open. Registers, Memory and Local
Variables. Move and resize these windows to make viewing easier. If not, they
can be opened using the view menu.

9. Set a breakpoint on line 20. Simply place the cursor on top of 20 and click. The
cursor changes to a circle when positioned correctly. You should see a red dot

appear next to line 20. Click on the continue button). Notice that execution
stops at this line and the PC and other register values have changed to blue to
denote a change in value.

@Hegislms _ O]]
Benister

qa gxB8(18 8x1928|pc Bx32|_
g1 8z 08|11 8x1|ctl8 ﬂxFedﬂ|
g2 Bxc3c|l2 8x1928|ctll l]xl]|
g3 8x8[13 0x1938|ct12 0 8|
g4 8x0|14 8x1928

q5 Bx846(15 8x3d

g6 8=3|16 8= 8|

q7 Bx3e2|17 0xa

L]t gxajin Gx184

o1 8x0/i1 8x1080|

02 ax0[i2 0 6|

03 6x0[i3 6x 0|

o4 8x0/ik 8x 0

05 @x8|i5 Bx829

sp BxeSc|fp 8xeb8

o7 @x2e|i¥ 8x1cé

1]

By

10. Click next IH{_}:Ir Notice that the buttons have been read as shown in the Local
Variables window. Change this view to hexadecimal by right-clicking on the
buttons value and selecting Format =>Hex.

(€' Local Variables _ O]

" ariable

Hame Ualue
buttons Bxf
led 1

Ebuttonpio 8x1938

Eledpio 8x1928

<]

11. Click next again. As the if expression is false (no buttons pressed) the statements
within the curly braces are not executed. Click continue.

Copyright © 2003 Altera Corporation

12

/AVOTS RYAN,

Designing With Nios & SOPC Builder

12. Hold down switch SW3 on the board and click next. A new value is stored in the
variable buttons.

13. Click next. We now dive into the if curly braces since the condition is true.
14. Click continue and notice the LEDs on the board change. Click next.

15. Right-click on buttons within the local variables window and select edit. Now
change the value to 0xe and press enter. Click next. The if statement is executed
as true because we forced that condition.

This is useful for emulating external hardware events or other conditions that are
difficult to replicate.

16. Change the range shown in the memory window by editing the value shown in
the Address box. Change it to the value shown for ledpio in the local variables
window.

17. Type values in the memory window at location of ledpio between 0x00 and Oxff.
Type in new values and hit enter. Notice the LEDs change state.

@ Memory ==
Addieszes

Addhess [041520 4
8

CEALPLY BxFEFFFFFF | OxFEFEFFFF | OxFFFFFFFF | BXFFFFFFFF |
(S LET] 0x0000066F | 0x06000000 | 0x80080080 | 0x00800800 |
SERLINY BXFFFFFFEF | BRFFFFFFFF | DRFFFFFFFEF | BXFFFFFFFF | v e e nnnncne.
SEAUCSY BXFFFFFFEF | BXFEFFFFFF | OXFFFFFFFF | BXFFFFFFFF | oo e e oo, .
CRLTAN BRFEFFFFFF | DRFFFFFEFE | ORFFEFFFEF | BXFFFFFFFF | oo eoneanonn.
LA BXFEFFFFEF | DRFEFFFEFE | OxFFEFFFEF | BXFEFFFFFF |_...
SSLTNY OxFRFFEFFF | OxFFFFFFFF | BXFFFFFEFF | OXFEFFFFFF | oo innnnns
CPEUDTY OXFEFEFEFF | ORFFEFEFEF | ORFFEFFEFE | BRFFFFFFFF | ouooncnnnnona..
BxFEFFFFFF | OxFFFFEFFE | BxFFFFFFFF | BxFEFFFFFF |_..

Because the LED PIO is a memory mapped peripheral, by editing the correct
memory location we can write directly to the PIO and change the status of the
LED:s.

18. Close the debugger by selecting File => Exit. A new dialog box appears to ask if
this is really what you wanted, click yes.

19. Close the Programmer window within Quartus. When asked if the nios.cdf file
should be saved click No.

/ANO TS RYAN)
® Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

IF YOU HAVE TIME....

Simulate the running of the Simple.c program in ModelSim using the test suite
automatically generated by Modelsim.

20. Return to SOPC Builder and edit the ram component so that it remains writeable
but is initialised with the build of the simple.c file.

21. Edit the uvart] component so that the input character stream g0 is simulated.
This input will be interpreted by the GERMS monitor causing execution to
continue from the ram component which has been initialised with our program
during the step above. NB this assumes that the ram component appears at base
address 0x0. If this is not the case then the input character stream should be
edited accordingly.

22. On the generation page of SOPC Builder enable simulation and re-generate the
System.

23. Once generated launch ModelSim from SOPC Builder. Once started enter the
command s to compile and load the testbench. Then enter the command wd to
display a wave window with appropriate signals.

24. Run simulation with the command run 10us. Note that UART communication is
echoed to the ModelSim console and that the simple.c program was run, indicated
by the display of the “Simple” message.

25. Try to find the point in the simulation where the Simple.c program started

execution. Hint: look for the point where the instruction address matches the base
address of the component where the simple.c program is stored.

END OF LAB 2

Copyright © 2003 Altera Corporation ®

Designing With Nios & SOPC Builder

Lab 3
User Peripheral

/ANO TS RYAN)
® Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

1. Return to Quartus and select SOPC Builder from the tools menu.

2. Double-click on the led_pio. Cange the number of output bits to 7 and click
Finish. One of the LEDs on the board will now be driven from a PWM
peripheral that we are about to create.

[F b
PIO wyictth must be between 1 and 32 hits
Direlﬂion =
(o Bidirectional (tri-state) ports
 Input parts only
" Bath input and output ports

& Output ports only

Cancel] sEbBhey I [HExt =

Finizh j

3. From the left hand window pane select Interface to User Logic and click Add.

4. Select Avalon Register Slave as the Bus Interface Type. Check the box marked
Import Verilog, VHDL, EDIF or Quartus II Schematic file and click Add.

5. Browse to the directory c:\nios_labs and select the file avalon_pwm.vhd. Click
Open.

Copyright © 2003 Altera Corporation ®

Designing With Nios & SOPC Builder

6. Click Read port-list from files. This reads in the ports of the imported design.
Now fill in the Type column as shown below. You do this by clicking in the type
area and picking the correct signal type. Click Next.

Part Mame I Wit I Direction I Sharedl Type I
clk 1 input clk
writedata 32 |input writedata
byteenable_n 4 |input byteenable_n
CS 1 |input chipselect
write_n 1 |input write_n
addr 1 |input address
reset_n 1 input reset_n
readdata 32 output readdata
pwm_out 1 output export

7. Select Simulate User Logic and click Next.

8. The default values for Setup, Wait and Hold Cycles should be set to 0. Click
Add to System.

9. Rename the peripheral to my_pwm.

Leave SOPC Builder Open. We will return to this stage during the next lab.

END OF LAB 3

/ANO TS RYAN :
® Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

[Lab 4
Custom Instruction

Copyright © 2003 Altera Corporation ®

Designing With Nios & SOPC Builder

1. Double click on the cpu module within SOPC Builder to open the cpu dialog box.
Select the Custom Instructions tab.

2. In the right hand window pane select the USR2 Opcode. In the left hand window

pane click Import. This will bring up a new dialog box.

3. Click Add. Select the file cre.vhd and click Open. Enter crc for the Top

module.

4. Click Read port-list from files and check that the port list looks as shown below.
Click Add to system. Change the Cycle Count to 2 and click Finish. Click

Next.
Potrt Matme I Wdthl Direction I Type I

clk 1 input clk

Ireset 1 input reset

start 1 input start

clk_en 1 |input clk_en

dataa 32 input datas

datab 32 |input datab

{result 32 |uutput result

5. Change the Boot ID to your name space Custom eg My Name Custom and click

Generate.

The Workshop co-ordinator will now continue with the presentation whilst this new
Nios system is generating. At a convenient time you will be asked to compile the
design in Quartus. To compile the design select Start Compilation from the

Processing menu.

END OF LAB 4

/AVOTS RYAN, ’

Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

Lab 5
Run Custom Design

Copyright © 2003 Altera Corporation ®

Designing With Nios & SOPC Builder

. We will now download the Nios design created in the previous lab to the Nios
development board. Within Quartus select the Programmer from the Tools
menu. Tick the Program/Configure checkbox and then click the Start

Programming icon W

. Open a Nios SDK Shell via the Windows Start Menu (Start, Programs, Altera,
Nios Development Kit 3.10, Nios SDK Shell). Change directory with the
command cd:/nios_labs/cpu_sdk/my_src.

. Enter terminal mode with the command nr —t. Now press the Escape key on the
PC to reset GERMS within the Nios core on the development board. Nios should
respond by sending the Boot ID (your name Custom) to the SDK Shell. Press
Ctrl-C to exit terminal mode.

. Compile PWM example code with the command nb pwm.c.

. Download the program with the command nr pwm.srec. Each press of the keys 1
to 4 on the PC keyboard should set a different brightness setting on LED 7 of the
Nios development board. When finished press the CPU Reset button on the
board and press Ctrl-C on the PC.

. Compile CRC example code with the command nb cre.c.

. Download the program with the command nr crec.srec. This program calculates
the CRC of the internal boot ROM multiple times and lights LEDs to indicate
progress. Make a note of the time taken for this calculation and the CRC result
reported. When finished press the CPU Reset button on the board and press Ctrl-
C on the PC.

. Compile CRC custom instruction example code with the command nb crcci.c.

. Download the program with the command nr crcci.srec. This program is similar
to the previous one but makes use of the custom instruction that was created
during the previous lab. Note that increase in performance. Compare the CRC
result with the previous program and the time reported. When finished press the
CPU Reset button on the board and press Ctrl-C on the PC.

/ANO TS RYAN ;
® Copyright © 2003 Altera Corporation

Designing With Nios & SOPC Builder

IF YOU HAVE TIME.....

Further accelerate the CRC application by adding a DMA Engine and CRC Peripheral. In this
scenario Nios will set up a DMA transfer to the dedicated CRC peripheral, wait for the transfer
to complete and then read back the result. Because we are moving the loop control function from
software to hardware a dramatic speed up in computation is expected.

10. Add a new interface to user logic as an Avalon Register Slave and import the file
C:\nios_labs\crc_peripheral.vhd. For the instantiation select simulate user logic and
select 0 for all timing options. Call the peripheral my_cre.

11. Add a DMA from the other section. Ensure that the width of the DMA register is 13 and
that all transactions are allowed within the Advanced tab. Call this peripheral

avalon_dma.

12. Connect the slaves and masters within the patch panel such that the DMA can read from
the boot_rom component and write to the my_cre component.

13. Change the System Boot ID to your name space Advanced eg My Name Advanced and
re-generate the system.

14. Once generation is completed, compile the design in Quartus, reprogram the board and
run the credma.c program. Check that the CRC result reported is the same as before and
note the reduction in time for the calculation.

END OF LAB 5

Copyright © 2003 Altera Corporation ®

