

“Finite-State Machine in VHDL”

Prof. Eduardo Augusto Bezerra

Eduardo.Bezerra@ufsc.br

Florianópolis, August 2020.

Universidade Federal de Santa Catarina
Centro Tecnológico – CTC

Departamento de Engenharia Elétrica
http://gse.ufsc.br

Eduardo Bezerra – UFSC 2020 2/32

Learning	goals	

1.  To review the Finite-State Machine (FSM) concept.

2.  To review the concept of a sequential circuit controlling
(driving) a combinational circuit.

3.  To understand how to describe an FSM in VHDL.

4.  To review the design of counters in VHDL.

5.  Case study: design and implementation of a counter in
VHDL, using an FSM.

Eduardo Bezerra – UFSC 2020 3/32

Overview

Eduardo Bezerra – UFSC 2020 4/32

•  Computational	systems	are	usually	composed	of	a	
control	module	and	a	“operations	execution”	
module	(data	path).	

Finite-State	Machine	(FSM)	

Execution:	
- 	Receive	$	
- 	Give	change	
- 	Delivery	the	product	

Controller	

Vending machine

Execution:	
- 	Search	instruction	
- 	Decode	
- 	Execute	
- 	Memory	access	
- 	Write	results	

Controller	

Computer

Execution:	
- 	Alarm	
- 	Breaks	
- 	ABS	

Controller	

Car
(embedded systems)

Eduardo Bezerra – UFSC 2020 5/32

•  The	“controller”	is	responsible	for	coordinating	the	sequence	
of	activities	to	be	performed	in	a	given	process	(or	system)	

•  In	digital	systems,	“sequential	circuits”	are	used	to	generate	
control	signals	

•  A	sequential	circuit	goes	through	a	series	of	states	and,	at	
each	state	(at	each	moment),	it	can	provide	a	certain	output	

•  Outputs	are	used	to	control	the	execution	of	activities	in	a	
process	

•  The	sequential	logic	used	in	the	implementation	of	an	FSM	
has	a	“finite”	number	of	states.	

Finite-State	Machine	(FSM)	

Eduardo Bezerra – UFSC 2020 6/32

Behavior	model	composed	of:	
•  States	
•  Transitions	
•  Actions	

	
States	
	

Stores	information	about	the	past,	taking	in	account	the	changes	in	the	inputs	
from	the	beginning	until	the	present	
	

Transition	
	

Indicates	a	state	transition,	and	it	is	described	by	a	condition	that	enables	the	
state	modification	
	

Action	
	

Description	of	the	activity	to	be	performed	at	a	given	time

Finite-State	Machine	(FSM)	

Eduardo Bezerra – UFSC 2020 7/32

FSM	structure	

Eduardo Bezerra – UFSC 2020 8/32

FSM	structure	

 Primary inputs Primary outputs

Next state Present state

Clock

State register

Combinational circuit
Output functions and
Next state functions

Reset

•  Two modules:
•  “Present state” storage; and
•  “Outputs” and “Next state” definition

Eduardo Bezerra – UFSC 2020 9/32

•  “Present state” register
•  Can be a flip-flops based register

•  “Output” and “Next state” definition
•  Combinacional circuit; or
•  A truth table of “Output” and “Next state” logics

stored in a memory (ROM, Flash, RAM, ...)

FSM	structure	

Eduardo Bezerra – UFSC 2020 10/32

FSM	synthesis	

Eduardo Bezerra – UFSC 2020 11/32

A	2	processes	FSM	description	in	VHDL	
entity MOORE is port(X, clock, reset : in std_logic; Z: out std_logic); end;

architecture A of MOORE is

 type STATES is (S0, S1, S2, S3);
 signal CS, NS : STATES;

begin
 process (clock, reset)
 begin
 if reset= '1' then

 CS <= S0;
 elsif clock'event and clock='1' then
 CS <= NS ;
 end if;

 end process;

 process(CS, X)
 begin
 case CS is
 when S0 => Z <= '0';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S1 => Z <= '1';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S2 => Z <= '1';
 if X='0' then NS <=S2; else NS <= S3; end if;
 when S3 => Z <= '0';
 if X='0' then NS <=S3; else NS <= S1; end if;
 end case;
 end process;

end A;

Describing an FSM in VHDL
Typical
VHDL

Eduardo Bezerra – UFSC 2020 12/32

ENUM TYPE
CS (current state) and NS (next state) signals

A	2	processes	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

entity MOORE is port(X, clock, reset : in std_logic; Z: out std_logic); end;

architecture A of MOORE is

 type STATES is (S0, S1, S2, S3);
 signal CS, NS : STATES;

begin
 process (clock, reset)
 begin
 if reset= '1' then

 CS <= S0;
 elsif clock'event and clock='1' then
 CS <= NS ;
 end if;

 end process;

 process(CS, X)
 begin
 case CS is
 when S0 => Z <= '0';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S1 => Z <= '1';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S2 => Z <= '1';
 if X='0' then NS <=S2; else NS <= S3; end if;
 when S3 => Z <= '0';
 if X='0' then NS <=S3; else NS <= S1; end if;
 end case;
 end process;

end A;

Eduardo Bezerra – UFSC 2020 13/32

Register to hold current state (CS),
which is a function of the next state (NS)

A	2	processes	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

entity MOORE is port(X, clock, reset : in std_logic; Z: out std_logic); end;

architecture A of MOORE is

 type STATES is (S0, S1, S2, S3);
 signal CS, NS : STATES;

begin
 process (clock, reset)
 begin
 if reset= '1' then

 CS <= S0;
 elsif clock'event and clock='1' then
 CS <= NS ;
 end if;

 end process;

 process(CS, X)
 begin
 case CS is
 when S0 => Z <= '0';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S1 => Z <= '1';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S2 => Z <= '1';
 if X='0' then NS <=S2; else NS <= S3; end if;
 when S3 => Z <= '0';
 if X='0' then NS <=S3; else NS <= S1; end if;
 end case;
 end process;

end A;

Eduardo Bezerra – UFSC 2020 14/32

NS and Z output generation according
To CS and X input
(see the sensitivity list)

A	2	processes	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

entity MOORE is port(X, clock, reset : in std_logic; Z: out std_logic); end;

architecture A of MOORE is

 type STATES is (S0, S1, S2, S3);
 signal CS, NS : STATES;

begin
 process (clock, reset)
 begin
 if reset= '1' then

 CS <= S0;
 elsif clock'event and clock='1' then
 CS <= NS ;
 end if;

 end process;

 process(CS, X)
 begin
 case CS is
 when S0 => Z <= '0';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S1 => Z <= '1';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S2 => Z <= '1';
 if X='0' then NS <=S2; else NS <= S3; end if;
 when S3 => Z <= '0';
 if X='0' then NS <=S3; else NS <= S1; end if;
 end case;
 end process;

end A;

Eduardo Bezerra – UFSC 2020 15/32

 process(CS, X)
 begin
 case CS is
 when S0 => Z <= '0';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S1 => Z <= '1';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S2 => Z <= '1';
 if X='0' then NS <=S2; else NS <= S3; end if;
 when S3 => Z <= '0';
 if X='0' then NS <=S3; else NS <= S1; end if;
 end case;
 end process;

Draw the FSM according to the transitions in the combinational process:

This is a Moore machine. The output (Z) is determined only by its current state (S0, ...).
In a Mealy machine, the output values are determined both by its current

state and by the values of its inputs.

A	2	processes	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

Eduardo Bezerra – UFSC 2020 16/32

 process(CS, X)
 begin
 case CS is
 when S0 => Z <= '0';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S1 => Z <= '1';
 if X='0' then NS <=S0; else NS <= S2; end if;
 when S2 => Z <= '1';
 if X='0' then NS <=S2; else NS <= S3; end if;
 when S3 => Z <= '0';
 if X='0' then NS <=S3; else NS <= S1; end if;
 end case;
 end process;

Describing an FSM in VHDL
Typical
VHDL

CS

NS

Eduardo Bezerra – UFSC 2020 17/32

•  CS:	same	behaviour	
•  The	Z	output	will	have	a	1	clock	cycle	delay	

entity MOORE is port(X, clock, reset : in std_logic; Z: out std_logic); end;

architecture B of MOORE is

 type STATES is (S0, S1, S2, S3);
 signal CS: STATES;

begin
 process(clock, reset)
 begin
 if reset= '1' then

 CS <= S0;
 elsif clock'event and clock='1' then
 case CS is

 when S0 => Z <= '0';
 if X='0' then CS <=S0; else CS <= S2; end if;
 when S1 => Z <= '1';
 if X='0' then CS <=S0; else CS <= S2; end if;
 when S2 => Z <= '1';
 if X='0' then CS <=S2; else CS <= S3; end if;
 when S3 => Z <= '0';
 if X='0' then CS <=S3; else CS <= S1; end if;
 end case;

 end if;
 end process;

end B;

A	1	process	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

Eduardo Bezerra – UFSC 2020 18/32

 process(clock, reset)
 begin
 if reset= '1' then

 CS <= S0;
 elsif clock'event and clock='1' then
 case CS is

 when S0 => Z <= '0';
 if X='0' then
 CS <=S0;
 else
 CS <= S2;
 end if;
 when S1 => Z <= '1';
 if X='0' then
 …
 end case;

 end if;
 end process;

The NS signal
(see 2 processes)
is not used.

A	1	process	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

Eduardo Bezerra – UFSC 2020 19/32

CS

CS

• P1 determines the current state (CS), signaling
this information to P2 and P3.

• P2 determines the next state, updating the NS
signal, with no transition performed (this will be
done by P1).

• P3 determines the new signal values (updating
the current state).

P1	

P2	

P3	

NS

P1	

P2	

P3	

A	3	processes	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

Eduardo Bezerra – UFSC 2020 20/32

P1 – Process sensitive to clock transitions. It performs the FSM state transitions,
making the current state (CS) receive the next state (NS). The transition is sensitive to
the clock falling edge.

P1: process(clk)
begin
 if clk'event and clk = '0' then
 if rst = '0' then
 CS <= S0;
 else
 CS <= NS;
 end if;
 end if;
end process;

A	3	processes	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

Eduardo Bezerra – UFSC 2020 21/32

P2 –Perform the states changes (define the next state). Sensitive to changes in the signals
defined in the sensitivity list. It controls the states by defining the flow, that is, it defines what will
be the value of the NS signal to be used by the P1 process responsible for performing the state
transitions. The construction "case CS is" selects the current state and, according to the FSM
signals, a next state is defined in the NS signal.

process(CS, X)
begin
 case CS is
 when S0 =>
 NS <= S1;
 when S1 =>
 if X = '1' then
 NS <= S2;
 else
 NS <= S1;
 end if;
 when S2 =>
 NS <= S1;
 when others =>
 end case;
end process;

A	3	processes	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

Eduardo Bezerra – UFSC 2020 22/32

P3 –Performs signal assignments in each state. Signals are changed at the rising
edge, and the states at the falling edge. All signals are assigned, including output
signals and internal process signals.

process(clk)
begin
 if clk'event and clk = '1' then
 case CS is
 when S0 =>
 Z <= '0'
 when S1 =>
 Z <= '0'
 when S2 =>
 Z <= '1';
 when others =>
 end case;
 end if;
end process;

A	3	processes	FSM	description	in	VHDL	

Describing an FSM in VHDL
Typical
VHDL

Eduardo Bezerra – UFSC 2020 23/32

library ieee;
use ieee.std_logic_1164.all;
entity FSM is
port (
 LEDR: out std_logic_vector(7 downto 0);
 KEY: in std_logic_vector(3 downto 0);
 CLOCK_50: in std_logic
);
end FSM;
architecture FSM_beh of FSM is
 type states is (S0, S1, S2, S3);
 signal CS, NS: states;
 signal clock: std_logic;
 signal reset: std_logic;
begin
 clock <= CLOCK_50;
 reset <= KEY(3);

process (CS, KEY(0), KEY(1))
begin
 case CS is
 when S0 => if KEY(0) = '0' then
 NS <= S3; else NS <= S0;
 end if;
 when S1 =>
 LEDR <= "01010101";
 NS <= S0;
 when S2 =>
 case KEY(1) is
 when '0' => LEDR <= "10101010";
 when '1' => LEDR <= "00000000";
 when others => LEDR <= "11111111";
 end case;
 NS <= S1;
 when S3 =>
 NS <= S2;
 end case;
end process;
end FSM_beh;

process (clock, reset)
 begin
 if reset = '0' then
 CS <= S0;
 elsif clock'event and
 clock = '1' then
 CS <= NS;
 end if;
 end process;

Using DE2 available
signals (pins) for
Clock and Reset

Eduardo Bezerra – UFSC 2020 24/32

Exercise

Eduardo Bezerra – UFSC 2020 25/32

Tarefa	

•  Describe an FSM in VHDL to generate the ‘A’ to ‘Z’ ASCII characters,
shown the values (in binary) in the green LEDs (LEDG).

•  Define an FSM with asynchronous reset (use KEY(0) for the reset) to
initialize a counter with the first value of the sequence (‘A’ = 41H).

•  At each 27 MHz clock pulse (rising edge), the counter must be
incremented, generating the next ASCII table character.

•  The FSM must have a reduced number of states, just enough to
increment the counter, and check if it reached the end (‘Z’ = 5AH).

•  After reaching the last ASCII table char (‘Z’ = 5AH), the FSM must go
back to the start of the sequence, generating again the ‘A’ value.

Eduardo Bezerra – UFSC 2020 26/32

top.vhd

Block	diagram	of	the	circuit	to	be	designed	
(FSM	used	as	a	counter)	

LEDG(7 downto 0)

KEY(0)

CLOCK_27

8

Enable the
27MHz clock

TD_RESET

Counting

FSM
FSM used as a counter.

Generates the sequence from
‘A’ (41H) to ‘Z’ (5AH)

clock

reset

Eduardo Bezerra – UFSC 2020 27/32

LEDG(7 downto 0)

8

top.vhd

4

F(3..0) Decod.
7-seg

4

F(7..4) Decod.
7-seg

F

1.  Use the Decod7seg component
from previous exercises;

2. Create an F signal in the top;

3.  Use 2 instances of the 7-seg
decoder (port map);

4.  Use the new internal F signal to
connect the FSM output
(Counting) to the 7-seg decoders
inputs (using port map);

5.  To connect the F signal to LEDG
there is no need to employ port
map:

 LEDG <= F.

TD_RESET KEY(0)

CLOCK_27 clock

reset
Enable the
27MHz clock

Counting

FSM
FSM used as a counter.

Generates the sequence from
‘A’ (41H) to ‘Z’ (5AH)

Block	diagram	of	the	circuit	to	be	designed	
(Using	the	7-seg	displays	as	output)	

Eduardo Bezerra – UFSC 2020 28/32

Tip:	Top.vhd	with	the	FSM	component	and	27MHz	clock	
(with	no	7-seg	displays)	

entity Top is
 port (LEDG: out std_logic_vector(7 downto 0);

 KEY: in std_logic_vector(3 downto 0);
 TD_RESET: out std_logic;
 CLOCK_27: in std_logic
);

end Top;
architecture top_beh of Top is
 component CountASCII -- This is the FSM component
 port (
 valorASCII: out std_logic_vector(7 downto 0);
 clock: in std_logic;
 reset: in std_logic
);
begin
 TD_RESET <= '1';

 L0: CountASCII port map (LEDG, CLOCK_27, KEY(0));

end top_beh;

Place TD_RESET in '1' to
”turn on" the CLOCK_27
signal in the DE2 board.

Eduardo Bezerra – UFSC 2020 29/32

Tip:	CountASCII.vhd	–	piece	of	code	for	the	delay	generation	(for	27	MHz	clock	input)	

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all; -- To use the ‘+’ operator.

process(clock, …) -- When using the 27MHz clock, this process will be
 begin -- executed 27 million times per second.

 … -- ASCII counter states go here (eg. Start, Inc, End).
 when D1 => -- State to initialise the delay
 delay <= (others => '0');

 CS <= D2;
 when D2 => -- State to generate the delay for showing data on LEDG
 delay <= delay + 1; -- “delay” has been reset on D1.

 CS <= D3;
 when D3 => -- State to test if it reached the max. value.
 if delay >= x"800000" then -- 8,388,608 / 27,000,000 = 0.3 * 3 = 1 s.
 CS <= S1; -- If it’s reached the max. value, then exit the delay loop
 else -- and go back to the counting ASCII FSM.
 CS <= D4; -- Stay in the loop counting the delay.
 end if;
 when D4 => -- State to continue the delay counting.
 CS <= D2; -- This loop will generate the delay to allow

 -- showing the data on LEDG.

Eduardo Bezerra – UFSC 2020 30/32

Quartus	II	simulation	

Total time to perform a 20 seconds
simulation in an i7 quad core
(hyper threading, “8 cores”),
2.93GHz and 8 GB RAM was

19 hours and 28 minutes.

Eduardo Bezerra – UFSC 2020 31/32

Reset

41H = ‘A’

TD_RESET = ‘1’

FSM states

The delay states are repeated each 3 clock pulses
(D2 in the delay tip slide).

Quartus	II	simulation	

Eduardo Bezerra – UFSC 2020 32/32

Showing the counting in LEDG, at each
pulse in the EA.ContaLetra state

Quartus	II	simulation	

