
•
•
•
•
•
•
•
•
•

Pro

Android C++
with the NDK

Onur Cinar

Building graphic-rich and better performing

native applications

http://freepdf-books.com

http://www.allitebooks.org
http://www.a-pdf.com/?tr-demo

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

http://freepdf-books.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xix

About the Technical Reviewer ... xxi

Preface .. xxiii

Chapter 1: Getting Started with C++ on Android ■ ...1

Chapter 2: Exploring the Android NDK ■ ...41

Chapter 3: Communicating with Native Code using JNI ■ ..67

Chapter 4: Auto-Generate JNI Code Using SWIG ■ ..95

Chapter 5: Logging, Debugging, and Troubleshooting ■ ...127

Chapter 6: Bionic API Primer ■ ...155

Chapter 7: Native Threads ■ ...179

Chapter 8: POSIX Socket API: Connection-Oriented Communication ■ 209

Chapter 9: POSIX Socket API: Connectionless Communication ■ 247

Chapter 10: POSIX Socket API: Local Communication ■ ...259

Chapter 11: C++ Support ■ ...275

http://freepdf-books.com

http://www.allitebooks.org

vi Contents at a Glance

Chapter 12: Native Graphics API ■ ...285

Chapter 13: Native Sound API ■ ...335

Chapter 14: Profiling and NEON Optimization ■ ...363

Index ...381

http://freepdf-books.com

http://www.allitebooks.org

1

Chapter 1
Getting Started with C++

on Android

Needless to say, exploring and practicing are the best methods for learning. Having a fully functional

development environment ready at the very beginning of this book will enable you to explore and

experiment with the material while working through the chapters. The Android C++ development

environment is mainly formed by the following components:

Android Software Development Kit (SDK)	
Android Native Development Kit (NDK)	
Android Development Tools (ADT) Plug-In for Eclipse	
Java Development Kit (JDK)	
Apache ANT Build System	
GNU Make Build System	
Eclipse IDE	

This chapter will provide step-by-step instructions for setting up the proper Android C++ development

environment. Android development tools are provided for the major operating systems:

Microsoft Windows	
Apple Mac OS X	
Linux	

Since the requirements and the installation procedure vary depending on the operating system,

the following sections will walk you through the steps for setting up the Android C++ development

environment based on the operating system. You can skip over the ones that don’t apply to you.

http://freepdf-books.com

http://www.allitebooks.org

2 CHAPTER 1: Getting Started with C++ on Android

Microsoft Windows
Android development tools require Windows XP (32-bit only), Vista, or Windows 7. In this section,

you will be downloading and installing the following components:

Java JDK 6	
Apache ANT Build System	
Android SDK	
Cygwin	
Android NDK	
Eclipse IDE	

Figure 1-1. Oracle JDK 6 Download button

Note Android development tools only support Java compiler compliance level 5 or 6. Although the

later versions of JDK can be configured to comply with those levels, using JDK 6 is much simpler and

less prone to errors.

Multiple JDK flavors are supported by Android development tools, such as IBM JDK, Open JDK, and

Oracle JDK (formerly known as Sun JDK). In this book, it is assumed that Oracle JDK will be used

since it supports a broader range of platforms.

In order to download Oracle JDK, navigate to

www.oracle.com/technetwork/java/javase/downloads/index.html and follow these steps:

1. Click the JDK 6 download button, as shown in Figure 1-1. At the time of this

writing the latest version of Oracle JDK 6 is Update 33.

http://freepdf-books.com

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.allitebooks.org

3CHAPTER 1: Getting Started with C++ on Android

2. Clicking the Oracle JDK 6 Download button takes you to a page listing the

Oracle JDK 6 installation packages for supported platforms.

3. Check “Accept License Agreement” and download the installation package

for Windows x86, as shown in Figure 1-2.

Figure 1-2. Download Oracle JDK 6 for Windows x86

Now you can install. The Oracle JDK 6 installation package for Windows comes with a graphical

installation wizard. The installation wizard will guide you through the process of installing JDK. The

installation wizard will first install the JDK, and then the JRE. During the installation process, the wizard

will ask for the destination directories, as well as the components to be installed. You can continue with

the default values here. Make a note of the installation directory for the JDK part, shown in Figure 1-3.

Figure 1-3. Oracle JDK 6 installation directory

http://freepdf-books.com

http://www.allitebooks.org

4 CHAPTER 1: Getting Started with C++ on Android

4. Clicking the Environment Variables button will launch the Environment

Variables dialog. The dialog is separated into two parts: the top one is for the

user and the bottom is for the system.

5. Click the New button in the system variables section to define a new

environment variable, as shown in Figure 1-5.

The JDK will be ready to use upon completion of the installation process. The installation wizard

does not automatically add the Java binary directory into the system executable search path, also

known as the PATH variable. This needs to be done manually as the last step of the JDK installation.

1. Choose Control Panel from the Start button menu.

2. Click the System icon to launch the System Properties dialog.

3. Switch to the Advanced tab and click the Environment Variables button, as

shown in Figure 1-4.

Figure 1-4. System Properties dialog

http://freepdf-books.com

http://www.allitebooks.org

5CHAPTER 1: Getting Started with C++ on Android

6. Set the variable name to JAVA_HOME and the variable value to the Oracle JDK

installation directory that you noted during the Oracle JDK installation, as

shown in Figure 1-6.

Figure 1-6. New JAVA_HOME environment variable

Figure 1-5. Environment Variables dialog

7. Click OK button to save the environment variable.

http://freepdf-books.com

http://www.allitebooks.org

6 CHAPTER 1: Getting Started with C++ on Android

8. From the list of system variables, double-click the PATH variable and append

;%JAVA_HOME%\bin to the variable value, as shown in Figure 1-7.

Figure 1-8. Validating Oracle JDK installation

 Appending Oracle JDK binary path to system PATH variable

Start ➤ Accessories ➤

. Using the command prompt, execute javac –version. If the installation was

 1-8.

Downloading and Installing the Apache ANT on Windows
Apache ANT is a command-line build tool that whose mission is to drive any type of process that

can be described in terms of targets and tasks. Android development tools require Apache ANT

version 1.8 or later for the build process to function. At the time of this writing, the latest version of

Apache ANT is 1.8.4.

In order to download Apache ANT, navigate to http://ant.apache.org/bindownload.cgi and

download the installation package in ZIP format, as shown in Figure 1-9. Then follow these steps:

Figure 1-9. Apache ANT download package in ZIP format

http://freepdf-books.com

http://ant.apache.org/bindownload.cgi
http://www.allitebooks.org

7CHAPTER 1: Getting Started with C++ on Android

1. The Windows operating system comes with native support for ZIP files.

When the download completes, right-click the ZIP file.

2. Choose Extract All from the context menu to launch the Extract Compressed

Folder wizard.

3. Using the Browse button, choose the destination directory, as shown in

Figure 1-10. A dedicated empty destination directory is not needed since the

ZIP file already contains a sub directory called apache-ant-1.8.4 that holds

the Apache ANT files. In this book, the C:\android directory will be used as

the root directory to hold the Android development tools and dependencies.

Make a note of the destination directory.

Figure 1-11. New ANT_HOME environment variable

Figure 1-10. Extracting Apache ANT ZIP archive

4. Click the Extract button to install Apache ANT.

Upon installing the Apache ANT, follow these steps to append its binary path to system executable

search path:

1. Launch the Environment Variables dialog from System Properties.

2. Click the New button in the system variables section to define a new

environment variable.

3. Set the variable name to ANT_HOME and the variable value to the Apache ANT

installation directory (such as C:\android\apache-ant-1.8.4), as shown in

Figure 1-11.

http://freepdf-books.com

8 CHAPTER 1: Getting Started with C++ on Android

4. Click the OK button to save the new environment variable.

5. From the list of system variables, double-click the PATH variable and append

;%ANT_HOME%\bin to the variable value, as shown in Figure 1-12.

 Appending Apache ANT binary path to system PATH variable

ant -version. If the installation was successful, you will see the Apache

 1-13.

Figure 1-13. Validating Apache ANT installation

Downloading and Installing the Android SDK on Windows
The Android software development kit (SDK) is the core component of the development toolchain,

providing framework API libraries and developer tools that are necessary for building, testing, and

debugging Android applications.

Navigate to http://developer.android.com/sdk/index.html to download the Android SDK. At the

time of this writing, the latest version for Android SDK is R20. Two types of installation packages are

currently provided: a graphical installer and a ZIP archive. Although the graphical installer is offered

as the main installation package, it is known to have issues on certain platforms. Click the link for

http://freepdf-books.com

http://developer.android.com/sdk/index.html

9CHAPTER 1: Getting Started with C++ on Android

6. When the download completes, right-click the ZIP file and choose Extract All

from the context menu to launch the Extract Compressed Folder wizard.

7. Using the Browse button, choose the destination directory. A dedicated

empty destination directory is not needed since the ZIP file already contains

a sub directory called android-sdk-windows that contains the Android SDK

files. Make a note of the destination directory.

8. Click the Extract button install Android SDK.

Binary paths of Android SDK should be appended to the system executable search path. In order to

do so, follow these steps:

1. Launch the Environment Variables dialog from System Properties.

2. Click the New button in the system variables section to define a new

environment variable.

3. Set the variable name to ANDROID_SDK_HOME and the variable value to the

Android SDK installation directory (such as C:\android\android-sdk-
windows), as shown in Figure 1-15.

Figure 1-14. Android SDK download page

“Other Platforms” and download the Android SDK ZIP archive, as shown in Figure 1-14. Then follow

these steps:

http://freepdf-books.com

10 CHAPTER 1: Getting Started with C++ on Android

4. Click the OK button to save the new environment variable.

5. There are three important directories that need to be added to the system

executable search path: the SDK root directory, the tools directory holding

the Android platform-independent SDK Tools, and the platform-tools

directory holding the Android platform tools. Ignore the fact that platform-

tools directory does not exist yet. From the list of system variables on the

Environment Variables dialog, double-click the PATH variable and append

;%ANDROID_SDK_HOME%;%ANDROID_SDK_HOME%\tools;%ANDROID_SDK_HOME%\
platform-tools to the variable value, as shown in Figure 1-16.

Figure 1-15. ANDROID_SDK_HOME environment variable

Figure 1-16. Appending Android SDK binary paths to system PATH variable

In order to validate the installation, open a command prompt window. Using the command prompt,

execute 'SDK Manager' including the quotes. If the installation was successful, you will see the

Android SDK Manager, as shown in Figure 1-17.

Figure 1-17. Android SDK Manager application

http://freepdf-books.com

11CHAPTER 1: Getting Started with C++ on Android

Downloading and Installing the Cygwin on Windows
The Android Native Development Kit (NDK) tools were initially designed to work on UNIX-like

systems. Some of the NDK components are shell scripts, and they are not directly executable on the

Windows operating system. Although the latest version of the Android NDK is showing progress in

making itself more independent and self-packaged, it still requires Cygwin to be installed on the host

machine in order to fully operate. Cygwin is a UNIX-like environment and command-line interface for

the Windows operating system. It comes with base UNIX applications, including a shell that allows

running the Android NDK’s build system. At the time of this writing, Android NDK requires Cygwin

1.7 to be installed in order to function. Navigate to http://cygwin.com/install.html and download

the Cygwin installer, setup.exe (see Figure 1-18).

Figure 1-18. Download the Cygwin setup application

Upon starting the setup application, you will see the Cygwin installation wizard welcome screen.

Click the Next button and follow these steps to proceed with the installation:

1. Installation will ask you to choose the download source. Keep the default

selection of “Install from Internet” and click the Next button to proceed.

2. In the next dialog, the installer will ask you select the directory where you

want to install Cygwin, as shown in Figure 1-19. By default Cygwin will be

installed under C:\cygwin directory. Note the destination directory and click

the Next button.

http://freepdf-books.com

http://cygwin.com/install.html

12 CHAPTER 1: Getting Started with C++ on Android

3. The next dialog will ask you select the local package directory. This is the

temporary directory that will be used to download the packages. Keep the

default value and click the Next button.

4. In the next dialog, you will select the Internet connection type. Unless you

need to use a proxy to access the Internet, keep the default selection of

“Direct Connection” and click the Next button to proceed.

5. The installer will ask you to select a download site. From the list of mirror

sites, either chooses a random one or the one closest geographically to your

location. Then click the Next button.

6. Cygwin is not a single application; it is a large software distribution

containing multiple applications. In the next dialog, the Cygwin installer will

provide you a list of all available packages. Android NDK requires GNU Make

3.8.1 or later in order to function. Using the search field, filter the package

list by keyword “make,” expand the Devel category, and select the GNU

Make package, as shown in Figure 1-20. Click the Next button to start

the installation.

 Choosing Cygwin installation directory

http://freepdf-books.com

13CHAPTER 1: Getting Started with C++ on Android

When the installation completes, the Cygwin binary path needs to be added to the system

executable search path.

1. Launch the Environment Variables dialog from System Properties.

2. Click the New button in the system variables section to define a new

environment variable.

3. Set the variable name to CYGWIN_HOME and the variable value to the Cygwin

installation directory (such as C:\cygwin), as shown in Figure 1-21.

Figure 1-20. Select GNU Make package

http://freepdf-books.com

14 CHAPTER 1: Getting Started with C++ on Android

4. From the list of system variables in the Environment Variables dialog, double-click

the PATH variable and append ;%CYGWIN_HOME%\bin to the variable value, as shown

in Figure 1-22.

Figure 1-21. CYGWIN_HOME environment variable

Figure 1-23. Validating Cygwin installation

Figure 1-22. Appending Cygwin binary path to system PATH variable

After completing this last installation step, Cygwin tools are now part of the system executable

search path. In order to validate the installation, open a command prompt window. Using the

command prompt, execute make -version. If the installation was successful, you will see the GNU

Make version number, as shown in Figure 1-23.

Downloading and Installing the Android NDK on Windows
The Android Native Development Kit (NDK) is a companion tool to Android SDK that lets you develop

Android applications using native programming languages such as C++. Android NDK provide

header files, libraries, and cross-compiler toolchains. At the time of this writing, the latest version for

http://freepdf-books.com

15CHAPTER 1: Getting Started with C++ on Android

Android NDK is R8. In order to download the Android NDK, navigate to http://developer.android.
com/tools/sdk/ndk/index.html and go to the Downloads section shown in Figure 1-24. Then follow

these steps:

Figure 1-24. Android NDK download page

1. Android NDK installation package is provided as a ZIP archive. When the

download completes, right-click the ZIP file and choose Extract All from the

context menu to launch the Extract Compressed Folder wizard.

2. Using the Browse button, choose the destination directory. A dedicated

empty destination directory is not needed since the ZIP file already contains

a sub directory called android-ndk-r8 that contains the Android NDK files.

Make a note of the destination directory.

3. Click the Extract button to install Android NDK.

The binary paths of Android SDK can be appended to the system executable search path by

following these steps:

1. Again, launch the Environment Variables dialog from System Properties.

2. Click the New button in the system variables section to define a new

environment variable. Set the variable name to ANDROID_NDK_HOME and the

variable value to the Android NDK installation directory (such as

C:\android\android-ndk-r8), as shown in Figure 1-25.

Figure 1-25. ANDROID_NDK_HOME environment variable

http://freepdf-books.com

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

16 CHAPTER 1: Getting Started with C++ on Android

3. Click the OK button to save the new environment variable.

4. From the list of system variables in the Environment Variables dialog, double-click

the PATH variable and append ;%ANDROID_NDK_HOME% to the variable value, as

shown in Figure 1-26.

Figure 1-27. Validating Android NDK installation

 Appending Android NDK binary path to system PATH variable

Figure 1-28. Eclipse download page

ndk-build. If the installation was successful, you will

 1-27, which is fine.

Downloading and Installing the Eclipse on Windows
Eclipse is a highly extensible, multi-language integrated development environment. Although it is

not a requirement for native Android development, Eclipse does provide a highly integrated coding

environment, bringing Android tools to your fingertips to streamline the application development.

At the time of this writing, the latest version of Eclipse is Juno 4.2. In order to download Eclipse,

navigate to http://www.eclipse.org/downloads/, as shown in Figure 1-28, and follow these steps:

http://freepdf-books.com

http://www.eclipse.org/downloads/
http://www.allitebooks.org

17CHAPTER 1: Getting Started with C++ on Android

1. Download the Eclipse Classic for Windows 32 Bit from the list. The Eclipse

installation package is provided as a ZIP archive.

2. When the download completes, right-click the ZIP file and choose Extract All

from the context menu to launch the Extract Compressed Folder wizard.

3. Using the Browse button, choose the destination directory. A dedicated

empty destination directory is not needed since the ZIP file already contains

a sub directory called eclipse that holds the Eclipse files.

4. Click the Extract button to install Eclipse.

5. In order to make Eclipse easily accessible, go to the Eclipse installation

directory.

6. Right-click the Eclipse binary and choose Send ➤ Desktop to make a

shortcut to Eclipse on your Windows desktop.

To validate the Eclipse installation, double-click the Eclipse icon. If the installation was successful,

you will see the Eclipse Workspace Launcher dialog shown in Figure 1-29.

Figure 1-29. Validating Eclipse installation

Apple Mac OS X
Android development tools require Mac OS X 10.5.8 or later and an x86 system. Since Android

development tools were initially designed to work on UNIX-like systems, most of its dependencies

are already available on the platform either through OS X directly or through the Xcode developer

tools. In this section, you will be downloading and installing the following components:

Xcode	
Java JDK 6	
Apache ANT Build System	
GNU Make	

http://freepdf-books.com

18 CHAPTER 1: Getting Started with C++ on Android

Android SDK	
Android NDK	
Eclipse IDE	

Installing Xcode on Mac
Xcode provides developer tools for application development on the OS X platform. Xcode can be

found at Mac OS X installation media or through the Mac App Store free of charge. Navigate to

https://developer.apple.com/xcode/ for more information. Starting the Xcode installer will take you

1. Approve the licenses.

2. Select the destination directory.

3. The Install wizard will show the list of Xcode components that can be

installed. From this list, select the UNIX Development package shown in

Figure 1-30.

Figure 1-30. Xcode custom installation dialog

4. Click the Continue button to start the installation.

http://freepdf-books.com

https://developer.apple.com/xcode/

19CHAPTER 1: Getting Started with C++ on Android

Validating the GNU Make
GNU Make is a build tool that controls the generation of executables and other parts of an

application from application’s source code. Android NDK requires GNU Make 3.8.1 or later in order

to function. GNU Make is installed as a part of Xcode’s UNIX Development package. In order to

validate the GNU Make installation, open a Terminal window and execute make –version on the

command line. If the installation was successful, you will see the GNU Make version number, as

shown in Figure 1-33.

Validating the Java Development Kit on Mac
Android development tools require Java Development Kit (JDK) version 6 in order to run. The

Apple Mac OS X operating system ships with the JDK already installed. It is based on the Oracle

JDK but configured by Apple for better integration with Mac OS X. New versions of the JDK are

available through the Software Update. Make sure that JDK 6 or later is installed. To validate the JDK

installation, open a Terminal window and execute javac –version on the command line. If JDK is

properly installed, you will see JDK version number, as shown in Figure 1-31.

Figure 1-31. Validating JDK

Validating the Apache ANT on Mac
Apache ANT is a command-line build tool that drives any type of process that can be described

in terms of targets and tasks. Android development tools require Apache ANT version 1.8 or later

for the build process to function. Apache ANT is installed as a part of Xcode’s UNIX Development

package. In order to validate the Apache ANT installation, open a Terminal window and execute

ant –version on the command line. If the installation was successful, you will see the Apache ANT

version number, as shown in Figure 1-32.

Figure 1-32. Validating Apache ANT

http://freepdf-books.com

20 CHAPTER 1: Getting Started with C++ on Android

http://developer.android.com/sdk/index.html to download the Android SDK, as

 1-34, and follow these steps:

Figure 1-33. Validating GNU Make

Figure 1-34. Android SDK download page

1. Click the “Download the SDK for Mac” button to start downloading the SDK

installation package.

2. The Android SDK installation package is provided as a ZIP archive. OS X

provides native support for ZIP archives. If you are using the Safari browser,

the ZIP file will be automatically extracted after the download. Otherwise,

double-click the ZIP file to open it as a compressed folder.

3. Drag and drop the android-sdk-macosx directory to its destination location

using the Finder, as shown in Figure 1-35. In this book, the /android directory

will be used as the root directory holding the Android development tools and

dependencies.

http://freepdf-books.com

http://developer.android.com/sdk/index.html

21CHAPTER 1: Getting Started with C++ on Android

In order to make Android SDK easily accessible, the binary paths of Android SDK should be

appended to the system executable search path. Open a Terminal window and execute the following

commands, as shown in Figure 1-36:

Figure 1-35. Installing Android SDK to its destination location

Figure 1-36. Appending Android SDK binary path to system PATH variable

	echo export ANDROID_SDK_HOME=/android/android-sdk-macosx > >

~/.bash_profile

	echo export PATH = \$ANDROID_SDK_HOME/tools:\$ANDROID_SDK_HOME/platform-
tools:\$PATH > > ~/.bash_profile

In order to validate the Android SDK installation, open a new Terminal window and execute

android -h on the command line. If the installation was successful, you will see the help messages

shown in Figure 1-37.

Figure 1-37. Validating Android SDK installation

http://freepdf-books.com

22 CHAPTER 1: Getting Started with C++ on Android

Downloading and Installing the Android NDK on Mac
Android Native Development Kit (NDK) is a companion tool to Android SDK that lets you develop

Android applications using native programming languages such as C++. The Android NDK provides

header files, libraries, and cross-compiler toolchains. At the time of this writing, the latest version for

Android NDK is R8. In order to download the Android NDK, navigate to http://developer.android.
com/tools/sdk/ndk/index.html and go to the Downloads section, as shown in Figure 1-38. Then

follow these steps:

Figure 1-38. Android NDK download page

1. Click to download the installation package. The Android NDK installation

package is provided as a BZIP’ed TAR archive. OS X does not automatically

extract this type of archive files.

2. In order to manually extract the archive file, open a Terminal window.

3. Go into the destination directory /android.

4. Execute tar jxvf ~/Downloads/android-ndk-r8-darwin-x86.tar.bz2, as

shown in Figure 1-39.

Figure 1-39. Installing Android NDK

The binary paths of Android NDK should be appended to system-executable search path to make it

easily accessible. Open a Terminal window and execute the following commands (see Figure 1-40).

http://freepdf-books.com

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

23CHAPTER 1: Getting Started with C++ on Android

	echo export ANDROID_NDK_HOME=/android/android-ndk-r8 > > ~/.bash_profile

	echo export PATH = \$ANDROID_NDK_HOME:\$PATH > > ~/.bash_profile

Validate the Android NDK installation by opening a new Terminal window and executing ndk-build

on the command line. If the installation was successful, you will see the NDK build complaining

about the project directory, as shown in Figure 1-41, which is fine.

Figure 1-40. Appending Android NDK binary path to system PATH variable

Figure 1-41. Validating Android NDK

Downloading and Installing the Eclipse on Mac
Eclipse is a highly extensible, multi-language integrated development environment. Although it is

not a requirement for native Android development, Eclipse does provide a highly integrated coding

environment, bringing Android tools to your fingertips to streamline the application development.

At the time of this writing, the latest version of Eclipse is Juno 4.2. In order to install Eclipse, navigate

to http://www.eclipse.org/downloads/, as shown in Figure 1-42, and follow these steps:

Figure 1-42. Eclipse download page

http://freepdf-books.com

http://www.eclipse.org/downloads/

24 CHAPTER 1: Getting Started with C++ on Android

1. Download the Eclipse Classic for Mac OS X 32 Bit from the list. The Eclipse

installation package is provided as a GZIP’ed TAR archive. If you are using

the Safari browser, the archive file can be automatically decompressed but

not extracted after the download.

2. In order to manually extract the archive, open a Terminal window and go into

the destination directory of /android.

3. Execute tar xvf ~/Downloads/eclipse-SDK-4.2-macosx-cocoa.tar, as

shown in Figure 1-43.

 Installing Eclipse

1. Go to the Eclipse installation directory.

2. Drag and drop the Eclipse application to Dock, as shown in Figure 1-44.

Figure 1-44. Adding Eclipse to dock

Double-click the Eclipse icon to validate the Eclipse installation. If the installation was successful,

you will see the Eclipse Workspace Launcher dialog shown in Figure 1-45.

Figure 1-45. Validating Eclipse

http://freepdf-books.com

25CHAPTER 1: Getting Started with C++ on Android

Ubuntu Linux
Android development tools require Ubuntu Linux version 8.04 32-bit or later or any other Linux flavor

with GNU C Library (glibc) 2.7 or later. In this section, you will be downloading and installing the

following components:

Java JDK 6	
Apache ANT Build System	
GNU Make	
Android SDK	
Android NDK	
Eclipse IDE	

Checking the GNU C Library Version
You can check the GNU C Library version by executing ldd --version on a Terminal window, as

shown in Figure 1-46.

Figure 1-47. Installing ia32-libs-multiarch

Figure 1-46. Checking the GNU C library version

Enabling the 32-Bit Support on 64-Bit Systems
On 64-bit Linux distributions, Android development tools require the 32-bit support package to

be installed. In order to install the 32-bit support package, open a Terminal window and execute

sudo apt-get install ia32-libs-multiarch, as shown in Figure 1-47.

http://freepdf-books.com

26 CHAPTER 1: Getting Started with C++ on Android

Downloading and Installing the Java Development Kit on Linux
Android development tools require Java Development Kit (JDK) version 6 in order to run. Java

Runtime Edition (JRE) itself is not sufficient. Java JDK 6 needs to be installed prior installing the

Android development tools. Except for the GNU Compiler for Java (gcj), a variety of JDK flavors are

supported by Android development tools, such as IBM JDK, Open JDK, and Oracle JDK (formerly

known as Sun JDK). Due to licensing issues, Oracle JDK is not available in the Ubuntu software

repository. In this book, it is assumed that Open JDK will be used. In order to install Open JDK, open

a Terminal window and execute sudo apt-get install openjdk-6-jdk, as shown in Figure 1-48.

Figure 1-49. Validating Open JDK installation

 Installing Open JDK 6

java –version

 1-49.

Downloading and Installing the Apache ANT on Linux
Apache ANT is a command-line build tool that drives any type of process that can be described in

terms of targets and tasks. Android development tools require Apache ANT version 1.8 or later for

the build process to function. Apache ANT is provided through the Ubuntu software repository. In

order to install Apache ANT, open a Terminal window and execute sudo apt-get install ant,

as shown in Figure 1-50.

Figure 1-50. Installing Apache ANT

http://freepdf-books.com

http://www.allitebooks.org

27CHAPTER 1: Getting Started with C++ on Android

Open a Terminal window and execute ant -version on the command line to validate the Apache

ANT installation. If the installation was successful, you will see the Apache ANT version number, as

shown in Figure 1-51.

Figure 1-51. Validating Apache ANT installation

Figure 1-53. Validating GNU Make installation

Figure 1-52. Installing GNU Make

Downloading and Installing the GNU Make on Linux
GNU Make is a build tool that controls the generation of executables and other parts of an

application from application’s source code. Android NDK requires GNU Make 3.8.1 or later in order

to function. GNU Make is provided through Ubuntu software repository. In order to install GNU

Make, open a Terminal window and execute sudo apt-get install make, as shown in Figure 1-52.

Open a Terminal window and validate the GNU Make installation by executing make –version on

the command line. If the installation was successful, you will see the GNU Make version number, as

shown in Figure 1-53.

http://freepdf-books.com

28 CHAPTER 1: Getting Started with C++ on Android

Downloading and Installing the Android SDK on Linux
The Android Software Development Kit (SDK) is the core component of the development toolchain,

providing framework API libraries and developer tools that are necessary for building, testing, and

debugging Android applications. At the time of this writing, the latest version for Android SDK is

R20. Navigate to http://developer.android.com/sdk/index.html to download the Android SDK, as

shown in Figure 1-54. Then follow these steps to install it:

 Android SDK download page

1. The Android SDK installation package is provided as a GZIP’ed TAR archive.

Open a Terminal window and go to the destination directory. In this book, ~/
android directory will be used as the root directory for holding the Android

development tools and dependencies.

2. Extract the Android SDK by executing tar zxvf ~/Downloads/android-sdk_
r20-linux.tgz on the command line, as shown in Figure 1-55.

Figure 1-55. Installing Android SDK

In order to make Android SDK easily accessible, binary paths of Android SDK should be appended

to the system executable search path. Assuming that you are using the BASH shell, open a Terminal

window and execute the following commands (shown in Figure 1-56):

http://freepdf-books.com

http://developer.android.com/sdk/index.html

29CHAPTER 1: Getting Started with C++ on Android

	echo export ANDROID_SDK_HOME = ~/android/android-sdk-linux > > ~/.bashrc

	echo export PATH = \$ANDROID_SDK_HOME/tools:\$ANDROID_SDK_HOME/platform-
tools:\$PATH > > ~/.bashrc

In order to validate the Android SDK installation, open new a Terminal window and execute android –h

on the command line. If the installation was successful, you will see the help messages shown in

Figure 1-57.

Figure 1-57. Validating Android SDK installation

Figure 1-56. Appending Android SDK binary path to system PATH variable

Downloading and Installing the Android NDK on Linux
The Android Native Development Kit (NDK) is a companion tool to Android SDK that lets you develop

Android applications using native programming languages such as C++. Android NDK provides

header files, libraries, and cross-compiler toolchains. At the time of this writing, the latest version for

Android NDK is R8. In order to download the Android NDK, navigate to http://developer.android.
com/tools/sdk/ndk/index.html and go to the Downloads section, as shown in Figure 1-58. Follow

these steps to install it:

Figure 1-58. Android NDK download page

http://freepdf-books.com

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

30 CHAPTER 1: Getting Started with C++ on Android

1. Open a Terminal window and go into the destination directory ~/android.

2. The Android NDK installation package is provided as a BZIP’ed TAR archive.

Execute tar jxvf ~/Downloads/android-ndk-r8-linux-x86.tar.bz2, as

shown in Figure 1-59, to extract the archive file.

 Installing Android NDK

 1-60):

Figure 1-60. Appending Android NDK binary path to system PATH variable

	echo export ANDROID_NDK_HOME = ~/android/android-ndk-r8 > > ~/.bashrc

	echo export PATH = \$ANDROID_NDK_HOME:\$PATH > > ~/.bashrc

Open a new Terminal window and execute ndk-build on the command line to validate the Android

NDK installation. If the installation was successful, you will see NDK build complaining about project

directory, as shown in Figure 1-61, which is fine.

Figure 1-61. Validating Android NDK installation

http://freepdf-books.com

31CHAPTER 1: Getting Started with C++ on Android

Figure 1-62. Eclipse download page

Downloading and Installing the Eclipse on Linux
Eclipse is a highly extensible, multi-language integrated development environment. Although it is

not a requirement for native Android development, Eclipse does provide a highly integrated coding

environment, bringing Android tools to your fingertips to streamline the application development. At

the time of this writing, the latest version of Eclipse is Juno 4.2. Download Eclipse by navigating to

www.eclipse.org/downloads/, as shown in Figure 1-62:

1. Download the Eclipse Classic for Linux 32 Bit from the list.

2. Open a Terminal window and go into the destination directory ~/android.

3. The Eclipse installation package is provided as a GZIP’ed TAR archive.

Extract the archive by invoking tar xvf ~/Downloads/eclipse-SDK-4.2-
linux-gtk.tar.gz on the command line, as shown in Figure 1-63.

Figure 1-63. Installing Eclipse

To validate the Eclipse installation, go into the eclipse directory and execute ./eclipse on the

command line. If the installation was successful, you will see the Eclipse Workspace Launcher dialog

shown in Figure 1-64.

http://freepdf-books.com

http://www.eclipse.org/downloads/

32 CHAPTER 1: Getting Started with C++ on Android

application development on the Eclipse platform. ADT is free software that is provided under the

open source Apache License. More information about the latest ADT version and the most current

installation steps can be found at the ADT Plug-in for Eclipse page at http://developer.android.com/
sdk/eclipse-adt.html. You will be using Eclipse’s Install New Software wizard to install ADT.

1. Launch the wizard by choosing Help ➤ Install New Software from the top

menu bar, as shown in Figure 1-65.

 Validating Eclipse installation

Figure 1-65. Eclipse install new software

http://freepdf-books.com

http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html

33CHAPTER 1: Getting Started with C++ on Android

Figure 1-66. Add new software repository

Figure 1-67. Add Android ADT software repository

2. The wizard will start and display a list of available plug-ins. Since ADT is not

part of the official Eclipse software repository, you need to first add Android’s

Eclipse software repository as a new software site. To do this, click the Add

button, as shown in Figure 1-66.

3. The Add Repository dialog appears. In the Name field, enter Android ADT,

and in the Location field, enter the URL for Android’s Eclipse software

repository: https://dl-ssl.google.com/android/eclipse/ (see Figure 1-67).

4. Click the OK button to add the new software site.

5. The Install New Software wizard will display a list of available ADT plug-

ins, as shown in Figure 1-68. Each of these plug-ins is crucial for Android

application development, and it is highly recommended that you install all

of them.

http://freepdf-books.com

https://dl-ssl.google.com/android/eclipse/

34 CHAPTER 1: Getting Started with C++ on Android

Figure 1-69. Security warning

 Installing ADT

6. Click the Select All button to select all of the ADT plug-ins.

7. Click the Next button to move to the next step.

8. Eclipse will go through the list of selected plug-ins to append any

dependencies to the list and then will present the final download list for

review. Click the Next button to move to the next step.

9. ADT contains a set of other third-party components with different licensing

terms. During the installation process, Eclipse will present each software

license and will ask you to accept the terms of the license agreements

in order to continue with the installation. Review the license agreements,

choose to accept their terms, and then click the Finish button to start the

installation process.

ADT plug-ins come within unsigned JAR files, which may trigger a security warning, as shown in

Figure 1-69. Click the OK button to dismiss the warning and continue the installation. When the

installation of the ADT plug-ins is complete, Eclipse will need to restart in order to apply the changes.

Upon restarting, ADT will ask you for the location of the Android SDK. Choose “Use existing SDKs”

and select the Android SDK installation directory using the Browse button, as shown in Figure 1-70.

4

http://freepdf-books.com

35CHAPTER 1: Getting Started with C++ on Android

Click the Next button to proceed to next step.

Installing the Android Platform Packages
Upon selecting the Android SDK location, ADT validates the Android SDK and the Android Platform

packages. The Android SDK installation only contains the Android development tools. The Android

Platform packages need to be installed separately to be able to build Android applications. Upon

completing the validation, a SDK validation warning dialog is displayed, as shown in Figure 1-71.

Figure 1-70. Selecting the Android SDK location

Figure 1-71. ADT Android SDK validation

http://freepdf-books.com

36 CHAPTER 1: Getting Started with C++ on Android

1. Expand the Tools category from the list of available packages and select

Android SDK Platform-Tools.

2. Select the Android 4.0 (API 14) category.

3. Click the Install N Packages button to start the installation.

Android SDK manager will show the license agreements for the selected packages. Accept the

license agreements to continue the installation.

Configuring the Emulator
The Android SDK comes with a full-featured emulator, a virtual device that runs on your machine.

The Android emulator allows you to develop and test Android applications locally on your machine

without using a physical device.

The Android emulator runs a full Android system stack, including the Linux kernel. It is a fully

virtualized device that can mimic all of the hardware and software features of a real device. Each

of these features can be customized by the user using the Android Virtual Device (AVD) Manager.

Launch the AVD Manager, choose Window ➤ AVD Manager Window AVD Manager from the top

menu bar, as shown in Figure 1-73.

Click the Open SDK Manager button to launch the Android SDK Manager. Then follow these steps,

as shown in Figure 1-72:

Figure 1-72. Android SDK manager

http://freepdf-books.com

http://www.allitebooks.org

37CHAPTER 1: Getting Started with C++ on Android

In this book, you will use the Android Emulator often while working through the material. The

following virtual machine configuration is recommended to execute the example code in this book.

Complete the fields using the following values, as shown in Figure 1-75:

Click the New button on right side of the AVD Manager dialog to define a new emulator

configuration, as shown in Figure 1-74.

Figure 1-74. AVD Manager

Figure 1-73. AVD Manager menu

http://freepdf-books.com

38 CHAPTER 1: Getting Started with C++ on Android

Figure 1-75. New emulator configuration

The Name parameter should be set to 	 Android_14.

The Target parameter should be set to 	 Android 4.0 – API Level 14.

The SD Card size should be set to at least 128 MB.	
The other settings can be left as is.

In order to validate the newly defined emulator configuration, open up the AVD Manager, select the

name of the emulator configuration from the list, and click the Start button to launch the emulator

instance. If the configuration was successful, the emulator will come up (see Figure 1-76).

http://freepdf-books.com

39CHAPTER 1: Getting Started with C++ on Android

Summary
In this chapter you have configured your Android C++ development environment by installing the

Android development tools and dependencies based on the target operating system. You have

defined the Android emulator configuration to execute the example code that will be presented in the

following chapters. The next chapter will provide a detailed introduction to the Android NDK.

Figure 1-76. Newly defined emulator configuration running

http://freepdf-books.com

41

Chapter 2
Exploring the Android NDK

In the previous chapter, you configured your development environment by installing Android

development tools and dependencies. Among these tools, the Android Native Development Kit

(NDK) is the tool you will be using for C++ development on Android platform. The Android NDK

is a companion toolset for the Android Software Development Kit (SDK), designed to augment the

Android SDK to allow developers to implement and embed performance-critical portions of their

applications using machine code-generating programming languages like C, C++, and Assembly.

In this chapter, you will start exploring the Android NDK. You will be taking the hello-jni sample

application that comes with the Android NDK and manipulating it to demonstrate the Android NDK

build system.

Components Provided with the Android NDK
The Android NDK is not a single tool; it is a comprehensive set of APIs, cross-compilers, linkers,

debuggers, build tools, documentation, and sample applications. The following are some of the key

components of Android NDK:

ARM, x86, and MIPS cross-compilers	
Build system	
Java Native Interface headers	
C library	
Math library	
POSIX threads	
Minimal C++ library	
ZLib compression library	
Dynamic linker library	
Android logging library	

http://freepdf-books.com

42 CHAPTER 2: Exploring the Android NDK

Android pixel buffer library	
Android native application APIs	
OpenGL ES 3D graphics library	
OpenSL ES native audio library	
OpenMAX AL minimal support	

Structure of the Android NDK
During the installation process, all of the Android NDK components are installed under the target

	ndk-build: This shell script is the starting point of the Android NDK build

system. This chapter will cover ndk-build in detail while exploring the Android

NDK build system.

	ndk-gdb: This shell script allows debugging native components using the GNU

Debugger. Chapter 5 will cover ndk-gdb in detail while discussing the debugging

of native components.

	ndk-stack: This shell script helps facilitate analyzing the stack traces that are

produced when native components crash. Chapter 5 will cover ndk-stack in

detail while discussing the troubleshooting and crash dump analysis of native

components.

	build: This directory contains the modules of the entire Android NDK build

system. This chapter will cover the Android NDK build system in detail.

	platforms: This directory contains header files and libraries for each supported

Android target version. These files are used automatically by the Android NDK

build system based on the specified target version.

	samples: This directory contains sample applications to demonstrate the

capabilities provided by the Android NDK. These sample projects are very useful

for learning how to use the features provided by the Android NDK.

	sources: This directory contains shared modules that developers can import into

their existing Android NDK projects.

	toolchains: This directory contains cross-compilers for different target machine

architectures that the Android NDK currently supports. Android NDK currently

supports ARM, x86, and MIPS machine architectures. The Android NDK build

system uses the cross-compiler based on the selected machine architecture.

The most important component of the Android NDK is its build system, which brings all other

components together. To better understand how the build system works, you will be starting with a

working example.

http://freepdf-books.com

43CHAPTER 2: Exploring the Android NDK

Starting with an Example
You will start with the hello-jni sample application that comes with the Android NDK. Later, you

will modify it to demonstrate the different functionalities provided by the Android NDK build system,

such as

Building a shared library	
Building multiple shared libraries	
Building static libraries	
Sharing common modules using shared libraries	
Sharing modules between multiple NDK projects	
Using prebuilt libraries	
Building standalone executables	
Other build system variables and macros	
Defining new variables and conditional operations	

Open the Eclipse IDE that you installed in the previous chapter. Although the Android NDK does not

require the use of an IDE, using one will help to visually inspect the project structure and the build flow.

During the startup, Eclipse will ask you to choose the workspace; you can continue with the default.

Specifying the Android NDK Location
Since this is the first time the workspace will be used for Android NDK development, the location of

the Android NDK needs to be specified.

1. On Windows and Linux platforms, choose the Preferences menu item from the

top menu bar. On Mac OS X platform, use the application menu in Eclipse

and choose the Preferences menu item.

2. As shown in Figure 2-1, the left pane of the Preferences dialog contains the

list of preferences categories in a tree format. Expand Android and then

choose NDK from the tree.

http://freepdf-books.com

44 CHAPTER 2: Exploring the Android NDK

3. Using the right pane, click the Browse button and select the location of

Android NDK installation using the file explorer.

The NDK location preference is only for the current Eclipse workspace. If you use another workspace

later, you will need to repeat this process again.

Importing the Sample Project
As stated in the previous section, Android NDK installation contains example applications under the

samples directory. You will be using one of those sample applications now.

Using the top menu bar, choose File, and then the Import menu item to launch the Import wizard.

From the list of import sources, expand Android and choose Existing Android Code into Workspace, as

shown in Figure 2-2. Click Next to proceed to the next step.

 Android NDK location preference

http://freepdf-books.com

45CHAPTER 2: Exploring the Android NDK

As shown in Figure 2-3, use the Browse button to launch the file explorer and navigate to <Android
NDK>/samples/hello-jni directory. The hello-jni project is simple “Hello World” Android NDK

project. The project directory contains both the actual project and the test project. For the sake of

simplicity, uncheck the test project for now, and only keep the main project checked. It is always

a good practice to not change anything in the Android NDK installation directory to keep things

safe. Check the “Copy projects into workspace” option to ask Eclipse to copy the project code into the

workspace, so that you can operate on a copy rather than the original project. Click Next to start

importing the project into the workspace.

Figure 2-2. Import existing Android code into workspace

http://freepdf-books.com

46 CHAPTER 2: Exploring the Android NDK

You will notice an error message on the console at the end of the import process, as shown in

Figure 2-4. As you may recall, in the previous chapter you only downloaded the platform APIs for

Android 4.0 (API Level 14) using the SDK Manager. The hello-jni project is developed for Android 1.5

(API Level 3).

Figure 2-3. Importing hello-jni Android NDK project

Figure 2-4. Unable to resolve target API level 3

API levels are backward compatible. Instead of downloading API Level 3, using the Project Explorer

view in Eclipse, right-click to com.example.hellojni.HelloJni project, and choose Properties from

the context menu to launch the project properties dialog. The right pane of the project properties

dialog contains the list of project properties categories in a tree format. Choose Android from the

tree, and using the right pane, select Android 4.0 as the project build target (see Figure 2-5).

http://freepdf-books.com

47CHAPTER 2: Exploring the Android NDK

Click the OK button to apply the changes. Eclipse will rebuild the project using the selected project

build target.

Adding Native Support to Project
The Import Android Project wizard only imports projects as Android Java projects. The native

support needs to be added manually in order to include the native components into the build flow.

Using the Project Explorer view in Eclipse, right-click to the com.example.hellojni.HelloJni project,

hover on the Android Tools menu item, and choose “Add Native Support” from the context menu. The

Add Android Native Support dialog will be launched, as shown in Figure 2-6. Since the project

already contains a native project, you can leave the library name as is, and click to the Finish button

to proceed.

Figure 2-5. Choose Android 4.0 as the project build target

Figure 2-6. Add Android native support

http://freepdf-books.com

http://www.allitebooks.org

48 CHAPTER 2: Exploring the Android NDK

If this is the first time you are adding native support to a Java-only project, you can specify the

preferred name of the shared library in this dialog and it will be used while auto-generating the build

files as a part of the process.

Running the Project
Now that the project is ready, you can run it on the Android emulator. Choose Run from the top menu,

and select Run from the submenu. Since this is the first time you are running this project, Eclipse will

ask you to select how you would like to run the project through the Run As dialog. Choose Android

Application from the list and click OK button to proceed. Android Emulator will be launched; the project

 2-7. Android Emulator is

Figure 2-7. Android Emulator running the native project

As you may have noticed, the process to run the project is exactly the same as running a Java-only

project. Adding the native support to the project automatically incorporates the necessary steps

into the build process transparently from the user. You can still check the Console view to watch the

messages coming from the Android NDK build system, as shown in Figure 2-8.

Figure 2-8. Console view showing Android NDK build messages

http://freepdf-books.com

49CHAPTER 2: Exploring the Android NDK

Although Eclipse did a great job streamlining the entire build and deployment process for us, as

stated earlier in this chapter, Eclipse is not a requirement to build Android NDK projects. The entire

build process can be executed from the command line as well.

Building from the Command Line
In order to build the hello-jni project from the command line, first open up a command prompt

in Windows or a Terminal window in Mac OS X or Linux, and change your directory to hello-jni
project. Building an Android project with native components requires a two-step process. The first

step is to build the native components, and the second step is to build the Java application and then

package both Java application and its native components together. To build the native components,

execute ndk-build on the command line. The ndk-build is a helper script that invokes the Android

build system. As shown in Figure 2-9, Android NDK build script will output progress messages

throughout the build process.

Figure 2-9. Building the native components using ndk-build

Now that those native components are properly built, you can proceed with the second step. The

Android SDK build system is based on Apache ANT. Since this is the first time you are going to build

the project from the command line, the Apache ANT build files should be generated first. Execute

android update project –p . –n hello-jni –t android-14 --subprojects on the command line to

generate the Apache ANT build files, as shown in Figure 2-10.

http://freepdf-books.com

50 CHAPTER 2: Exploring the Android NDK

ant debug

Examining the Structure of an Android NDK Project
Let’s go back into Eclipse and study the structure of an Android application with native components.

As shown in Figure 2-11, an Android project with native components contains a set of additional

directories and files.

 Generating Apache ANT build files

http://freepdf-books.com

51CHAPTER 2: Exploring the Android NDK

	jni: This directory contains the source code for the native components plus the

Android.mk build file describing how the native components should be built. The

Android NDK build system refers to this directory as the NDK project directory

and it expects to find it at project root.

	libs: This directory gets created during the build process by the Android NDK

build system. It contains individual subdirectories for target machine architecture

that are specified, such as armeabi for the ARM. This directory gets incorporated

into the APK file during the packaging process.

	obj: This directory is an intermediate directory holding the object files that are

produced after compiling the source code. Developers are not expected to

touch this directory.

The most important component of the Android NDK project here is the Android.mk build file, which

describes the native components. Understanding the build system is the key to successfully using

the Android NDK and all its components.

Build System
The Android NDK comes with its own build system that is based on GNU Make. The primary goal

of this build system is to allow developers to only write very short build files to describe their native

Android applications; the build system handles many details including the toolchain, platform, CPU,

Figure 2-11. Structure of hello-jni Android NDK project

http://freepdf-books.com

52 CHAPTER 2: Exploring the Android NDK

and ABI specifics on behalf of the developer. Having the build process encapsulated allows the later

updates of the Android NDK to add support for more toolchains, platforms, and system interfaces

without requiring changes in the build files.

The Android NDK build system is formed by multiple GNU Makefile fragments. The build system

includes the necessary fragments based on type of the NDK project needed to render the build

process. As shown in Figure 2-12, these build system fragments can be found in the build/core

sub-directory of the Android NDK installation. Although developers are not expected to directly

interface with these files, knowing their locations becomes highly beneficial when troubleshooting

build-system–related problems.

Figure 2-12. Android NDK build system fragments

In addition to those fragments, the Android NDK build system relies on two other files that

are expected to be provided by the developer as a part of the NDK project: Android.mk and

Application.mk. Let’s review them now.

Android.mk
Android.mk is a GNU Makefile fragment that describes the NDK project to the Android NDK build

system. It is a required component of every NDK project. The build system expects it to be present in

the jni sub-directory. Using the Project Explorer in Eclipse, double-click the Android.mk file to open it

in the editor view. Listing 2-1 shows the contents of the Android.mk file from the hello-jni project.

http://freepdf-books.com

53CHAPTER 2: Exploring the Android NDK

Listing 2-1. Contents of Android.mk File from hello-jni Project

Copyright (C) 2009 The Alndroid Open Source Project
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := hello-jni
LOCAL_SRC_FILES := hello-jni.c

include $(BUILD_SHARED_LIBRARY)

Let’s go through this file line by line to better understand its syntax. Since this is a GNU Makefile

fragment, its syntax is exactly the same as any other Makefile. Each line contains a single

instruction. The lines starting with a hash (#) sign indicate a comment and they are not processed by

the GNU Make tool. By the naming convention, the variable names are upper-case.

The first instruction after the comments block is the definition of the LOCAL_PATH variable. As a

requirement of the Android build system, the Android.mk file should always begin with the definition

of LOCAL_PATH variable.

LOCAL_PATH := $(call my-dir)

The LOCAL_PATH is used by the Android build system to locate the source files. Since setting this

variable to a hard-coded value is not appropriate, the Android build system provides a macro

function called my-dir. By setting the variable to the return of the my-dir macro function, it gets set

to the current directory.

The CLEAR_VARS variable gets set by the Android build system to the location of clear-vars.mk

fragment. Including this Makefile fragment clears the LOCAL_ <name> variables such as LOCAL_MODULE,

LOCAL_SRC_FILES, etc., with the exception of LOCAL_PATH.

include $(CLEAR_VARS)

This is needed because multiple build files and module definitions are parsed by the Android build

system in a single execution, and the LOCAL_ <name> variables are global. Clearing them prevent

conflicts. Each native component is referred to as a module.

http://freepdf-books.com

http://www.apache.org/licenses/LICENSE-2.0

54 CHAPTER 2: Exploring the Android NDK

The LOCAL_MODULE variable is used to name these modules with a unique name. This line sets the

name of the module to hello-jni

LOCAL_MODULE := hello-jni

since the module name is also used to name the generated file as a result of the build process. The

build system adds the proper prefix and the suffix to the file. In this example, the hello-jni module

will generate a shared library file, and it will be named as libhello-jni.so by the build system.

The list of source files that will be built and assembled to produce the module is defined using the

LOCAL_SRC_FILES variable.

hello-jni module is produced by only one source file, but LOCAL_SRC_FILES variable can contain

Android.mk file simply described

BUILD_SHARED_LIBRARY variable is set by the Android NDK build system to the location of

build-shared-library.mk file. This Makefile fragment contains the necessary build procedure to

build and assemble the source files as a shared library:

include $(BUILD_SHARED_LIBRARY)

The hello-jni is a simple module; however, unless your module requires any special treatment, your

Android.mk file will contain the exact same flow and instructions.

Building Multiple Shared Libraries

Depending on your application’s architecture, multiple shared library modules can also be produced

from a single Android.mk file. In order to do so, multiple modules need to be defined in the Android.mk

file, as shown in Listing 2-2.

Listing 2-2. Android.mk Build File with Multiple Shared Library Modules

LOCAL_PATH := $(call my-dir)

#
Module 1
#
include $(CLEAR_VARS)

LOCAL_MODULE := module1
LOCAL_SRC_FILES := module1.c

http://freepdf-books.com

55CHAPTER 2: Exploring the Android NDK

include $(BUILD_SHARED_LIBRARY)

#
Module 2
#
include $(CLEAR_VARS)

LOCAL_MODULE := module2
LOCAL_SRC_FILES := module2.c

include $(BUILD_SHARED_LIBRARY)

The Android NDK build system will produce libmodule1.so and libmodule2.so shared libraries after

processing this Android.mk build file.

Building Static Libraries

Static libraries are also supported by the Android NDK build system. Static libraries are not directly

consumable by the actual Android application, and they don’t get included into the application

package. Static libraries can be used to build shared libraries. For example, when integrating third

party code into an existing native project, instead of including the source code directly, the third

party code can be compiled as a static library and then combined into the shared library, as shown

in Listing 2-3.

Listing 2-3. Android.mk File Showing the Use of Static Library

LOCAL_PATH := $(call my-dir)

#
3rd party AVI library
#
include $(CLEAR_VARS)

LOCAL_MODULE := avilib
LOCAL_SRC_FILES := avilib.c platform_posix.c

include $(BUILD_STATIC_LIBRARY)

#
Native module
#
include $(CLEAR_VARS)

LOCAL_MODULE := module
LOCAL_SRC_FILES := module.c

LOCAL_STATIC_LIBRARIES := avilib

include $(BUILD_SHARED_LIBRARY)

http://freepdf-books.com

56 CHAPTER 2: Exploring the Android NDK

Upon building the module as a static library, it can get consumed by the shared libraries by including

its module name into the LOCAL_STATIC_LIBRARIES variable.

Sharing Common Modules using Shared Libraries

Static libraries allow you to keep your source code modular; however, when the static library gets

linked into a shared library, it becomes part of that shared library. In the case of multiple shared

libraries, linking with the same static library simply increases the application size due to multiple

copies of the common module. In such cases, instead of building a static library, the common

module can be built as a shared library, and the dependent modules then dynamically link to it to

eliminate the duplicate copies (see Listing 2-4).

 Android.mk File Showing Code Sharing Between Shared Libraries

rd party AVI library

include $(BUILD_SHARED_LIBRARY)

#
Native module 1
#
include $(CLEAR_VARS)

LOCAL_MODULE := module1
LOCAL_SRC_FILES := module1.c

LOCAL_SHARED_LIBRARIES := avilib

include $(BUILD_SHARED_LIBRARY)

#
Native module 2
#
include $(CLEAR_VARS)

LOCAL_MODULE := module2
LOCAL_SRC_FILES := module2.c

LOCAL_SHARED_LIBRARIES := avilib

include $(BUILD_SHARED_LIBRARY)

http://freepdf-books.com

57CHAPTER 2: Exploring the Android NDK

Sharing Modules between Multiple NDK Projects

Using both the static and shared libraries, the common modules can be shared between modules.

However, the caveat here is that all these modules should be part of the same NDK project. Starting

from version R5, Android NDK also allows sharing and reusing modules between NDK projects.

Considering the previous example, the avilib module can be shared between multiple NDK projects

by doing the following:

First, move the 	 avilib source code to a location outside the NDK project, such

as C:\android\shared-modules\avilib. In order to prevent name conflicts, the

directory structure can also include the module provider’s name, such as

C:\android\shared-modules\transcode\avilib.

Caution The Android NDK build system does not accept the space character in shared module path.

As a shared module, 	 avilib requires its own Android.mk file, as shown in

Listing 2-5.

Listing 2-5. Android.mk File of the Shared avilib Module

LOCAL_PATH := $(call my-dir)

#
3rd party AVI library
#
include $(CLEAR_VARS)

LOCAL_MODULE := avilib
LOCAL_SRC_FILES := avilib.c platform_posix.c

include $(BUILD_SHARED_LIBRARY)

Now the 	 avilib module can be removed from the Android.mk file of the NDK

project. A call to function macro import-module with parameter transcode/
avilib should be added to the end of the build file, as shown in Listing 2-6,

to use this shared module. The import-module function macro call should be

placed at the end of the Android.mk file to prevent any build system conflicts.

Listing 2-6. NDK Project Using the Shared Module

#
Native module
#
include $(CLEAR_VARS)

LOCAL_MODULE := module
LOCAL_SRC_FILES := module.c

http://freepdf-books.com

http://www.allitebooks.org

58 CHAPTER 2: Exploring the Android NDK

LOCAL_SHARED_LIBRARIES := avilib

include $(BUILD_SHARED_LIBRARY)

$(call import-module,transcode/avilib)

The 	 import-module function macro needs to first locate the shared module

and then import it into the NDK project. By default, only the < Android NDK>/
sources directory is searched by the import-module function macro. In order to

include the c:\android\shared-modules directory into the search, define a new

environment variable called NDK_MODULE_PATH and set it to the root directory of

shared modules, such as c:\android\shared-modules.

You want to distribute your modules to other parties without distributing your 	
source code.

You want to use prebuilt version of your shared modules to speed up the builds.	
Although they are already compiled, prebuild modules still required an Android.mk build file, as

shown in Listing 2-7.

Listing 2-7. Android.mk File for Prebuilt Shared Module

LOCAL_PATH := $(call my-dir)

#
3rd party prebuilt AVI library
#
include $(CLEAR_VARS)

LOCAL_MODULE := avilib
LOCAL_SRC_FILES := libavilib.so

include $(PREBUILT_SHARED_LIBRARY)

The LOCAL_SRC_FILES variable, instead of pointing to the source files, points to the location of the

actual prebuilt library relative to the LOCAL_PATH.

Caution The Prebuilt library definition does not carry any information about the actual machine

architecture that the prebuilt library is built for. Developers need to ensure that the prebuilt library is

built for the same machine architecture as the NDK project.

http://freepdf-books.com

59CHAPTER 2: Exploring the Android NDK

The PREBUILT_SHARED_LIBRARY variable points to the prebuilt-shared-library.mk Makefile fragment.

It does not build anything, but it copies the prebuilt library to the NDK project’s libs directory. By

using PREBUILT_STATIC_LIBRARY variable, static libraries can also be used as prebuilt libraries the

same way as the shared libraries. NDK project can use the prebuilt library the same way as the

ordinary shared libraries.

...
LOCAL_SHARED_LIBRARIES := avilib
...

Building Standalone Executable

The recommended and supported way of using native components on Android platform is through

packaging them as shared libraries. However, in order to facilitate testing and quick prototyping,

Android NDK also provides support for building a standalone executable. The standalone

executables are regular Linux applications that can be copied to the Android device without being

packaged into an APK file, and they can get executed directly without being loaded through a Java

application. Standalone executables can be produced by importing the BUILD_EXECUTABLE variable in

the Android.mk build file instead of BUILD_SHARED_LIBRARY, as shown in Listing 2-8.

Listing 2-8. Android.mk File for Standalone Executable Module

#
Native module standlone executable
#
include $(CLEAR_VARS)

LOCAL_MODULE := module
LOCAL_SRC_FILES := module.c

LOCAL_STATIC_LIBRARIES := avilib

include $(BUILD_EXECUTABLE)

The BUILD_EXECUTABLE variable points to the build-executable.mk Makefile fragment that contains

the necessary build steps to produce a standalone executable on Android platform. The standalone

executable gets placed into libs/<machine architecture> directory with the same name as the

module. Although it is placed into this directory, it does not get included into the APK file during the

packaging phase.

Other Build System Variables

Besides the variables covered in the previous sections, there are other variables that are supported

by the Android NDK build system. This section will briefly mention them.

The variables that are defined by the build system are

	TARGET_ARCH: Name of the target CPU architecture, such as arm.

	TARGET_PLATFORM: Name of the target Android platform, such as android-3.

http://freepdf-books.com

60 CHAPTER 2: Exploring the Android NDK

	TARGET_ARCH_ABI: Name of the target CPU architecture and the ABI, such as

armeabi-v7a.

	TARGET_ABI: Concatenation of target platform and ABI, such as android-3-

armeabi-v7a.

The variables that can be defined as a part of the module description are

	LOCAL_MODULE_FILENAME: Optional variable to redefine the name of the generated

output file. By default the build system uses the value of LOCAL_MODULE as the

name of the generated output file, but it can be overridden using this variable.

	LOCAL_CPP_EXTENSION: The default extension of C++ source files is .cpp.

This variable can be used to specify one or more file extensions for the C++

source code.

...
LOCAL_CPP_EXTENSION := .cpp .cxx
...

	LOCAL_CPP_FEATURES: Optional variable to indicate that the module relies on

specific C++ features such as RTTI, exceptions, etc.

...
LOCAL_CPP_FEATURES := rtti
...

	LOCAL_C_INCLUDES: Optional list of paths, relative to NDK installation directory, to

search for header files.

...
LOCAL_C_INCLUDES := sources/shared-module
LOCAL_C_INCLUDES := $(LOCAL_PATH)/include
...

	LOCAL_CFLAGS: Optional set of compiler flags that will be passed to the compiler

while compiling the C and C++ source files.

...
LOCAL_CFLAGS := − DNDEBUG –DPORT = 1234
...

	LOCAL_CPP_FLAGS: Optional set of compiled flags that will be passed to the

compiler while compiling the C++ source files only.

	LOCAL_WHOLE_STATIC_LIBRARIES: A variant of LOCAL_STATIC_LIBRARIES that

indicates that the whole content of the static library should be included in the

generated shared library.

http://freepdf-books.com

61CHAPTER 2: Exploring the Android NDK

	LOCAL_LDLIBS: Optional list of linker flags that will be passed to the linker while

linking the object files to generate the output file. It is primarily used to pass

the list of system libraries to dynamically link with. For example, to link with the

Android NDK logging library, use this code:

LOCAL_LDFLAGS := − llog

	LOCAL_ALLOW_UNDEFINED_SYMBOLS: Optionally disables the checking for missing

symbols in the generated file. When not defined, the linker will produce error

messages indicating the missing symbols.

	LOCAL_ARM_MODE: Optional and ARM machine architecture-specific variable

indicating the type of ARM binary to be generated. By default, the build system

generates in thumb mode with 16-bit instructions, but this variable can be set to

arm to indicate that the 32-bit instructions should be used.

LOCAL_ARM_MODE := arm

This variable changes the build system behavior for the entire module; the

.arm extension can also be used to only build specific files in arm mode.

LOCAL_SRC_FILES := file1.c file2.c.arm

	LOCAL_ARM_NEON: Optional and ARM machine architecture-specific variable

indicating that ARM Advanced Single Instruction Multiple Date (SIMD)

(a.k.a. NEON) intrinsics should be enabled in the source files.

LOCAL_ARM_NEON := true

This variable changes the build system behavior for the entire module; the

.neon extension can also be used to only build specific files with NEON intrinsics.

LOCAL_SRC_FILES := file1.c file2.c.neon

	LOCAL_DISABLE_NO_EXECUTE: Optional variable to disable the NX Bit security

feature. NX Bit, which stands for Never Execute, is a technology used in CPUs

to segregate areas of memory for use by either code or storage. This prevents

malicious software from taking control of the application by inserting its code

into the application’s storage memory area.

	LOCAL_DISABLE_NO_EXECUTE := true

	LOCAL_EXPORT_CFLAGS: This variable allows recording a set of compiler flags that

will be added to the LOCAL_CFLAGS definition of any other module that is using

this module through either LOCAL_STATIC_LIBRARIES or LOCAL_SHARED_LIBRARIES.

LOCAL_MODULE := avilib

Tip LOCAL_WHOLE_STATIC_LIBRARIES is very useful when there are circular dependencies

between several static libraries.

http://freepdf-books.com

62 CHAPTER 2: Exploring the Android NDK

...
LOCAL_EXPORT_CFLAGS := − DENABLE_AUDIO
...
LOCAL_MODULE := module1
LOCAL_CFLAGS := − DDEBUG
...
LOCAL_SHARED_LIBRARIES := avilib

The compiler will get executed with flags –DENABLE_AUDIO –DDEBUG while

building the module1.

	LOCAL_EXPORT_CPPFLAGS: Same as the LOCAL_EXPORT_CLAGS but for C++

code-specific compiler flags.

	LOCAL_EXPORT_LDFLAGS: Same as the LOCAL_EXPORT_CFLAGS but for the linker flags.

	LOCAL_EXPORT_C_INCLUDES: This variable allows recording set include paths

that will be added to the LOCAL_C_INCLUDES definition of any other module that

is using this module through either LOCAL_STATIC_LIBRARIES or LOCAL_SHARED_
LIBRARIES.

	LOCAL_SHORT_COMMANDS: This variable should be set to true for modules with a

very high number of sources or dependent static or shared libraries. Operating

systems like Windows only allow a maximum of 8191 characters on the

command line; this variable makes the build commands shorter than this limit by

breaking them. This is not recommended for smaller modules since enabling it

will make the build slower.

	LOCAL_FILTER_ASM: This variable defines the application that will be used to filter

the assembly files from the LOCAL_SRC_FILES.

Other Build System Function Macros

This section covers the other function macros that are supported by the Android NDK build system.

	all-subdir-makefiles: Returns a list of Android.mk build files that are located

in all sub-directories of the current directory. For example, calling the following

includes all Android.mk files in the sub-directories into the build process:

include $(call all-subdir-makefiles)

	this-makefile: Returns the path of the current Android.mk build file.

	parent-makefile: Returns the path of the parent Android.mk build file that

included the current build file.

	grand-parent-makefile: Same as the parent-makefile but for the grandparent.

http://freepdf-books.com

63CHAPTER 2: Exploring the Android NDK

Defining New Variables

Developers can define other variables to simplify their build files. The names beginning with LOCAL_

and NDK_ prefixes are reserved for use by the Android NDK build system. It is recommended to use

MY_ prefix for variables that are defined by the developers, as shown in Listing 2-9.

Listing 2-9. Android.mk File Showing the Use of Developer-Defined Intermediate Variables

...
MY_SRC_FILES := avilib.c platform_posix.c
LOCAL_SRC_FILES := $(addprefix avilib/, $(MY_SRC_FILES))
...

Conditional Operations

The Android.mk build file can also contain conditional operations on these variables, for example, to

include a different set of source files per architecture, as shown in Listing 2-10.

Listing 2-10. Android.mk Build File with Conditional Operation

...
ifeq ($(TARGET_ARCH),arm)
 LOCAL_SRC_FILES + = armonly.c
else
 LOCAL_SRC_FILES + = generic.c
endif
...

Application.mk
The Application.mk is an optional build file that is used by the Android NDK build system. Same as the

Android.mk file, it is also placed in the jni directory. Application.mk is also a GNU Makefile fragment.

Its purpose is to describe which modules are needed by the application; it also defines the variables that

are common for all modules. The following variables are supported in the Application.mk build file:

	APP_MODULES: By default the Android NDK build system builds all modules that

are declared by the Android.mk file. This variable can override this behavior and

provide a space-separated list of modules that need to be built.

	APP_OPTIM: This variable can be set to either release or debug to alter the

optimization level of the generated binaries. By default the release mode is

used and the generated binaries are highly optimized. This variable can be set to

debug mode to generate un-optimized binaries that are easier to debug.

	APP_CLAGS: This variable lists the compiler flags that will be passed to the

compiler while compiling C and C++ source files for any of the modules.

	APP_CPPFLAGS: This variable lists the compilers flags that will be passed to the

compiler while compiling the C++ source files for any of the modules.

http://freepdf-books.com

64 CHAPTER 2: Exploring the Android NDK

	APP_BUILD_SCRIPT: By default the Android NDK build system looks for the

Android.mk build file under the jni sub-directory of the project. This behavior

can be altered by using this variable, and a different build file can be used.

	APP_ABI: By default Android NDK build system generates binaries for armeabi

ABI. This variable can be used to alter this behavior and generate binaries for a

different ABI, like so:

APP_ABI := mips

Additionally, more than one ABI can be set

APP_ABI := armeabi mips

in order to generate binaries for all supported ABIs

APP_ABI := all

	APP_STL: By default the Android NDK build system uses the minimal STL runtime

library, also known as the system library. This variable can be used to select a

different STL implementation.

APP_STL := stlport_shared

	APP_GNUSTL_FORCE_CPP_FEATURES: Similar to LOCAL_CPP_EXTENSIONS variable, this

variable indicates that all modules rely on specific C++ features such as RTTI,

exceptions, etc.

	APP_SHORT_COMMANDS: Similar to the LOCAL_SHORT_COMMANDS variable, this variable

makes the build system use shorter commands on projects with high amount of

source files.

Using the NDK-Build Script
As stated earlier in this chapter, the Android NDK build system is started by executing the

ndk-build script. The script can take a set of arguments to allow you to easily maintain and control

the build process.

By default the 	 ndk-build script expects to be executed within the main project

directory. The –C argument can be used to specify the location the NDK project

on the command line so that the ndk-build script can be started from an

arbitrary location.

ndk-build –C /path/to/the/project

The Android NDK build system does not rebuild objects if their source file is not 	
being modified. You can execute the ndk-build script using the –B argument to

force rebuilding all source code.

ndk-build -B

http://freepdf-books.com

65CHAPTER 2: Exploring the Android NDK

If you are only interested in seeing the actual build commands that get executed, you can type

ndk-build V = 1 on the command line. Android NDK will only display the build commands, as shown

in Figure 2-14.

In order to clean the generated binaries and object files, you can execute 	
ndk-build clean on the command line. Android NDK build system removes the

generated binaries.

ndk-build clean

The Android NDK build system relies on GNU Make tool to build the modules. 	
By default GNU Make tool executes one build command at a time, waiting

for it to finish before executing the next one. GNU Make can execute build

commands in parallel if the –j argument is provided on the command line.

Optionally, the number of commands that can be executed in parallel can also

be specified as a number following the argument.

ndk-build –j 4

Troubleshooting Build System Problems
The Android NDK build system comes with extensive logging support for troubleshooting build

system related problems. This section briefly explores them.

Logging of the internal state of the Android NDK build system can be enabled by typing ndk-build
NDK_LOG = 1 on the command line. The Android NDK build system will produce extensive amount of

logging with log messages prefixed with “Android NDK: ” (see Figure 2-13).

Figure 2-13. Ndk-build script displaying debug information

http://freepdf-books.com

66 CHAPTER 2: Exploring the Android NDK

 Ndk-build script displaying the build commands

http://freepdf-books.com

67

Chapter 3
Communicating with Native

Code using JNI

In the previous chapter, you started exploring the Android NDK by going through its components, its

structure, and its build system. Using this information you can now build and package any kind of

native code with your Android applications. In this chapter, you will focus on the integration part by

using the Java Native Interface (JNI) technology to enable the Java application and the native code

to communicate with each other.

What is JNI?
The JNI is a powerful feature of the Java programming language. It allows certain methods of Java

classes to be implemented natively while letting them be called and used as ordinary Java methods.

These native methods can still use Java objects in the same way that the Java code uses them.

Native methods can create new Java objects or use objects created by the Java application, which

can inspect, modify, and invoke methods on these objects to perform tasks.

Starting with an Example
Before going into the details of JNI technology, let’s walk through an example application. This will

provide you with the foundation necessary to experiment with the APIs and concepts as you work

through the chapter. By going through the example application, you will learn the following key

concepts:

How the native methods are called from Java code	
Declaration of native methods	
Loading the native modules from shared libraries	
Implementing the native methods in C/C++	

http://freepdf-books.com

http://www.allitebooks.org

68 CHAPTER 3: Communicating with Native Code using JNI

To begin, open the Eclipse IDE and go into the hello-jni sample project that you imported in the

previous chapter. The hello-jni application is a single activity Android application. Using the Project

Explorer view, expand the src directory, and then expand the com.example.hellojni package. Open

the HelloJni activity in the editor view by double-clicking the HelloJni.java source file.

The HelloJni activity has a very simple user interface that is formed by a single

android.widget.TextView widget. In the body of activity’s onCreate method, the string value of the

TextView widget is set to the return value of stringFromJNI method, as shown in Listing 3-1.

Listing 3-1. HelloJni Activity onCreate Method

/** Called when the activity is first created. */

{
 super.onCreate(savedInstanceState);

 /* Create a TextView and set its content.
 * the text is retrieved by calling a native
 * function.
 */
 TextView tv = new TextView(this);
 tv.setText(stringFromJNI());
 setContentView(tv);

There is nothing new here. You will find the stringFromJNI method just below the onCreate method.

Declaration of Native Methods
As shown in Listing 3-2, the method declaration of stringFromJNI contains the native keyword to

inform the Java compiler that the implementation of this method is provided in another language.

The method declaration is terminated with a semicolon, the statement terminator symbol, because

the native methods do not have a body.

Listing 3-2. Method Declaration of Native stringFromJNI Method

/* A native method that is implemented by the
 * 'hello-jni' native library, which is packaged
 * with this application.
 */
public native String stringFromJNI();

Although the virtual machine now knows that the method is implemented natively, it still does not

know where to find the implementation.

http://freepdf-books.com

69CHAPTER 3: Communicating with Native Code using JNI

Loading the Shared Libraries
As mentioned in the previous chapter, native methods are compiled into a shared library. This shared

library needs to be loaded first for the virtual machine to find the native method implementations. The

java.lang.System class provides two static methods, load and loadLibrary, for loading shared libraries

during runtime. As shown in Listing 3-3, the HelloJni activity loads the shared library hello-jni.

Listing 3-3. HelloJni Activity Loading the hello-jni Shared Library

/* this is used to load the 'hello-jni' library on application
 * startup. The library has already been unpacked into
 * /data/data/com.example.HelloJni/lib/libhello-jni.so at
 * installation time by the package manager.
 */
static {

System.loadLibrary("hello-jni");
}

The loadLibrary method is called within the static context because you want the native code

implementations to be loaded as the class is loaded and initialized for the first time.

Bear in mind that Java technology is designed with the goal of being platform independent. As a part

of the Java framework API, the design of loadLibrary is not any different. Although the actual shared

library produced by Android NDK is named libhello-jni.so, the loadLibrary method only takes

the library name, hello-jni, and adds the necessary prefix and suffix as required by the operating

system in use. The library name is same as the module name that is defined in Android.mk using the

LOCAL_MODULE build system variable.

The argument to loadLibrary does not include the location of the shared library either. The Java

library path, system property java.library.path, holds the list of directories that the loadLibrary
method will search for in the shared libraries. The Java library path on Android contains /vendor/lib
and /system/lib.

The caveat here is that loadLibrary will load the shared library as soon as it finds a library with the

same name while going through the Java library path. Since the first set of directories in the Java

library path is the Android system directories, Android developers are strongly encouraged to pick

unique names for the shared libraries in order to prevent any name clashes with the system libraries.

Now let’s look into the native code to see how the native method is declared and implemented.

Implementing the Native Methods
Using the Project Explorer view, expand the jni directory and double-click the hello-jni.c source

file to open it in the editor view. The C source code starts by including the jni.h header file, as

shown in Listing 3-4. This header file contains definitions of JNI data types and functions.

Listing 3-4. Native Implementation of stringFromJNI Method

#include <string.h>
#include <jni.h>

http://freepdf-books.com

70 CHAPTER 3: Communicating with Native Code using JNI

...
jstring
Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env,
 jobject thiz)
{
 return (*env)->NewStringUTF(env, "Hello from JNI !");
}

The stringFromJNI native method is also declared with a fully qualified function named

Java_com_example_hellojni_HelloJni_stringFromJNI. This explicit function naming allows the

virtual machine to automatically find native functions in loaded shared libraries.

javah, to automate this task. The javah tool parses a Java class file for native methods

 < Eclipse Workspace>/com.example.hellojni.
, where the HelloJni project is imported. The javah tool operates on compiled Java class

parse, like so:

javah –classpath bin/classes com.example.hellojni.HelloJni

The javah tool will parse the com.example.hellojni.HelloJni class file, and it will generate the

C/C++ header file as com_example_hellojni_HelloJni.h, as shown in Listing 3-5.

Listing 3-5. The com_example_hellojni_HelloJni.h Header File

/* DO NOT EDIT THIS FILE - it is machine generated */
#include < jni.h>
/* Header for class com_example_hellojni_HelloJni */

#ifndef _Included_com_example_hellojni_HelloJni
#define _Included_com_example_hellojni_HelloJni
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: com_example_hellojni_HelloJni
 * Method: stringFromJNI
 * Signature: ()Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_com_example_hellojni_HelloJni_stringFromJNI
 (JNIEnv *, jobject);

http://freepdf-books.com

71CHAPTER 3: Communicating with Native Code using JNI

/*
 * Class: com_example_hellojni_HelloJni
 * Method: unimplementedStringFromJNI
 * Signature: ()Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_com_example_hellojni_HelloJni_unimplementedStringFromJNI
 (JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

The C/C++ source file simply needs to include this header file and provide the implementation for the

native methods, as shown in Listing 3-6.

Listing 3-6. The com_example_hellojni_HelloJni.c Source File

#include "com_example_hellojni_HelloJni.h"

JNIEXPORT jstring JNICALL Java_com_example_hellojni_HelloJni_stringFromJNI
 (JNIEnv * env, jobject thiz)
{
 return (*env)->NewStringUTF(env, "Hello from JNI !");
}

Instead of running the javah tool each time from the command line, it can be integrated into Eclipse

as an external tool to streamline the process of generating the header files.

Running from Eclipse IDE

Open the Eclipse IDE, and choose Run ➤ External Tools External Tools Configurations from the top

menu bar. Using the External Tools Configurations dialog, select Program, and then click the New

launch configuration button. Using the Main tab, fill in the tool information as follows and as shown

in Figure 3-1:

Name: 	 Generate C and C++ Header File

Location: 	 ${system_path:javah}

Working Directory: 	 ${project_loc}/jni

Arguments: 	 -classpath "${project_classpath};${env_var:ANDROID_SDK_HOME}/
platforms/android-14/android.jar" ${java_type_name}

http://freepdf-books.com

72 CHAPTER 3: Communicating with Native Code using JNI

You will need to replace the semicolon symbol with colon symbol on Mac OS X and Linux platforms.

Switch to the Refresh tab; put a checkmark next to the “Refresh resource upon completion” and

select “The project containing the selected resource” from the list, as shown in Figure 3-2.

Figure 3-1. The javah external tool configuration

http://freepdf-books.com

73CHAPTER 3: Communicating with Native Code using JNI

Switch to the Common tab, and put a checkmark next to the External Tools under the “Display in

favorites menu” group, as shown in Figure 3-3.

Figure 3-2. Refresh project upon running the javah tool

Figure 3-3. Display the javah tool in the favorites menu

Click the OK button to save the external tool configuration. In order to test the new configuration,

using the Project Explorer view, select the HelloJni class, then choose Run ➤ External Tools

➤ Generate C and C++ Header File. The javah tool will parse the selected class file for native

methods, and it will generate a C/C++ header file called com_example_hellojni_HelloJni.h under

the jni directory with the method descriptions.

http://freepdf-books.com

74 CHAPTER 3: Communicating with Native Code using JNI

Now that you have automated the way to generate the native method declarations, let’s look into the

generated method declarations more in detail.

Method Declarations

Although the Java method stringFromJNI does not take any parameters, the native function takes

two parameters, as shown in Listing 3-7.

Listing 3-7. Mandatory Parameters of Native Methods

JNIEXPORT jstring JNICALL Java_com_example_hellojni_HelloJni_stringFromJNI
 (JNIEnv *, jobject);

JNIEnv, is an interface pointer that points to a function table of available JNI

jobject, is a Java object reference to the HelloJni class instance.

 interface pointer. JNIEnv is a pointer to thread-local data, which in turn contains a pointer to

JNIEnv interface pointer as their

Caution The JNIEnv interface pointer that is passed into each native method call is also valid in the

thread associated with the method call. It cannot be cached and used by other threads.

Depending on whether the native code is a C or C++ source file, the syntax for calling JNI functions

differs. In C code, JNIEnv is a pointer to JNINativeInterface structure. This pointer needs to be

dereferenced first in order to access any JNI function. Since the JNI functions in C code do not know

the current JNI environment, the JNIEnv instance should be passed as the first argument to each JNI

function call, like so:

return (*env)->NewStringUTF(env, "Hello from JNI !");

In C++ code, JNIEnv is actually a C++ class instance. JNI functions are exposed as member

functions. Since JNI methods have access to the current JNI environment, the JNI method calls do

not require the JNIEnv instance as an argument. In C++, the same code looks like

return env->NewStringUTF("Hello from JNI !");

Instance vs. Static Methods

The Java programming language has two types of methods: instance methods and static methods.

Instance methods are associated with a class instance, and they can only be called on a class

instance. Static methods are not associated with a class instance, and they can be called directly

http://freepdf-books.com

75CHAPTER 3: Communicating with Native Code using JNI

from a static context. Both instance and static methods can be declared as native, and their

implementations can be provided as native code through the JNI technology. Native instance

methods get the instance reference as their second parameter as a jobject value, as shown in

Listing 3-8.

Listing 3-8. Native Instance Method Definition

JNIEXPORT jstring JNICALL Java_com_example_hellojni_HelloJni_stringFromJNI
 (JNIEnv * env, jobject thiz);

Since static methods are not tied to an instance, they get the class reference instead as their second

parameter as a jclass value, shown in Listing 3-9.

Listing 3-9. Native Static Method Definition

JNIEXPORT jstring JNICALL Java_com_example_hellojni_HelloJni_stringFromJNI
 (JNIEnv * env, jclass clazz);

As you may have noticed in the method definitions that JNI provides its own data types to expose

Java types to native code.

Data Types
There are two kinds of data types in Java:

Primitive types: 	 boolean, byte, char, short, int, long, float, and double

Reference types: 	 String, arrays, and other classes

Let’s take a closer look at each of these data types.

Primitive Types
Primitive types are directly mapped to C/C++ equivalents, as shown in Table 3-1. The JNI uses type

definitions to make this mapping transparent to developers.

http://freepdf-books.com

76 CHAPTER 3: Communicating with Native Code using JNI

 3-2. Their internal data structure is not

Table 3-1. Java Primitive Data Types

Java Type JNI Type C/C++ Type Size

Boolean Jboolean unsigned char Unsigned 8 bits

Byte Jbyte char Signed 8 bits

Char Jchar unsigned short Unsigned 16 bits

Short Jshort short Signed 16 bits

Int Jint Int Signed 32 bits

Long Jlong long long Signed 64 bits

Float Jfloat float 32 bits

Double Jdouble double 64 bits

Table 3-2. Java Reference Type Mapping

Java Type Native Type

java.lang.Class jclass

java.lang.Throwable jthrowable

java.lang.String jstring

Other objects jobject

java.lang.Object[] jobjectArray

boolean[] jbooleanArray

byte[] jbyteArray

char[] jcharArray

short[] jshortArray

int[] jintArray

long[] jlongArray

float[] jfloatArray

double[] jdoubleArray

Other arrays Jarray

http://freepdf-books.com

77CHAPTER 3: Communicating with Native Code using JNI

Operations on Reference Types
Reference types are passed as opaque references to the native code rather than native data types,

and they cannot be consumed and modified directly. JNI provides a set of APIs for interacting with

these reference types. These APIs are provided to the native function through the JNIEnv interface

pointer. In this section, you will briefly explore these APIs pertinent to the following types and

components:

Strings	
Arrays	
NIO Buffers	
Fields	
Methods	

String Operations
Java strings are handled by the JNI as reference types. These reference types are not directly usable

as native C strings. JNI provides the necessary functions to convert these Java string references to

C strings and back. Since Java string objects are immutable, JNI does not provide any function to

modify the content of an existing Java string.

JNI supports both Unicode and UTF-8 encoded strings, and it provides two sets of functions

through the JNIEnv interface pointer to handle each of these string encodings.

New String

New string instances can be constructed from the native code by using the functions NewString for

Unicode strings and NewStringUTF for UTF-8 strings. As shown in Listing 3-10, these functions take

a C string and returns a Java string reference type, a jstring value.

Listing 3-10. New Java String from a Given C String

jstring javaString;
javaString = (*env)->NewStringUTF(env, "Hello World!");

In case of a memory overflow, these functions return NULL to inform the native code that an

exception has been thrown in the virtual machine so the native code should not continue. We will get

back to the topic of exception handling later in this chapter.

Converting a Java String to C String

In order to use a Java string in native code, it needs to be converted to a C string first. Java

strings can be converted to C strings using the functions GetStringChars for Unicode strings and

GetStringUTFChars for UTF-8 strings. These functions take an optional third argument, a pass-by-

reference output parameter called isCopy that can allow the caller to determine whether the returned

C string address points to a copy or the pinned object in the heap. This is shown in Listing 3-11.

http://freepdf-books.com

78 CHAPTER 3: Communicating with Native Code using JNI

Listing 3-11. Converting a Java String to C String

const jbyte* str;
jboolean isCopy;

str = (*env)->GetStringUTFChars(env, javaString, &isCopy);
if (0 != str) {
 printf("Java string: %s", str);

 if (JNI_TRUE == isCopy) {
 printf("C string is a copy of the Java string.");
 } else {
 printf("C string points to actual string.");
 }

GetStringChars and GetStringUTFChars functions need to be

ReleaseStringChars for Unicode strings and ReleaseStringUTFChars for

 Releasing the C Strings Returned by JNI Functions

(*env)->ReleaseStringUTFChars(env, javaString, str);

Array Operations
Java arrays are handled by the JNI as reference types. The JNI provides the necessary functions to

access and manipulate Java arrays.

New Array

New array instances can be constructed from the native code using the New<Type>Array function,

with the <Type> being Int, Char, Boolean, etc. such as NewIntArray. As shown in Listing 3-13, the size

of the array should be provided as a parameter when invoking these functions.

Listing 3-13. New Java Array from Native Code

jintArray javaArray;
javaArray = (*env)->NewIntArray(env, 10);
if (0 != javaArray) {
 /* You can now use the array. */
}

Same as the NewString function, in case of a memory overflow, the New<Type>Array function will

return NULL to inform the native code that an exception has been thrown in the virtual machine and

that the native code should not continue.

http://freepdf-books.com

79CHAPTER 3: Communicating with Native Code using JNI

Accessing the Array Elements

JNI provides two types of access to Java array elements. Code can either get a copy of the array as

a C array, or it can ask JNI to get a direct pointer to the array elements.

Operating on a Copy

The Get<Type>ArrayRegion function copies the given primitive Java array to the given C array, as

shown in Listing 3-14.

Listing 3-14. Getting a Copy of Java Array Region as a C Array

jint nativeArray[10];
(*env)->GetIntArrayRegion(env, javaArray, 0, 10, nativeArray);

The native code can then use and modify the array elements as an ordinary C array. When the native

code wants to commit its changes back to the Java array, the Set<Type>ArrayRegion function can be

used to copy the C array back to Java array, as shown in Listing 3-15.

Listing 3-15. Committing Back the Changes from C Array to Java Array

(*env)->SetIntArrayRegion(env, javaArray, 0, 10, nativeArray);

When the array sizes are big, copying the array in order to operate on them causes performance

problems. In such cases, the native code should either only get or set the region of the array

elements instead of getting the entire array, if possible. Otherwise, JNI provides a different set of

functions to obtain a direct pointer to the array elements instead of their copies.

Operating on Direct Pointer

The Get <Type>ArrayElements function allows the native code to get a direct pointer to array

elements, when possible. As shown in Listing 3-16, the function takes a third optional parameter, a

pass-by-reference output parameter called isCopy that can allow the caller to determine whether the

returned C array points to a copy or the pinned array in the heap.

Listing 3-16. Getting a Direct Pointer to Java Array Elements

jint* nativeDirectArray;
jboolean isCopy;

nativeDirectArray = (*env)->GetIntArrayElements(env, javaArray, &isCopy);

JNI does not provide a set method, since the array elements can be accessed and manipulated as

an ordinary C array. JNI requires the native code to release these pointers when it finishes; otherwise

memory leaks happen. JNI provides the Release<Type>ArrayElemens functions to enable native code

to release the C arrays that are returned by Get<Type>ArrayElements function calls, as shown in

Listing 3-17.

http://freepdf-books.com

80 CHAPTER 3: Communicating with Native Code using JNI

Listing 3-17. Releasing the Direct Pointer to Java Array Elements

(*env)->ReleaseIntArrayElements(env, javaArray, nativeDirectArray, 0);

This function takes a fourth parameter, the release mode. Table 3-3 contains a list of supported

release modes.

Table 3-3. Supported Release Modes

Release Mode Action

0 Copy back the content and free the native array.

JNI_COMMIT Copy back the content but do not free the native array.

This can be used for periodically updating a Java array.

JNI_ABORT Free the native array without copying its content.

New Direct Byte Buffer

Native code can create a direct byte buffer that will be used by the Java application by providing a

native C byte array as the basis. The NewDirectByteBuffer is used in Listing 3-18.

Listing 3-18. New Byte Buffer Based on the Given C Byte Array

unsigned char* buffer = (unsigned char*) malloc(1024);
...
jobject directBuffer;
directBuffer = (*env)->NewDirectByteBuffer(env, buffer, 1024);

Note The memory allocated in native methods is out of the scope and control of the virtual machine’s

garbage collector. Native functions should manage their memory properly by freeing the unused

allocations to prevent memory leaks.

Getting the Direct Byte Buffer

The direct byte buffer can also be created in the Java application. Native code can use the

GetDirectBufferAddress function call to obtain the memory address of the native byte array, as

shown in Listing 3-19.

http://freepdf-books.com

81CHAPTER 3: Communicating with Native Code using JNI

Listing 3-19. Getting the Native Byte Array from the Java Byte Buffer

unsigned char* buffer;
buffer = (unsigned char*) (*env)->GetDirectBufferAddress(env,
 directBuffer);

Accessing Fields
Java has two types of fields: instance fields and static fields. Each instance of a class owns its copy

of the instance fields, whereas all instances of a class share the same static fields.

The JNI provides functions to access both field types. Listing 3-20 shows an example of a Java

class with one static and one instance field.

Listing 3-20. Java Class with Both Static and Instance Fields

public class JavaClass {
 /** Instance field */
 private String instanceField = "Instance Field";

 /** Static field */
 private static String staticField = "Static Field";

 ...
}

Getting the Field ID

The JNI provides access to both types of fields through field IDs. You can obtain field IDs through

the class object for the given instance. The class object is obtained through the GetObjectClass

function, as shown in Listing 3-21.

Listing 3-21. Getting the Class from an Object Reference

jclass clazz;
clazz = (*env)->GetObjectClass(env, instance);

Depending on the field type, there are two functions to obtain the field ID from the class. The

GetFieldId function is for instance fields, as shown in Listing 3-22.

Listing 3-22. Getting the Field ID of an Instance Field

jfieldID instanceFieldId;
instanceFieldId = (*env)->GetFieldID(env, clazz,
 "instanceField", "Ljava/lang/String;");

The GetStaticFieldId is for static fields, as shown in Listing 3-23. Both functions return the field ID as

a jfieldID type.

http://freepdf-books.com

82 CHAPTER 3: Communicating with Native Code using JNI

Listing 3-23. Getting the Field ID of a Static Field

jfieldID staticFieldId;
staticFieldId = (*env)->GetStaticFieldID(env, clazz,
 "staticField", "Ljava/lang/String;");

The last parameter of both functions takes the field descriptor that represents the field type in Java.

In the example code, "Ljava/lang/String" indicates that the field type is a String. We will get back

to this later in this chapter.

Tip The field IDs can be cached in order to improve application performance. Always cache the most

frequently used field ids.

Get<Type>Field function

 Getting an Instance Field

Use the GetStatic<Type>Field function for static fields, as shown in Listing 3-25.

Listing 3-25. Getting a Static Field

jstring staticField;
staticField = (*env)->GetStaticObjectField(env, clazz, staticFieldId);

In case of a memory overflow, both of these functions can return NULL, and the native code should

not continue to execute.

Tip Getting the value of a single field takes two or three JNI function calls. Native code reaching back

to Java to obtain values of each individual field adds extra overhead to the application and leads to

poorer performance. It is strongly recommended to pass all needed parameters to native method calls

instead of having the native code reach back to Java.

Calling Methods
As with fields, there are two types of methods in Java: instance methods and static methods. The

JNI provides functions to access both types. Listing 3-26 shows a Java class that contains one

static method and one instance method.

http://freepdf-books.com

83CHAPTER 3: Communicating with Native Code using JNI

Listing 3-26. Java Class with Both Instance and Static Methods

public class JavaClass {
 /**
 * Instance method.
 */
 private String instanceMethod() {
 return "Instance Method";
 }

 /**
 * Static method.
 */
 private static String staticMethod() {
 return "Static Method";
 }

 ...
}

Getting the Method ID

The JNI provides access to both types of methods through method IDs. You can obtain method IDs

through the class object for the given instance. Use the GetMethodID function to obtain the method

ID of an instance method, as shown in Listing 3-27.

Listing 3-27. Getting the Method ID of an Instance Method

jmethodID instanceMethodId;
instanceMethodId = (*env)->GetMethodID(env, clazz,
 "instanceMethod", "()Ljava/lang/String;");

Use the GetStaticMethodID function to get the method ID of a static field, as shown in Listing 3-28.

Both functions return the method ID as a jmethodID type.

Listing 3-28. Getting the Method ID of a Static Method

jmethodID staticMethodId;
staticMethodId = (*env)->GetStaticMethodID(env, clazz,
 "staticMethod", "()Ljava/lang/String;");

Like the field ID getter methods, the last parameter of both functions takes the method descriptor. It

represents the method signature in Java.

Tip The method IDs can be cached in order to improve application performance. Always cache the most

frequently used method ids.

http://freepdf-books.com

84 CHAPTER 3: Communicating with Native Code using JNI

Calling the Method

Using the method ID, you can call the actual method through the Call<Type>Method function for

instance methods, as shown in Listing 3-29.

Listing 3-29. Calling an Instance Method

jstring instanceMethodResult;
instanceMethodResult = (*env)->CallStringMethod(env,
 instance, instanceMethodId);

Use the CallStatic<Type>Field function for static methods, as shown in Listing 3-30.

 clazz, staticMethodId);

NULL and the native code should

Tip Transitions between Java and native code is a costly operation. It is strongly recommended that

you take this into account when deciding to split between Java and native code. Minimizing these

transitions can benefit the application performance greatly.

Field and Method Descriptors
As mentioned in the previous two sections, getting both the field ID and the method ID requires the

field and method descriptors. Both the field and the method descriptors can be generated by using

the Java type signature mapping shown in Table 3-4.

http://freepdf-books.com

85CHAPTER 3: Communicating with Native Code using JNI

Manually producing the field and method descriptors by using the type signature mapping and

keeping them in sync with the Java code can be a cumbersome task.

Java Class File Disassembler: javap

JDK comes with a command line Java class file disassembler called javap. This tool can be used to

extract the field and method descriptors from the compiled class files.

Running from Command Line

Using the command line, change the directory to <Eclipse Workspace>/com.example.hellojni.
HelloJni, where the HelloJni project is imported. The javap tool operates on compiled Java class

files. Invoke the javap tool with the location of compiled class files and the name of the Java class to

disassemble, like so:

javap –classpath bin/classes –p –s com.example.hellojni.HelloJni

The javap tool will disassemble the com.example.hellojni.HelloJni class file and will output the

field and method signatures, as shown in Figure 3-4.

Table 3-4. Java Type Signature Mapping

Java Type Signature

Boolean Z

Byte B

Char C

Short S

Int I

Long J

Float F

Double D

fully-qualified-class Lfully-qualified-class;

type[] [type

method type (arg-type)ret-type

http://freepdf-books.com

86 CHAPTER 3: Communicating with Native Code using JNI

Run ➤ External Tools Configurations… from the top menu

bar. Using the External Tool Configurations dialog, select Program, and then click the New launch

configuration button. Using the Main tab, fill in the tool information as follows and as shown in

Figure 3-5:

Name: 	 Java Class File Disassembler

Location: 	 ${system_path:javap}

Working Directory: 	 ${project_loc}

Arguments: 	 -classpath "${project_classpath};${env_var:ANDROID_SDK_HOME}/
platforms/android-14/android.jar" –p –s ${java_type_name}

 The javap tool output

http://freepdf-books.com

87CHAPTER 3: Communicating with Native Code using JNI

You will need to replace the semicolon symbol with colon symbol on Mac OS X and Linux platforms.

Switch to the Common tab, and put a checkmark next to the External Tools under the “Display in

favorites menu” group, as described earlier.

Click the OK button to save the external tool configuration. In order to test the new configuration, using

the Project Explorer view, select the HelloJni class, then choose Run ➤ External Tools ➤ Java Class

File Disassembler. The console view will show the output of the javah tool, as shown in Figure 3-6.

Figure 3-5. The javap external tool configuration

http://freepdf-books.com

88 CHAPTER 3: Communicating with Native Code using JNI

 Console showing the javap tool output

called catching an exception. The virtual machine clears the exception and transfers the control to

the exception handler block. In contrast, the JNI requires developers to explicitly implement the

exception handling flow after an exception has occurred.

Catching Exceptions
The JNIEnv interface provides a set of functions related to exceptions. To see these functions in

action, use the Java class, shown in Listing 3-31, as an example.

Listing 3-31. Java Example That Throws an Exception

public class JavaClass {
 /**
 * Throwing method.
 */
 private void throwingMethod() throws NullPointerException {
 throw new NullPointerException("Null pointer");
 }

 /**
 * Access methods native method.
 */
 private native void accessMethods();
}

http://freepdf-books.com

89CHAPTER 3: Communicating with Native Code using JNI

The accessMethods native method needs to explicitly do the exception handling while calling the

throwingMethod method. The JNI provides the ExceptionOccurred function to query the virtual

machine if there is a pending exception. The exception handler needs to explicitly clear the

exception using the ExceptionClear function after it finishes with it, as shown in Listing 3-32.

Listing 3-32. Exception Handling in Native Code

jthrowable ex;
...
(*env)->CallVoidMethod(env, instance, throwingMethodId);
ex = (*env)->ExceptionOccurred(env);
if (0 != ex) {
 (*env)->ExceptionClear(env);

 /* Exception handler. */
}

Throwing Exceptions
The JNI allows the native code to throw exceptions as well. Since exceptions are Java classes, the

exception class should be obtained first using the FindClass function. The ThrowNew function can be

used to initiate and throw the new exception, as shown in Listing 3-33.

Listing 3-33. Throwing an Exception from Native Code

jclass clazz;
...
clazz = (*env)->FindClass(env, "java/lang/NullPointerException");
if (0 ! = clazz) {
 (*env)->ThrowNew(env, clazz, "Exception message.");
}

As the code execution of native functions are not under the control of the virtual machine, throwing

an exception does not stop the execution of the native function and transfer control to the exception

handler. Upon throwing an exception, the native function should free any allocated native resources,

such as the memory, and properly return. The references obtained through the JNIEnv interface

are local references and they get freed automatically by the virtual machine as soon as the native

function returns.

Local and Global References
References play an important role in Java programming. The virtual machine manages the lifetime

of class instances by tracking their references and garbage-collecting the ones that are no longer

referenced. Since native code is not a managed environment, the JNI provides a set of functions to

allow native code to explicitly manage the object references and lifetimes. The JNI supports three

type kinds of references: local references, global references, and weak global references,

as described in the following sections.

http://freepdf-books.com

90 CHAPTER 3: Communicating with Native Code using JNI

Local References
Most JNI functions return local references. Local references cannot be cached and reused in

subsequent invocations since their lifetime is limited to the native method. Local references are freed

once the native function returns. For example, the FindClass function returns a local reference; it is

freed automatically when the native method returns. Native code can also be freed explicitly through

the DeleteLocalRef function, as shown in Listing 3-34.

Listing 3-34. Deleting a Local Reference

jclass clazz;
clazz = (*env)->FindClass(env, "java/lang/String");

EnsureLocalCapacity method to request more local reference slots from the

Global references remain valid across subsequent invocations of the native methods until they are

explicitly freed by the native code.

New Global Reference

Global references can be initiated from local references through the NewGlobalRef function, as shown

in Listing 3-35.

Listing 3-35. New Global Reference from a Given Local Reference

jclass localClazz;
jclass globalClazz;
...
localClazz = (*env)->FindClass(env, "java/lang/String");
globalClazz = (*env)->NewGlobalRef(env, localClazz);
...
(*env)->DeleteLocalRef(env, localClazz);

Deleting a Global Reference

When a global reference is no longer needed by the native code, you can free it at any time through

the DeleteGlobalRef function, as shown in Listing 3-36.

http://freepdf-books.com

91CHAPTER 3: Communicating with Native Code using JNI

Listing 3-36. Deleting a Global Reference

(*env)->DeleteGlobalRef(env, globalClazz);

Weak Global References
Another flavor of global reference is the weak global reference. Like global references, weak global

references remain valid across subsequent invocations of the native methods. Unlike global references,

weak global references do not prevent the underlying object from being garbage-collected.

New Weak Global Reference

Weak global references can be initiated using the NewWeakGlobalRef function, as shown in Listing 3-37.

Listing 3-37. New Weak Global Reference from a Given Local Reference

jclass weakGlobalClazz;
weakGlobalClazz = (*env)->NewWeakGlobalRef(env, localClazz);

Validating a Weak Global Reference

To determine if the weak global reference is still pointing to a live class instance, you can use the

IsSameObject function, as shown in Listing 3-38.

Listing 3-38. Checking if Weak Global Reference is Still Valid

if (JNI_FALSE == (*env)->IsSameObject(env, weakGlobalClazz, NULL)) {
 /* Object is still live and can be used. */
} else {
 /* Object is garbage collected and cannot be used. */
}

Deleting a Weak Global Reference

Weak global references can be freed at any time using the DeleteWeakGlobalRef function, as shown

in Listing 3-39.

Listing 3-39. Deleting a Weak Global Reference

(*env)->DeleteWeakGlobalRef(env, weakGlobalClazz);

Until they get explicitly freed, the global references remains valid, and they can be used by other

native function calls as well as the native threads.

http://freepdf-books.com

92 CHAPTER 3: Communicating with Native Code using JNI

Threading
The virtual machine supports running native code as a part of the multithreaded environment. There

are certain constraints of JNI technology to keep in mind while developing native components:

Local references are valid only during the execution of the native method and in 	
the thread context that is executing the native method. Local references cannot

be shared among multiple threads. Only global references can be shared by

multiple threads.

The 	 JNIEnv interface pointer that is passed into each native method call is also

valid in the thread associated with the method call. It cannot be cached and

used by other threads.

 Java Synchronized Code Block

synchronized(obj) {
 /* Synchronized thread-safe code block. */
}

In the native code, the same level of synchronization can be achieved using the JNI’s monitor

methods, as shown in Listing 3-41.

Listing 3-41. Native Equivalent of Java Synchronized Code Block

if (JNI_OK == (*env)->MonitorEnter(env, obj)) {
 /* Error handling. */
}

/* Synchronized thread-safe code block. */

if (JNI_OK == (*env)->MonitorExit(env, obj)) {
 /* Error handling. */
}

Caution The call to the MonitorEnter function should be matched with a call to MonitorExit in

order to prevent deadlocks in the code.

http://freepdf-books.com

93CHAPTER 3: Communicating with Native Code using JNI

Native Threads
These native components may use native threads in order to execute certain tasks in parallel. Since

the native threads are not known to the virtual machine, they cannot directly communicate with the

Java components. Native threads should be attached to the virtual machine first in order to interact

with the remaining portion of the application.

The JNI provides the AttachCurrentThread function, through the JavaVM interface pointer, to allow

native code to attach native threads to the virtual machine, as shown in Listing 3-42. The JavaVM

interface pointer should be cached earlier since it cannot be obtained otherwise.

Listing 3-42. Attaching and Detaching the Current Thread to the Virtual Machine

JavaVM* cachedJvm;
...
JNIEnv* env;
...
/* Attach the current thread to virtual machine. */
(*cachedJvm)->AttachCurrentThread(cachedJvm, &env, NULL);

/* Thread can communicate with the Java application
 using the JNIEnv interface. */

/* Detach the current thread from virtual machine. */
(*cachedJvm)->DetachCurrentThread(cachedJvm);

The call to the AttachCurrentThread function allows the application to obtain a JNIEnv interface

pointer that is valid for the current thread. There is no side effect of attaching an already attached

native thread. When the native thread completes, it can be detached from the virtual machine by

using the DetachCurrentThread function.

Summary
In this chapter, you learned how to communicate between the Java application and the native code

using the JNI technology. More information on the JNI technology and available JNI APIs can be

found in Oracle’s JNI documentation at http://docs.oracle.com/javase/1.5.0/docs/guide/jni/
spec/jniTOC.html.

As you may have noticed, doing any operation in JNI takes two or three function calls. Implementing

a large number of native methods and keeping them in sync with the Java classes can easily

become a cumbersome task. In the next chapter, you will evaluate some open source solutions that

can automatically generate the JNI code for you based on the existing native code interfaces.

http://freepdf-books.com

http://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html

95

Chapter 4
Auto-Generate JNI Code

Using SWIG

In the previous chapter you explored JNI technology and you learned how to connect native code

to a Java application. As noted, implementing JNI wrapper code and handling the translation of

data types is a cumbersome and time-consuming development task. This chapter will introduce

the Simplified Wrapper and Interface Generator (SWIG), a development tool that can simplify this

process by automatically generating the necessary JNI wrapper code.

SWIG is not an Android- and Java-only tool. It is a highly extensive tool that can generate code

in many other programming languages. As SWIG is rather large, this chapter will only cover the

following key SWIG concepts and APIs that will get you started:

Defining a SWIG interface for native code.	
Generating JNI code based on the interface.	
Integrating SWIG into the Android Build process.	
Wrapping C and C++ code.	
Exception handling.	
Using memory management.	
Calling Java from native code.	

As SWIG simplifies the development of JNI code, you will be using SWIG often in the next chapters.

What is SWIG?
SWIG is a compile-time software development tool that can produce the code necessary to connect

native modules written in C/C++ with other programming languages, including Java. SWIG is an

interface compiler, merely a code generator; it does not define a new protocol nor is it a component

http://freepdf-books.com

96 CHAPTER 4: Auto-Generate JNI Code Using SWIG

framework or a specialized runtime library. SWIG takes an interface file as its input and produces the

necessary code to expose that interface in Java. SWIG is not a stub generator; it produces code that

is ready to be compiled and run.

SWIG was originally developed in 1995 for scientific applications; it has since evolved into a general-

purpose tool that is distributed under GNU GPL open source license. More information about SWIG

can be found at www.swig.org.

Installation
SWIG works on all major platforms, including Windows, Mac OS X, and Linux. At the time of this

www.swig.org. The binaries for SWIG, except the Windows

. As shown in Figure 4-1, click on the link to download the SWIG

Figure 4-1. SWIG for Windows download link

The SWIG installation package comes as a ZIP archive file. The Windows OS comes with native

support for ZIP format. When the download completes, right-click on the ZIP file and choose

Extract All from the context menu to launch the Extract Compressed Folder wizard. Using the

http://freepdf-books.com

http://www.swig.org
http://www.swig.org
http://www.swig.org/download.html

97CHAPTER 4: Auto-Generate JNI Code Using SWIG

Browse button, choose the destination directory where you want the extracted SWIG files to go. As

mentioned, the C:\android directory is used as the root directory to hold the development tools.

Select C:\android as the destination directory. A dedicated empty destination directory is not

needed since the ZIP file already contains a sub directory called swigwin-2.0.7 to hold the SWIG.

Click the Extract button to start the installation process.

Similar to the other development tools that you have installed, in order to have SWIG easily

reachable, its installation directory should be appended to system executable search path. Launch

the Environment Variables dialog from System Properties, and click the New button. As shown in

Figure 4-2, using the New System Variable, set the variable name to SWIG_HOME and the variable

value to the SWIG installation directory, such as C:\android\swigwin-2.0.7.

Figure 4-2. New SWIG_HOME environment variable

From the list of system variables, double-click on the PATH variable, and append ;%SWIG_HOME% to

the variable value, as shown in Figure 4-3.

Figure 4-3. Appending SWIG binary path to system PATH variable

If the installation was successful, you will see the SWIG version number, as shown in Figure 4-4.

Figure 4-4. Validating SWIG installation

http://freepdf-books.com

98 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Installing on Mac OS X
The SWIG web site does not provide an installation package for Mac OS X platform. A Homebrew

package manager will be used to download and install SWIG. In order to use Homebrew, it needs

to be installed on the host machine as well. Homebrew comes with a console-based installation

application. Copy the install command from the Homebrew installation page, as shown in Figure 4-5.

Figure 4-5. Installation command for Homebrew

Open a Terminal window. At the command prompt, paste the install command, as shown in Figure 4-6,

and press the Enter key to start the installation process. The command will first download the

Homebrew installation script and it will execute it using Ruby. Follow the on-screen instructions to

complete the installation process.

Figure 4-6. Installing Homebrew from command line

http://freepdf-books.com

99CHAPTER 4: Auto-Generate JNI Code Using SWIG

Upon completing the installation of Homebrew, SWIG can now be installed. Using the Terminal

window, execute brew install swig on the command prompt. As shown in Figure 4-7, Homebrew

will download the source code of SWIG and its dependencies, and then it will compile and install it

automatically.

Figure 4-7. Installing SWIG using Homebrew

In order to validate the installation, open a new Terminal window and execute swig -version on the

command line. If the installation was successful, you will see the SWIG version number, as shown in

Figure 4-8.

Figure 4-8. Validating the SWIG installation

Installing on Ubuntu Linux
The SWIG web site does not provide an installation package for Linux flavors. The Ubuntu Linux

software repository contains the latest version of SWIG, and it can be installed using the system

package manager. Again, open a Terminal window. At the command prompt, execute sudo apt-get
install swig, as shown in Figure 4-9. The system package manager will download and install SWIG

and its dependencies automatically.

http://freepdf-books.com

100 CHAPTER 4: Auto-Generate JNI Code Using SWIG

execute swig -version on the command line. If the installation was successful, you will see the

SWIG version number, as shown in Figure 4-10.

Figure 4-10. Validating SWIG installation

 Installing SWIG from command line

Experimenting with SWIG Through an Example
Before learning the details of SWIG, you will walk through an example application to better

understand how SWIG works. The Android platform is built on top of the Linux OS, a multiuser

platform. It runs the applications within a virtual machine sandbox and treats them as different users

on the system to keep the platform secure. On Linux, each user gets assigned a user ID, and this

user ID can be queried by using the POSIX OS API getuid function. As a platform-independent

http://freepdf-books.com

101CHAPTER 4: Auto-Generate JNI Code Using SWIG

programming language, Java does not provide access to these functions. As a part of this example

application, you will be

Writing a SWIG interface file to expose the 	 getuid function.

Integrating SWIG into the Android build process.	
Adding SWIG-generated source files into the 	 Android.mk build file.

Use the SWIG-generated proxy classes to query the 	 getuid.

Display the result on the screen.	
You will be using the hello-jni sample project as a testbed. Open Eclipse IDE, and go into the

hello-jni project. As mentioned earlier, SWIG operates on interface files.

Interface File
SWIG interface files contain function prototypes, classes, and variable declarations. Its syntax is the

same as any ordinary C/C++ header file. In addition to C/C++ keywords and preprocessor directives,

the interface files can also contain SWIG specific preprocessor directives that can enable tuning the

generated wrapper code.

In order to expose getuid, an interface file needs to be defined. Using the Project Explorer, right-click

on jni directory under the hello-jni project, and choose New ➤ File from the context menu to launch

the New File dialog. As shown in Figure 4-11, set file name to Unix.i and click the Finish button.

Figure 4-11. Creating the Unix.i SWIG interface file

http://freepdf-books.com

102 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Using the Editor view, populate the content of Unix.i, as shown in Listing 4-1.

Listing 4-1. Unix.i Interface File Content

/* Module name is Unix. */
%module Unix

%{
/* Include the POSIX operating system APIs. */
#include < unistd.h>
%}

They are merely for annotating the interface files for developers.

Listing 4-2. Unix.i Starting with a Comment

/* Module name is Unix. */
. . .

Module Name

Each invocation of SWIG requires a module name to be specified. The module name is used to name

the resulting wrapper files. The module name is specified using the SWIG specific preprocessor

directive %module, and it should appear at the beginning of every interface file. Complying with this

rule, the Unix.i interface file also starts by defining its module name as Unix, as shown in Listing 4-3.

Listing 4-3. Unix.i Defining Its Module Name

%module Unix

User-Defined Code

SWIG only uses the interface file while generating the wrapper code; its content does not go beyond

this point. It is often necessary to include user-defined code in the generated files, such as any

header file that is required to compile the generated code. When SWIG generates a wrapper code,

it is broken up to into five sections. SWIG provides preprocessor directives to enable developers to

http://freepdf-books.com

103CHAPTER 4: Auto-Generate JNI Code Using SWIG

specify the code snippets that should be included in any of these five sections. The syntax for SWIG

preprocessor directive is shown in Listing 4-4.

Listing 4-4. Syntax for SWIG insert preprocessor directive

% < section > %{
 . . .
 This code block will be included into generated code as is.
 . . .
%}
. . .

The <section> portion can take following values:

	begin: Places the code block at the beginning of the generated wrapper file. It is

mostly used for defining preprocessor macros that are used in the later part of

the file.

	runtime: Places the code block next to SWIG’s internal type-checking and other

support functions.

	header: Places the code block into the header section next to header files and

other helper functions. This is the default place to inject code into the generated

files. The %{ . . . %} can also be used the short form.

	wrapper: Places the code block next to generated wrapper functions.

	init: Places the code block into to function that will initialize the module upon

loading.

As shown in Listing 4-5, the Unix.i interface file injects a header file into the generated wrapper

code using the short form of insert header preprocessor directive.

Listing 4-5. Unix.i Inserting a Header into Generated Wrapper Code

%{
/* Include the POSIX operating system APIs. */
#include < unistd.h>
%}

Type Definitions

SWIG can understand all C/C++ data types but treats anything else as objects and wraps them as

pointers. The declaration of the getuid function suggests that its return type is uid_t, which is not

a standard C/C++ data type. As is, SWIG will treat it as an object, and it will wrap it as a pointer.

This is not the preferred behavior since uid_t is nothing more than a simple typedef-name based on

unsigned integer, not an object. As shown in Listing 4-6, the Unix.i interface file uses a typedef to

inform SWIG about the actual return type of getuid function.

http://freepdf-books.com

104 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-6. Type Definition for uid_t

/* Tell SWIG about uid_t. */
typedef unsigned int uid_t;

Function Prototypes

The Unix.i interface file ends with the function prototype for the getuid function as shown in Listing 4-7.

Listing 4-7. Function Prototype for getuid

/* Ask SWIG to wrap getuid function. */

getuid function to Java. SWIG will generate two sets of files: wrapper C/C++ code to expose

Java Package for Proxy Classes

The Java package directory should be created in advance of invoking SWIG. Using the Project

Explorer, right-click on the src directory and select New ➤ Package to launch the New Java

Package dialog. As shown in Figure 4-12, set the package name to com.apress.swig and click the

Finish button.

Figure 4-12. Java package for SWIG files

http://freepdf-books.com

105CHAPTER 4: Auto-Generate JNI Code Using SWIG

Invoking SWIG

You are now ready to invoke SWIG. Open a Terminal window or a command prompt, and go in to

the directory where the hello-jni project is imported, such as C:\android\workspace\com.example.
hellojni.HelloJni. As shown in Figure 4-13, execute swig -java -package com.apress.swig
-outdir src/com/apress/swig jni/Unix.i on the command line.

Figure 4-13. Invoking SWIG on the command line

SWIG parses the Unix.i interface file and generates the Unix_wrap.c C/C++ wrapper code in the jni

directory plus the UnixJNI.java and Unix.java Java proxy classes in the com.apress.swig package.

Before starting to explore these files, let’s streamline the process. SWIG can be integrated into the

Android build process, instead of being manually executed from the command line.

Integrating SWIG into Android Build Process
In order to integrate SWIG into Android build process, you will define a Makefile fragment.

Android Build System Fragment for SWIG

Using the Project Explorer, right-click the jni directory and choose New ➤ File from the menu.

Using the New File dialog, create a file named my-swig-generate.mk. The contents of this Makefile

fragment are shown in Listing 4-8.

Listing 4-8. Contents of my-swig-generate.mk File

#
SWIG extension for Android build system.
#
@author Onur Cinar
#

Check if the MY_SWIG_PACKAGE is defined
ifndef MY_SWIG_PACKAGE
 $(error MY_SWIG_PACKAGE is not defined.)
endif

Replace dots with slashes for the Java directory
MY_SWIG_OUTDIR := $(NDK_PROJECT_PATH)/src/$(subst .,/,$(MY_SWIG_PACKAGE))

http://freepdf-books.com

106 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Default SWIG type is C
ifndef MY_SWIG_TYPE
 MY_SWIG_TYPE := c
endif

Set SWIG mode
ifeq ($(MY_SWIG_TYPE),cxx)
 MY_SWIG_MODE := − c++
else
 MY_SWIG_MODE :=
endif

Append SWIG wrapper source files
 + = $(foreach MY_SWIG_INTERFACE,\

 $(MY_SWIG_INTERFACES),\
 $(basename $(MY_SWIG_INTERFACE))_wrap.$(MY_SWIG_TYPE))

 + = .cxx

 $(call host-mkdir,$(MY_SWIG_OUTDIR))
 swig -java \
 $(MY_SWIG_MODE) \
 -package $(MY_SWIG_PACKAGE) \
 -outdir $(MY_SWIG_OUTDIR) \
 $<

Integrating SWIG into Android.mk

In order to use this build system fragment, the existing Android.mk file needs to be modified. The

build system fragment requires three new variables to be defined in Android.mk file in order to

operate:

	MY_SWIG_PACKAGE: Defines the Java package where SWIG will generate the proxy

classes. In your example, this will be the com.apress.swig package.

	MY_SWIG_INTERFACES: Lists the SWIG interface file that should be processed. In

your example, this will be the Unix.i file.

	MY_SWIG_MODE: Instructs SWIG to generate the wrapper code in either C or C++.

In your example, this will be C code.

Using the Project Explorer, expand the jni directory under the project root, and open Android.mk in

editor view. Let’s now define these new variables for the project. The additions to the Android.mk file

are shown in Listing 4-9 as bold.

http://freepdf-books.com

107CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-9. Defining SWIG Variables in Android.mk file

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := hello-jni
LOCAL_SRC_FILES := hello-jni.c

MY_SWIG_PACKAGE := com.apress.swig
MY_SWIG_INTERFACES := Unix.i
MY_SWIG_TYPE := c

include $(LOCAL_PATH)/my-swig-generate.mk

include $(BUILD_SHARED_LIBRARY)

After defining these new variables, the Androd.mk file includes the my-swig-generate.mk build

system fragment that you defined earlier in this section. The build system fragment first creates the

Java package directory and then invokes SWIG by setting the proper parameters based on these

variables. This should happen before building the shared library since the wrapper code that will

be generated by SWIG should also get compiled into the shared library. The build system fragment

automatically appends the generated wrapper files into the LOCAL_SRC_FILES variable.

Choose Project ➤ Build All from the top menu to rebuild the current project. As shown in Figure 4-14,

the Android NDK build logs indicate that the Unix_wrapper.c wrapper code is getting compiled into

the shared library.

Figure 4-14. Build logs showing the wrapper code getting compiled

Updating the Activity
The getuid function is now properly exposed through the Unix proxy Java class. In order to validate

it, you will be modifying the HelloJni activity to show its return value on the display. Using the

http://freepdf-books.com

108 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Project Explorer, expand the src directory and then the com.example.hellojni Java package. Open

HelloJni in editor view, and modify the body of onCreate method as shown in Listing 4-10.

Listing 4-10. Invoking getuid Function from Unix Proxy Class

@Override
public void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);

 . . .

 TextView tv = new TextView(this);
 tv.setText("UID: " + Unix.getuid());
 setContentView(tv);

➤ Run from the top menu bar to launch the application.

 4-15, activity will call the getuid function and the result will be displayed on the

Figure 4-15. Activity displaying the user ID

As demonstrated with this example, SWIG can automatically generate all of the necessary JNI and

Java code to expose a native function to Java.

Exploring Generated Code
In order to make the native function reachable from Java, SWIG has generated two Java classes and

one C/C++ wrapper:

	Unix_wrap.c: Contains the JNI wrapper functions to handle the type mapping

and to expose the selected native functions to Java. The generated wrapper

function is shown in Listing 4-11.

http://freepdf-books.com

109CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-11. Generated Wrapper Function for getuid

SWIGEXPORT jlong JNICALL Java_com_apress_swig_UnixJNI_getuid(JNIEnv *jenv, jclass jcls)
{
 jlong jresult = 0 ;
 uid_t result;

 (void)jenv;
 (void)jcls;
 result = (uid_t)getuid();
 jresult = (jlong)result;
 return jresult;
}

	UnixJNI.java: Intermediary JNI class containing the Java native function

declaration for all functions that are exposed by the wrapper. It is generated

in the com.apress.swig Java package as specified in Android.mk file. The

generated intermediary JNI class is shown in Listing 4-12.

Listing 4-12. Generated Intermediary JNI Class

package com.apress.swig;

public class UnixJNI {
 public final static native long getuid();
}

	Unix.java: Module class containing all methods and global variable getter

and setters. It wraps the calls in the intermediary JNI class to implement static

type checking. You will revisit this subject when you start exploring how SWIG

handles the objects. It is generated in com.apress.swig Java package as well.

The generated module class is shown in Listing 4-13.

Listing 4-13. Generated Module Class

package com.apress.swig;

public class Unix {
 public static long getuid() {
 return UnixJNI.getuid();
 }
}

Wrapping C Code
In the previous example, you learned how the functions get exposed through SWIG. In this section,

you will explore how other components get wrapped by SWIG. Note that the components that are

defined in the interface file are merely for SWIG to expose them to Java; they do not get included

into the generated files unless they are also declared in insert preprocessor declaration. SWIG

assumes that all exposed components are defined elsewhere in the code. If the component is not

defined, the build will simply fail during compile-time.

http://freepdf-books.com

110 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Global Variables
Although there is no such thing as a Java global variable, SWIG does support global variables.

SWIG generates getter and setter methods in the module class to provide access to native global

variables. In order to expose a global variable to Java, simply add it to the interface file as shown in

Listing 4-14.

Listing 4-14. Interface File Exposing the Counter Global Variable

%module Unix
. . .
/* Global counter. */

 Getter and Setter Methods for Counter Global Variable

 . . .

 public static void setCounter(int value) {
 UnixJNI.counter_set(value);
 }

 public static int getCounter() {
 return UnixJNI.counter_get();
 }
}

Besides the variables, SWIG also provides support for those constants that are associated with a

value that cannot be altered during runtime.

Constants
Constants can be defined in the interface file either through #define or %constant preprocessor

directives, as shown in Listing 4-16.

Listing 4-16. Interface File Defining Two Constants

%module Unix
. . .
/* Constant using define directive. */
#define MAX_WIDTH 640

http://freepdf-books.com

111CHAPTER 4: Auto-Generate JNI Code Using SWIG

/* Constant using %constant directive. */
%constant int MAX_HEIGHT = 320;

SWIG generates a Java interface called <Module>Constant, and the constants are exposed as static

final variables on that interface, as shown in Listing 4-17.

Listing 4-17. UnixConstants Interface Exposing Two Constants

package com.apress.swig;

public interface UnixConstants {
 public final static int MAX_WIDTH = UnixJNI.MAX_WIDTH_get();
 public final static int MAX_HEIGHT = UnixJNI.MAX_HEIGHT_get();
}

By default SWIG generates runtime constants. The values of the constants are initialized by making

JNI function calls to the native code at runtime. This can be changed by using the %javaconst

preprocessor directive in interface file, as shown in Listing 4-18.

Listing 4-18. Instructions to Generate Compile-time Constant for MAX_WIDTH

%module Unix
. . .
/* Constant using define directive. */
%javaconst(1);
#define MAX_WIDTH 640

/* Constant using %constant directive. */
%javaconst(0);
%constant int MAX_HEIGHT = 320;

This preprocessor directive instructs SWIG to generate a compile-time constant for MAX_WIDTH

and a run-time constant for MAX_HEIGHT. The Java constants interface now looks like Listing 4-19.

Listing 4-19. UnixConstants Interface Exposing the Compile-time Constant

package com.apress.swig;

public interface UnixConstants {
 public final static int MAX_WIDTH = 640;
 public final static int MAX_HEIGHT = UnixJNI.MAX_HEIGHT_get();
}

In certain situation you may want to limit the write access on a variable and expose it as read-only

to Java.

Read-Only Variables
SWIG provides the %immutable preprocessor directive to mark a variable as read-only, as shown in

Listing 4-20.

http://freepdf-books.com

112 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-20. Enabling and Disabling Read-only Mode in the Interface File

%module Unix
. . .
/* Enable the read-only mode. */
%immutable;

/* Read-only variable. */
extern int readOnly;

/* Disable the read-only mode. */
%mutable;

 Setter Method Is Not Generated for the Read-only Variable

 . . .

 public static int getReadOnly() {
 return UnixJNI.readOnly_get();
 }

 public static void setReadWrite(int value) {
 UnixJNI.readWrite_set(value);
 }

 public static int getReadWrite() {
 return UnixJNI.readWrite_get();
 }
}

Besides the constants and read-only variables, enumerations are also frequently used in

applications. Enumerations are set of named constant values.

Enumerations
SWIG can handle both named and anonymous enumerations. Depending on the developer’s choice

or the target Java version, it can generate enumerations in four different ways.

http://freepdf-books.com

113CHAPTER 4: Auto-Generate JNI Code Using SWIG

Anonymous

Anonymous enumerations can be declared in the interface file, as shown in Listing 4-22.

Listing 4-22. Anonymous Enumeration

%module Unix
. . .
/* Anonymous enumeration. */
enum { ONE = 1, TWO = 2, THREE, FOUR };

SWIG generates the final static variables in the <Module>Constants Java interface for each

enumeration, as shown in Listing 4-23. Like the constants, the enumerations are also generated as

run-time enumerations. The %javaconst preprocessor directive can be used to generate compile-

time enumeration.

Listing 4-23. Anonymous Enumeration Exposed Through Constants Interface

package com.apress.swig;

public interface UnixConstants {
 . . .
 public final static int ONE = UnixJNI.ONE_get();
 public final static int TWO = UnixJNI.TWO_get();
 public final static int THREE = UnixJNI.THREE_get();
 public final static int FOUR = UnixJNI.FOUR_get();
}

Type-Safe

Named enumerations can be declared in interface file, as shown in Listing 4-24. Unlike the

anonymous enumerations, they get exposed to Java as type-safe enumerations.

Listing 4-24. Named Enumeration

%module Unix
. . .
/* Named enumeration. */
enum Numbers { ONE = 1, TWO = 2, THREE, FOUR };

SWIG defines a separate class with the enumeration’s name, and the enumeration values are

exposed as final static member fields, as shown in Listing 4-25.

Listing 4-25. Named Enumeration Exposed as a Java Class

package com.apress.swig;

public final class Numbers {
 public final static Numbers ONE = new Numbers(
 "ONE", UnixJNI.ONE_get());

http://freepdf-books.com

114 CHAPTER 4: Auto-Generate JNI Code Using SWIG

 public final static Numbers TWO = new Numbers(
 "TWO", UnixJNI.TWO_get());
 public final static Numbers THREE = new Numbers("THREE");
 public final static Numbers FOUR = new Numbers("FOUR");

 . . .
 /* Helper methods. */
 . . .
}

This type of enumeration allows type checking and it is much safer than the constants based

approach, although it cannot be used in switch statements.

enumtypeunsafe.swg extension, as shown in

 Named Enumeration Exposed as Type Unsafe

. .

%include "enumtypeunsafe.swg"

/* Named enumeration. */
enum Numbers { ONE = 1, TWO = 2, THREE, FOUR };

The generated Java class for the enumeration is shown in Listing 4-27. This type of enumerations

can be used in switch statements since they are constants-based.

Listing 4-27. Type Unsafe Enumeration Exposed as a Java Class

package com.apress.swig;

public final class Numbers {
 public final static int ONE = UnixJNI.ONE_get();
 public final static int TWO = UnixJNI.TWO_get();
 public final static int THREE = UnixJNI.THREE_get();
 public final static int FOUR = UnixJNI.FOUR_get();
}

Java Enumerations

Named enumerations can also be exposed to Java as proper Java enumerations. This type

of enumerations is type checked, and they can also be used in switch statements. Named

enumerations can be marked as Java enumeration exposure by including the enums.swg extension,

as shown in Listing 4-28.

http://freepdf-books.com

115CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-28. Java Enumeration

%module Unix
. . .
/* Java enumeration. */
%include "enums.swg"

/* Named enumeration. */
enum Numbers { ONE = 1, TWO = 2, THREE, FOUR };

The generated Java class is shown in Listing 4-29.

Listing 4-29. Generated Java Enumeration Class

package com.apress.swig;

public enum Numbers {
 ONE(UnixJNI.ONE_get()),
 TWO(UnixJNI.TWO_get()),
 THREE,
 FOUR;

 . . .
 /* Helper methods. */
 . . .
}

Structures are widely used in C/C++ applications. They aggregate a set of named variables into a

single data type.

Structures
Structures are also supported by SWIG, and they can be declared in the interface file, as shown in

Listing 4-30.

Listing 4-30. Point Structure That Is Declared in the Interface File

%module Unix
. . .
/* Point structure. */
struct Point {
 int x;
 int y;
};

They get wrapped as Java classes with getters and setters for the member variables, as shown in

Listing 4-31.

http://freepdf-books.com

116 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-31. Generated Point Java Class

package com.apress.swig;

public class Point {
 private long swigCPtr;
 protected boolean swigCMemOwn;

 protected Point(long cPtr, boolean cMemoryOwn) {
 swigCMemOwn = cMemoryOwn;
 swigCPtr = cPtr;
 }

 protected static long getCPtr(Point obj) {
 return (obj == null) ? 0 : obj.swigCPtr;
 }

 protected void finalize() {
 delete();
 }

 public synchronized void delete() {
 if (swigCPtr ! = 0) {
 if (swigCMemOwn) {
 swigCMemOwn = false;
 UnixJNI.delete_Point(swigCPtr);
 }
 swigCPtr = 0;
 }
 }

 public void setX(int value) {
 UnixJNI.Point_x_set(swigCPtr, this, value);
 }

 public int getX() {
 return UnixJNI.Point_x_get(swigCPtr, this);
 }

 public void setY(int value) {
 UnixJNI.Point_y_set(swigCPtr, this, value);
 }

 public int getY() {
 return UnixJNI.Point_y_get(swigCPtr, this);
 }

 public Point() {
 this(UnixJNI.new_Point(), true);
 }
}

http://freepdf-books.com

117CHAPTER 4: Auto-Generate JNI Code Using SWIG

Another widely used C/C++ data type is pointers, a memory address whose value refers directly to

value elsewhere in the memory.

Pointers
SWIG also provides support for pointers. As seen in the previous example, SWIG stores the C

pointer of the actual C structure instance in the Java class. SWIG stores the pointers using the long

data type. It manages the life cycle of the C components aligned with the life cycle of the associated

Java class through the use of the finalize method.

Wrapping C++ Code
In the previous section you explored the basics of wrapping C components. Now you will focus on

wrapping the C++ code. First, you need to modify the Android.mk file to instruct SWIG to generate

C++ code. In order to do so, open the Android.mk file in the editor view and set MY_SWIG_TYPE

variable to cxx, as shown in Listing 4-32.

Listing 4-32. Android.mk Instructing SWIG to Generate C + Code

MY_SWIG_PACKAGE := com.apress.swig
MY_SWIG_INTERFACES := Unix.i
MY_SWIG_TYPE := cxx

SWIG will now generate the wrapper in C++ instead of C code. You have already learned the function

generation, so you’ll now focus on the type of arguments that can be passed to these functions.

Pointers, References, and Values
In C/C++, function can take arguments in many different ways, such as through pointers, references,

or by simply value (see Listing 4-33).

Listing 4-33. Functions with Different Argument Types

/* By pointer. */
void drawByPointer(struct Point* p);

/* By reference */
void drawByReference(struct Point& p);

/* By value. */
void drawByValue(struct Point p);

In Java there are no such types. SWIG unifies these types together in the wrapper code as object

instance reference, as shown in Listing 4-34.

http://freepdf-books.com

118 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-34. Unified Methods in Generated Java Class

package com.apress.swig;

public class Unix implements UnixConstants {
 . . .

 public static void drawByPointer(Point p) {
 UnixJNI.drawByPointer(Point.getCPtr(p), p);
 }

 public static void drawByReference(Point p) {
 UnixJNI.drawByReference(Point.getCPtr(p), p);
 }

 public static void drawByValue(Point p) {
 UnixJNI.drawByValue(Point.getCPtr(p), p);
 }

 Unified Methods Getting Called with the Same Argument Type

Point p;
. . .
Unix.drawByPointer(p);
Unix.drawByReference(p);
Unix.drawByValue(p);

The C/C++ programming language allows functions to specify default values for some of their

arguments. When these functions are called by omitting these arguments, the default values are used.

Default Arguments
Although default arguments are not supported by Java, SWIG provides support for functions with

default arguments by generating additional functions for each argument that is defaulted. Functions

with default arguments can be decelerated in the interface file, as shown in Listing 4-36.

Listing 4-36. Function with Default Arguments in the Interface File

%module Unix
. . .
/* Function with default arguments. */
void func(int a = 1, int b = 2, int c = 3);

Generated additional functions will be exposed through the module Java class, as shown

in Listing 4-37.

http://freepdf-books.com

119CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-37. Additional Functions Generated to Support Default Arguments

package com.apress.swig;

public class Unix {
 . . .

 public static void func(int a, int b, int c) {
 UnixJNI.func__SWIG_0(a, b, c);
 }

 public static void func(int a, int b) {
 UnixJNI.func__SWIG_1(a, b);
 }

 public static void func(int a) {
 UnixJNI.func__SWIG_2(a);
 }

 public static void func() {
 UnixJNI.func__SWIG_3();
 }
}

Function overloading allows applications to define multiple functions having the same name but

different arguments.

Overloaded Functions
SWIG easily supports the overloaded functions since Java already provides support for them.

Overloaded functions can be declared in the interface file, as shown in Listing 4-38.

Listing 4-38. Overloaded Functions Declared in the Interface File

%module Unix
. . .
/* Overloaded functions. */
void func(double d);
void func(int i);

SWIG exposes the overloaded functions through the module Java class, as shown in Listing 4-39.

Listing 4-39. Overloaded Functions Exposed Through the Module Java Class

package com.apress.swig;

public class Unix {
 . . .

http://freepdf-books.com

120 CHAPTER 4: Auto-Generate JNI Code Using SWIG

 public static void func(double d) {
 UnixJNI.func__SWIG_0(d);
 }

 public static void func(int i) {
 UnixJNI.func__SWIG_1(i);
 }
}

SWIG resolves overloaded functions using a disambiguation scheme that ranks and sorts

declarations according to a set of type-precedence rules. Besides the functions and primitive data

types, SWIG can also translate C++ classes.

 Class Declaration in the Interface File

. .

class A {
public:
 A();
 A(int value);
 ~A();

 void print();

 int value;
private:
 void reset();
};

SWIG generates the corresponding Java class, as shown in Listing 4-41. The value member

variable is public, and the corresponding getter and setter methods are automatically generated by

SWIG. The reset method does not get exposed to Java since it is declared in private in the class

declaration.

Listing 4-41. C/C++ Exposed to Java

package com.apress.swig;

public class A {
 private long swigCPtr;
 protected boolean swigCMemOwn;

http://freepdf-books.com

121CHAPTER 4: Auto-Generate JNI Code Using SWIG

 protected A(long cPtr, boolean cMemoryOwn) {
 swigCMemOwn = cMemoryOwn;
 swigCPtr = cPtr;
 }

 protected static long getCPtr(A obj) {
 return (obj == null) ? 0 : obj.swigCPtr;
 }

 protected void finalize() {
 delete();
 }

 public synchronized void delete() {
 if (swigCPtr ! = 0) {
 if (swigCMemOwn) {
 swigCMemOwn = false;
 UnixJNI.delete_A(swigCPtr);
 }
 swigCPtr = 0;
 }
 }

 public A() {
 this(UnixJNI.new_A__SWIG_0(), true);
 }

 public A(int value) {
 this(UnixJNI.new_A__SWIG_1(value), true);
 }

 public void print() {
 UnixJNI.A_print(swigCPtr, this);
 }

 public void setValue(int value) {
 UnixJNI.A_value_set(swigCPtr, this, value);
 }

 public int getValue() {
 return UnixJNI.A_value_get(swigCPtr, this);
 }
}

SWIG provides support for inheritance as well. Those classes are wrapped into a hierarchy of

Java classes reflecting the same inheritance relationship. Since Java does not support multiple

inheritance, any C++ class with multiple inheritance will trigger an error during the code generation

phase.

http://freepdf-books.com

122 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Exception Handling
In native code, C/C++ functions can throw exceptions or return error codes. SWIG allows developers

to inject exception handling code into the generated wrapper code by using the %exception

preprocessor directive to translate the C/C++ exceptions and error codes into Java exceptions.

Exception handling code can be defined in the interface file, as shown in Listing 4-42. The exception

handling code should be defined before the actual function declaration.

Listing 4-42. Exception Handling Code for getuid Function

/* Exception handling for getuid. */

 $action
 if (!result) {
 jclass clazz = jenv->FindClass("java/lang/OutOfMemoryError");
 jenv->ThrowNew(clazz, "Out of Memory");
 return $null;
 }

getuid function now looks like

Listing 4-43. Wrapper Code with Exception Handling

SWIGEXPORT jlong JNICALL Java_com_apress_swig_UnixJNI_getuid(JNIEnv *jenv, jclass jcls) {
 jlong jresult = 0 ;
 uid_t result;

 (void)jenv;
 (void)jcls;
 {
 result = (uid_t)getuid();
 if (!result) {
 jclass clazz = jenv->FindClass("java/lang/OutOfMemoryError");
 jenv- > ThrowNew(clazz, "Out of Memory");
 return 0;
 }
 }
 jresult = (jlong)result;
 return jresult;
}

The generated Java code did not change since the code is throwing a run-time exception. If a

checked exception is thrown, SWIG can be instructed through the %javaexception preprocessor

directive to reflect that accordingly to the generated Java methods, as shown in Listing 4-44.

http://freepdf-books.com

123CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-44. Instructing SWIG That a Checked Exception May Be Thrown

/* Exception handling for getuid. */
%javaexception("java.lang.IllegalAccessException") getuid {
 $action
 if (!result) {
 jclass clazz = jenv->FindClass("java/lang/IllegalAccessException");
 jenv->ThrowNew(clazz, "Illegal Access");
 return $null;
 }
}

The generated Java method signature now reflects the checked exception that may be thrown, as

shown in Listing 4-45.

Listing 4-45. Java Class Reflecting the Thrown Exception

package com.apress.swig;

public class Unix {
 public static long getuid() throws java.lang.IllegalAccessException {
 return UnixJNI.getuid();
 }
}

Memory Management
Each proxy class that is generated by SWIG contains an ownership flag called swigCMemOwn. This

flag specifies who is responsible for cleaning up the underlying C/C++ component. If the proxy

class owns the underlying component, the memory will get freed by the finalize method of the Java

class when it gets garbage collected. Memory can be freed without waiting for the garbage collector

by simply invoking the delete method of the Java class. During runtime the Java class can be

instructed to release or take ownership of the underlying C/C++ component’s memory through the

swigReleaseOwnership and swigTakeOwnership methods.

Calling Java from Native Code
Until this point you have always called from Java to C/C++ code. In certain cases, you may need

to call from C/C++ code back to Java code as well, such as for callbacks. SWIG does also provide

support calling from C/C++ code to Java by the use of virtual methods.

Asynchronous Communication
In order to demonstrate the flow, you will convert the getuid function call to an asynchronous mode

by wrapping it in a C/C++ class and returning its result through a callback. For this experiment, you

can place the class declaration and definition into the SWIG interface file, as shown in Listing 4-46.

http://freepdf-books.com

124 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-46. Declaration and Definition of AsyncUidProvider Class

%module Unix
. . .
%{
/* Asynchornous user ID provider. */
class AsyncUidProvider {
public:
 AsyncUidProvider() {
 }

 virtual ~ AsyncUidProvider() {
 }

 void get() {
 onUid(getuid());
 }

 virtual void onUid(uid_t uid) {
 }

public:
 AsyncUidProvider();
 virtual ~ AsyncUidProvider();

 void get();
 virtual void onUid(uid_t uid);
};

Enabling Directors
SWIG provides support for cross language polymorphism using directors feature. The directors

feature is disabled by default. In order to enable it, the %module preprocessor directive should be

modified to include the directors flag. After enabling the directors extension, the feature should be

applied to AsyncUidProvider class using the %feature preprocessor directive. Both changes are

shown in Listing 4-47.

Listing 4-47. Enabling Directors Extension and Applying the Feature

/* Module name is Unix. */
%module(directors = 1) Unix

/* Enable directors for AsyncUidProvider. */
%feature("director") AsyncUidProvider;

In order to bridge calls from C/C++ code to Java, the directors extension relies on Run-Time Type

Information (RTTI) feature of the compiler.

http://freepdf-books.com

125CHAPTER 4: Auto-Generate JNI Code Using SWIG

Enabling RTTI
By default, RTTI is turned off on Android NDK build system. In order to enable it, modify the

Android.mk file as shown in Listing 4-48.

Listing 4-48. Enabling RTTI in Android.mk File

Enable RTTI
LOCAL_CPP_FEATURES + = rtti

The native code portion is now ready. Choose Project ➤ Build All from the top menu to rebuild the

current project.

Overriding the Callback Method
On the Java side, you need to extend the exposed AsyncUidProvider class and override the onUid

method to receive the result of the getuid function call, as shown in Listing 4-49.

Listing 4-49. Extending the AsyncUidProvider in Java

package com.example.hellojni;

import android.widget.TextView;

import com.apress.swig.AsyncUidProvider;

public class UidHandler extends AsyncUidProvider {
 private final TextView textView;

 UidHandler(TextView textView) {
 this.textView = textView;
 }

 @Override
 public void onUid(long uid) {
 textView.setText("UID: " + uid);
 }
}

Updating the HelloJni Activity
As the last step, the HelloJni activity needs to be modified to use the UidHandler class. The

modified content of onCreate method is shown in Listing 4-50.

http://freepdf-books.com

126 CHAPTER 4: Auto-Generate JNI Code Using SWIG

Listing 4-50. Modified onCreate Method Using the New UidHandler

@Override
public void onCreate(Bundle savedInstanceState)
{
 . . .

 TextView tv = new TextView(this);
 setContentView(tv);

 UidHandler uidHandler = new UidHandler(tv);
 uidHandler.get();

New ➤ File from the top menu to launch the application. Upon invoking the

AsnycUidProvider, the C/C++ code will call back to Java with the result of the

 function call and it will get displayed.

be found in SWIG Documentation at http://swig.org/Doc2.0/index.html. You will be using SWIG

often in the next chapters, and you will continue exploring the other unique features offered.

http://freepdf-books.com

http://swig.org/Doc2.0/index.html

127

Chapter 5
Logging, Debugging,

and Troubleshooting

In previous chapters, you explored the Android NDK build system and how to connect the native code

to the Java application using the JNI technology. Needless to say, learning application development

on a new platform involves much experimentation; it takes time to get things right. It is vital to gain the

troubleshooting skills pertaining to Android platform before starting to experiment with the native APIs

offered, as it can catalyze the learning phase greatly by helping you to spot problems quickly. Your

existing troubleshooting skills may not directly apply since the development and execution of Android

applications happens on two different machines. In this chapter you will explore logging, debugging,

and troubleshooting tools and techniques including:

An introduction to Android Logging framework	
Debugging native code through Eclipse and command line	
Analyzing stack traces from crashes	
Using CheckJNI mode to spot problems earlier	
Troubleshooting memory issues using libc and Valgrind	
Using strace to monitor native code execution	

Logging
Logging is the most important part of troubleshooting, but it is tricky to achieve, especially on mobile

platforms where the development and the execution of the application happen on two different

machines. Android has an extensive logging framework that promotes system-wide centralized

logging of information from both the Android system itself and the applications. A set of user-level

applications is also provided to view and filter these logs, such as the logcat and Dalvik Debug

Monitor Server (DDMS) tools.

http://freepdf-books.com

128 CHAPTER 5: Logging, Debugging, and Troubleshooting

Framework
The Android logging framework is implemented as a kernel module known as the logger. The

amount of information being logged on the platform at any given time makes the viewing and

analysis of these log messages very difficult. In order to simplify this procedure, the Android logging

framework groups the log messages into four separate log buffers:

	Main: Main application log messages

	Events: System events

	Radio: Radio-related log messages

	System: Low-level system debug messages for debugging

/dev/log system directory. Since input

provides a set of API calls to allow both Java and the native code to easily send log messages to

the logger kernel module. The logging API for the native code is exposed through the android/log.h

header file. In order to use the logging functions, native code should include this header file first.

#include <android/log.h>

In addition to including the proper header file, the Android.mk file needs to be modified dynamically

to link the native module with the log library. This is achieved through the use LOCAL_LDLIBS build

system variable, as shown in Listing 5-1. This build system variable must be placed before the

include statement for the shared library build fragment; otherwise, it will not have any affect.

Listing 5-1. Dynamically Linking the Native Module with Log Library

 LOCAL_MODULE := hello-jni
...
LOCAL_LDLIBS += −llog
...
include $(BUILD_SHARED_LIBRARY)

http://freepdf-books.com

129CHAPTER 5: Logging, Debugging, and Troubleshooting

Log Message

Each log entry that is dispatched to the logger module through the logging APIs has the following

fields:

	Priority: Can be verbose, debug, info, warning, error, or fatal to indicate the

severity of the log message. Supported log priority levels are declared in the

android/log.h header file, as shown in Listing 5-2.

Listing 5-2. Supported Log Priority Levels

typedef enum android_LogPriority {
 ...
 ANDROID_LOG_VERBOSE,
 ANDROID_LOG_DEBUG,
 ANDROID_LOG_INFO,
 ANDROID_LOG_WARN,
 ANDROID_LOG_ERROR,
 ANDROID_LOG_FATAL,
 ...
} android_LogPriority;

	Tag: Identifies the component that emits the log message. The logcat and

DDMS tools can filter the log messages based on this tag value. The tag value is

expected to be reasonably small.

	Message: Text payload carrying the actual log message. The newline character

gets automatically appended to each log message. Since the circular log buffers

are pretty small, it is strongly recommended that the applications keep the size

of log message at a reasonable level.

Logging Functions

The android/log.h header file also declares a set of functions for the native code to emit log

messages.

	__android_log_write: Can be used to emit a simple string as a log message. It

takes log priority, log tag, and a log message, as shown in Listing 5-3.

Listing 5-3. Logging a Simple Message

 __android_log_write(ANDROID_LOG_WARN, "hello-jni", "Warning log.");

	__android_log_print: Can be used to emit a formatted string as a log message.

It takes log priority, log tag, string format, and variable numbers of other

parameters as specified in the format, as shown in Listing 5-4. For the syntax of

the format string, please refer to ANSI C printf documentation.

http://freepdf-books.com

130 CHAPTER 5: Logging, Debugging, and Troubleshooting

Listing 5-4. Logging a Formatted Message

__android_log_print(ANDROID_LOG_ERROR, "hello-jni",
 "Failed with errno %d", errno);

	__android_log_vprint: It behaves exactly as the __android_log_print
function except the additional parameters are passed as a va_list instead of

a succession of parameters. This is very useful if you are planning to call the

logging function with variable number of parameters that are passed to the

current function, as shown in Listing 5-5.

Listing 5-5. Logging a Message by Using the Variable Number of Parameters That Are Passed In

void log_verbose(const char* format, ...)
{
 va_list args;

 va_start(args, format);
 __android_log_vprint(ANDROID_LOG_VERBOSE, "hello-jni", format, args);
 va_end(args);
}
...
void example()
{
 log_verbose("Errno is now %d", errno);
}

	__android_log_assert: Can be used to log assertion failures. Compared to other

logging functions, it does not take a log priority and always emits logs as fatal,

as shown in Listing 5-6. If a debugger is attached, it also SIGTRAP’s the current

process to enable further inspection through the debugger.

Listing 5-6. Logging an Assertion Failure

if (0 != errno)
{
 __android_log_assert("0 != errno", "hello-jni",
 "There is an error.");
}

Controlled Logging
Like their Java counterparts, the native logging APIs only let you emit log messages to the logger

kernel module. In real life, you would neither use asserts nor log at the same granularity in your

release and debug builds. Unfortunately, the Android logging API does not provide any capability to

suppress log messages based on their priorities. It is not as advanced as other logging frameworks

such as Log4J or Log4CXX. The Android logging framework assumes that you will somehow take

out the unnecessary logging calls from your release builds. Although this can very easily be done in

Java applications by relying on Proguard, there is no easy recipe for the native code.

http://freepdf-books.com

131CHAPTER 5: Logging, Debugging, and Troubleshooting

Log Wrapper

This section will introduce a preprocessor based solution to this problem. To see it in action, you will

modify the hello-jni native project that you imported earlier. Open Eclipse and, using the Project

Explorer, right-click on the jni sub-directory. From the context menu, choose New Header File to

launch the New Header File dialog. Set the header file name as my_log.h, and click the Finish button

to proceed. The content of the my_log.h header file is shown in Listing 5-7.

Listing 5-7. The Content of my_log.h Header File

#pragma once

/**
 * Basic logging framework for NDK.
 *
 * @author Onur Cinar
 */

#include <android/log.h>

#define MY_LOG_LEVEL_VERBOSE 1
#define MY_LOG_LEVEL_DEBUG 2
#define MY_LOG_LEVEL_INFO 3
#define MY_LOG_LEVEL_WARNING 4
#define MY_LOG_LEVEL_ERROR 5
#define MY_LOG_LEVEL_FATAL 6
#define MY_LOG_LEVEL_SILENT 7

#ifndef MY_LOG_TAG
define MY_LOG_TAG __FILE__
#endif

#ifndef MY_LOG_LEVEL
define MY_LOG_LEVEL MY_LOG_LEVEL_VERBOSE
#endif

#define MY_LOG_NOOP (void) 0

#define MY_LOG_PRINT(level,fmt,...) \
 __android_log_print(level, MY_LOG_TAG, "(%s:%u) %s: " fmt, \
 __FILE__, __LINE__, __PRETTY_FUNCTION__, ##__VA_ARGS__)

#if MY_LOG_LEVEL_VERBOSE >= MY_LOG_LEVEL
define MY_LOG_VERBOSE(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_VERBOSE, fmt, ##__VA_ARGS__)
#else
define MY_LOG_VERBOSE(...) MY_LOG_NOOP
#endif

#if MY_LOG_LEVEL_DEBUG >= MY_LOG_LEVEL
define MY_LOG_DEBUG(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_DEBUG, fmt, ##__VA_ARGS__)

http://freepdf-books.com

132 CHAPTER 5: Logging, Debugging, and Troubleshooting

#else
define MY_LOG_DEBUG(...) MY_LOG_NOOP
#endif

#if MY_LOG_LEVEL_INFO >= MY_LOG_LEVEL
define MY_LOG_INFO(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_INFO, fmt, ##__VA_ARGS__)
#else
define MY_LOG_INFO(...) MY_LOG_NOOP
#endif

#if MY_LOG_LEVEL_WARNING >= MY_LOG_LEVEL
define MY_LOG_WARNING(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_WARN, fmt, ##__VA_ARGS__)

 MY_LOG_PRINT(ANDROID_LOG_ERROR, fmt, ##__VA_ARGS__)

define MY_LOG_FATAL(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_FATAL, fmt, ##__VA_ARGS__)
#else
define MY_LOG_FATAL(...) MY_LOG_NOOP
#endif

#if MY_LOG_LEVEL_FATAL >= MY_LOG_LEVEL
define MY_LOG_ASSERT(expression, fmt, ...) \
 if (!(expression)) \
 { \
 __android_log_assert(#expression, MY_LOG_TAG, \
 fmt, ##__VA_ARGS__); \
 }
#else
define MY_LOG_ASSERT(...) MY_LOG_NOOP
#endif

Through a set of preprocessor directives, the my_log.h header file defines a basic logging framework

for native code. These preprocessor directives wrap the Android logging functions and allow them to

be toggled during the compile time.

http://freepdf-books.com

133CHAPTER 5: Logging, Debugging, and Troubleshooting

Adding Logging

You can now add logging statements into the native code. Using the Project Explorer, double-click

the hello-jni.c source file to open it in the Editor view. In order to use the basic logging framework,

the my_log.h header file needs to be included first. There is no need to include the android/log.h

anymore, since it is already included through my_log.h.

 #include "my_log.h"

 You can now add the logging statements into the native function, as shown in Listing 5-8.

Listing 5-8. Adding Logging Statements into Native Function

jstring
Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env,
 jobject thiz)
{
 MY_LOG_VERBOSE("The stringFromJNI is called.");

 MY_LOG_DEBUG("env=%p thiz=%p", env, thiz);

 MY_LOG_ASSERT(0 != env, "JNIEnv cannot be NULL.");

 MY_LOG_INFO("Returning a new string.");

 return (*env)->NewStringUTF(env, "Hello from JNI !");
}

Updating Android.mk

You can now update the Android.mk file to tune the basic logging framework. Using the Project

Explorer, double-click on the Android.mk source file to open it in the Editor view.

Log Tag

As mentioned, each log message contains a log tag identifying the component that is emitting the log

message. The log tag for the module can be defined in the Android.mk file, as shown in Listing 5-9.

Listing 5-9. Defining the Log Tag Through MY_LOG_TAG Build Variable

LOCAL_MODULE := hello-jni
...
Define the log tag
MY_LOG_TAG := \"hello-jni\"

http://freepdf-books.com

134 CHAPTER 5: Logging, Debugging, and Troubleshooting

Log Level

The main advantage of the basic logging framework is the ability to define a log level. As you would

not log at the same granularity in your release and debug builds, the Android.mk file can be modified

to define different log levels for debug and release builds, as shown in Listing 5-10.

Listing 5-10. Defining the Default Logging Levels

LOCAL_MODULE := hello-jni
...
Define the log tag
MY_LOG_TAG := \"hello-jni\"

 MY_LOG_LEVEL := MY_LOG_LEVEL_ERROR

 MY_LOG_LEVEL := MY_LOG_LEVEL_VERBOSE

APP_OPTIM build system variable indicates whether the build type

APP_OPTIM, the value of MY_LOG_LEVEL can be set to the

Applying the Logging Configuration

Upon defining the MY_LOG_TAG and MY_LOG_LEVEL build system variables, the logging system

configuration can be applied to the module, as shown in Listing 5-11.

Listing 5-11. Applying the Logging Configuration to the Module

LOCAL_MODULE := hello-jni
...
Define the log tag
MY_LOG_TAG := hello-jni

Define the default logging level based build type
ifeq ($(APP_OPTIM),release)
 MY_LOG_LEVEL := MY_LOG_LEVEL_ERROR
else
 MY_LOG_LEVEL := MY_LOG_LEVEL_VERBOSE
endif

Appending the compiler flags
LOCAL_CFLAGS += −DMY_LOG_TAG=$(MY_LOG_TAG)
LOCAL_CFLAGS += −DMY_LOG_LEVEL=$(MY_LOG_LEVEL)

Dynamically linking with the log library
LOCAL_LDLIBS += −llog

http://freepdf-books.com

135CHAPTER 5: Logging, Debugging, and Troubleshooting

Observing Log Messages Through Logcat

Upon executing the hello-jni application, the log messages can be observed through the Logcat

view, as shown in Figure 5-1.

Figure 5-1. Log messages from the native code

Figure 5-2. Log messages re-directed from STDOUT and STDERR descriptors

Console Logging
When integrating third party libraries and legacy modules into an Android application project,

changing their logging mechanism to Android-specific logging may not be possible. Most logging

mechanisms either log messages to a file or directly to the console.

The console file descriptors, STDOUT and STDERR, are not visible by default on the Android platform.

To redirect these log messages to the Android system log, open a command prompt or a Terminal

window and execute the ADB commands shown in Listing 5-12.

Listing 5-12. Redirecting Console Log to Android System Log

adb shell stop
adb shell setprop log.redirect-stdio true
adb shell start

Upon restarting the application, the console log messages will be visible through the Logcat view, as

shown in Figure 5-2.

http://freepdf-books.com

136 CHAPTER 5: Logging, Debugging, and Troubleshooting

The system retains this setting until the device reboots. If you want to make these settings the

default, add them to the /data/local.prop file on the device or emulator.

Debugging
Logging allows you to output messages from a running application, exposing its current state. When

troubleshooting problems, the granularity of the log messages from the concerned portion of the

code may not be sufficient. New log messages can be implanted into the code to expose more

information about its current state but this simply slows down the troubleshooting process. Using

a debugger to properly observe the application state is the most convenient way of troubleshooting.

Android NDK supports debugging of native code through the GNU Debugger (GDB).

Native code should be compiled either through 	 ndk-build command from the

command line, or through the Eclipse IDE using Android Development Tools.

The NDK build system generates a set of files during the build process to remote

debugging possible.

The application should be set as debuggable in its 	 AndroidManifest.xml file

through the android:debuggable attribute of the application tag, as shown in

Listing 5-13.

Listing 5-13. Declaring the Application as Debuggable

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.hellojni"
 android:versionCode="1"
 android:versionName="1.0">
 ...
 <application android:label="@string/app_name"
 android:debuggable="true">
 ...
 </application>
</manifest>

The device or the emulator should be running Android version 2.2 or higher. 	
Native code debugging is not supported in earlier versions.

The ndk-gdb script handles many of the error conditions and outputs informative error messages to

let you know if any of these conditions have not been met.

http://freepdf-books.com

http://schemas.android.com/apk/res/android

137CHAPTER 5: Logging, Debugging, and Troubleshooting

Debug Session Setup
The ndk-gdb script that takes care of setting up the debug session on behalf of the developer but

knows the sequence of events happening during the debug session setup, which is very beneficial to

understanding the caveats of debugging native code on Android. The complete sequence of events

during the debug session setup is shown in Figure 5-3.

Figure 5-3. Debug session setup sequence diagram

The ndk-gdb script launches the target application by using the application manager through ADB.

The application manager simply relays the request to Zygote process.

Zygote, also known as the “app process,” is one of the core processes started when the Android system

boots. Its role within the Android platform is to start the Dalvik virtual machine and initialize all core

Android services. As a mobile operating system, Android needs to keep the startup time of applications

as small as possible in order to provide a highly responsive user experience. In order to achieve that,

instead of starting a new process from scratch for the applications, Zygote simply relies on forking. In

computing, forking is the operation to clone an existing process. The new process has an exact copy of

all memory segments of the parent process, although both processes execute independently.

At this point in time, the application is started and is executing code. As you may have noticed, the

debug session is not established yet at this point.

Note Due to the way Zygote works, the GDB cannot start the application, but it can simply attach to

an already running application process. If you want to prevent your application from executing code

prior to when GDB attaches, you need to use the Java Debugger to set a breakpoint at a proper position

in the code.

http://freepdf-books.com

138 CHAPTER 5: Logging, Debugging, and Troubleshooting

Upon obtaining the process ID of the application, the ndk-gdb script starts the GDB Server on

Android and has it attach to the running application. The ndk-gdb script configures port forwarding

using ADB to make the GDB Server accessible from the host machine. Later, it copies the binaries

for Zygote and the shared libraries to the host machine prior starting the GDB Client. After the

binaries are copied, the ndk-gdb script starts the GDB Client and the debug session becomes active.

After this point, you can start debugging the application.

Setting up the Example for Debugging
In order to see the native code debugging in action, you will be using the hello-jni sample project.

To simplify the debug process, you will make a slight change in the HelloJni activity’s onCreate

HelloJni activity in the Editor View, as described earlier. Modify

onCreate method as shown in Listing 5-14.

 Modified onCreate Method to Delay the Native Call

{
 super.onCreate(savedInstanceState);

 Button button = new Button(this);
 button.setText("Call Native");
 button.setOnClickListener(new OnClickListener() {
 public void onClick(View button) {
 ((Button) button).setText(stringFromJNI());
 }
 });

 setContentView(button);
}

From the menu bar, choose Source ➤ Organize Imports to get Eclipse to add the necessary

import statements to the source file. For the OnClickListener class, Eclipse will propose more than

one alternative to import. Select android.view.View.OnClickListener and proceed. The modified

onCreate method places a button to the display. Clicking that button will initiate the native call. This

will let you to make sure that the native call is initiated after the debug session is properly set up.

Starting the Debugger
Debugging of native code can be done through both the command line and from within Eclipse. This

section will demonstrate both methods.

Fix for Windows Users

On Windows platform, there is a known bug in the Android NDK that prevents the GDB from locating

the binaries properly. The ndk-gdb script configures the GDB Client using a GDB script file. On the

Windows platform, this script file gets generated with extra carriage returns, causing this issue.

http://freepdf-books.com

139CHAPTER 5: Logging, Debugging, and Troubleshooting

In order to fix it, using Eclipse, open the <ANDROID_NDK_HOME>/ndk-gdb script in the Editor view. Go to

the end of the file, and add fix as shown in Listing 5-15.

Listing 5-15. Fixing the GDB Setup Script Generation

 # Fix the line endings.
sed -i 's/\r\r//' 'native_path $GDBSETUP'

$GDBCLIENT -x 'native_path $GDBSETUP'

Using Eclipse

Like running applications, Eclipse requires having a debug configuration defined in order establish a

debug session.

1. From the menu bar, choose Run ➤ Debug Configurations to launch the

Debug Configurations dialog, as shown in Figure 5-4.

Figure 5-4. New Android native application configuration

2. From the right panel, select Android Native Application.

3. Click the new configuration icon on the dialog toolbar.

4. As shown in Figure 5-5, using the right panel, use the Browse button to

select the current project.

http://freepdf-books.com

140 CHAPTER 5: Logging, Debugging, and Troubleshooting

5. Click the Apply button to store the debug configuration.

6. Close the debug configurations dialog and go back to Eclipse workbench.

1. Open up the hello-jni.c source file in Editor view, as described earlier.

2. Go into the native function, and right-click on the marker area, the left border

of the Editor view.

3. As shown in Figure 5-6, choose from the context menu to place a breakpoint.

A blue point will be placed on the marker bar indicating the breakpoint.

Figure 5-6. Toggle breakpoint

 Defining the native debug configuration

n

http://freepdf-books.com

141CHAPTER 5: Logging, Debugging, and Troubleshooting

4. Now that the breakpoint is placed, using the top menu bar, choose Run ➤

Debug Configurations to launch the Debug Configurations dialog.

5. Select the debug configuration that you defined earlier.

6. Click the Debug button.

7. Eclipse supports different perspectives, workbench layouts, for different tasks.

Upon clicking the Debug button, Eclipse will ask you if you would like to switch

to the Debug perspective, as shown in Figure 5-7. Click Yes to proceed.

Figure 5-7. Switching to the debug perspective

Tip Using the same context menu, you can also place a conditional breakpoint as well as enable and

disable existing breakpoints.

8. Using the Android device or the emulator, click the Call Native button to

invoke the native function.

As soon as the native code hits the breakpoint, the application will stop and give the control to the

debugger, as shown in Figure 5-8.

http://freepdf-books.com

142 CHAPTER 5: Logging, Debugging, and Troubleshooting

The debug perspective gives you a full snapshot of the native code’s current state. On the top left,

the Debug view shows the list of running threads and the function that they are currently running.

On the top right corner, the Variables view gives you access to the native variables and lets you to

inspect their current values. In the center area, the native source code is shown in the Editor view,

and an arrow is shown on the marker bar next to the line that will be executed next. As shown in

Figure 5-9, using the debug toolbar, you can control the execution of the application.

Figure 5-8. Eclipse debug perspective in action

Figure 5-9. Debug toolbar

The following actions are provided through the debug toolbar:

	Skip All Breakpoints: Allows you to disable all breakpoints.

	Resume: Resumes the execution of the native code until the next breakpoint.

http://freepdf-books.com

143CHAPTER 5: Logging, Debugging, and Troubleshooting

	Suspend: Suspends the execution of native code by sending the SIGINT

interrupt signal to the process, which allows you to investigate the current state

of the native code.

	Step Into: Follows the next native call by going into it.

	Step Over: Executes the next native call and then stops.

	Step Return: Executes until the native function returns.

	Terminate: Terminates the debug session.

Debugging of native applications is not only possible through Eclipse. The same level of debugging

functionality can also be achieved through the command line as well.

The Command Line

Native code can be debugged using the ndk-gdb script from the command line. Currently the

ndk-gdb script requires a UNIX shell to run. On the Windows platform, you will use Cygwin instead

of the command prompt for debugging. First, open Cygwin or the Terminal window, based on your

platform. You will use the hello-jni sample project for this experiment.

1. Make sure that Eclipse is no longer running in order to prevent any conflicts.

2. Change the current directory to the hello-jni project directory.

3. Delete any leftover files from the Eclipse by issuing rm –rf bin obj libs.

4. Compile the native module by issuing ndk-build on the command line.

5. In order to compile and package the application from command line, make

sure that the ANT build script build.xml file exists in project directory. If this

is the first time you are building this project from the command line, issue

android update project –p to generate the necessary build files. If you are

using Cygwin, use android.bat instead of android.

6. Compile and package the project in debug mode by issuing ant debug on the

command line.

7. Deploy the application to the device or the emulator by issuing ant installd

on the command line.

8. By default, the ndk-gdb script searches for an already running application

process; however, you can use the –-start or –-launch=<activity>

arguments to automatically start the application before the debugging

session. Start the debugging session by issuing ndk-gdb --start from the

command. When GDB successfully attaches to the hello-jni application,

it will show the GDB prompt.

9. Add a breakpoint to the hello-jni.c souce file at line 30 by issuing b
hello-jni.c:30 on the GDB prompt.

http://freepdf-books.com

144 CHAPTER 5: Logging, Debugging, and Troubleshooting

10. Now that the breakpoint is defined, issue c on the GDB prompt to continue

the execution of the native application.

11. Using the Android device or emulator, click the Native Call button to invoke

the native function.

Figure 5-10. Command line debug session

Note It is normal to see a long list of error messages saying that GDB cannot be able locate various

system library files. You can safely ignore these messages since symbol/debug versions of these

libraries are not available.

 5-10.

Useful GDB Commands

Here is a list of useful GDB commands that you can use through the GDB prompt to debug the

native code:

	break <where>: Places a breakpoint to the location specified. The location can

be a function name, or a file name and a line number such as file.c:10.

	enable/disable/delete <#>: Enables, disables, or deletes the breakpoint with

the given number.

	clear: Clears all breakpoints.

	next: Goes to the next instruction.

	continue: Continues execution of the native code.

	backtrace: Shows the call stack.

	backtrace full: Shows the call stack including the local variables in each frame.

http://freepdf-books.com

145CHAPTER 5: Logging, Debugging, and Troubleshooting

	print <what>: Prints the content of the variable, expression, memory address, or

register.

	display <what>: Same as the print, but continues printing the value after each

step instruction.

	what is <variable>: Shows the type of the variable.

	info threads: Lists all running threads.

	thread <thread>: Operates on the selected thread.

	help: Help screen to get a list of all commands.

	quit: Terminates the debug session.

Note The debugged application will be stopped when quitting the GDB prompt. This is a known

limitation.

For more information on GDB, please check the GDB documentation at

www.gnu.org/software/gdb/documentation/.

Troubleshooting
During the development phase, logging allows you to decide and expose the information about the

application’s state that will be beneficial in solving problems later. Debugging comes into play when

the information exposed through logging is simply not enough, but you have an idea of where the

problem could be. When you are facing the unexpected, troubleshooting skills becomes a life saver.

Knowing the right tools and techniques enables you to rapidly resolve problems. In this section, you

will briefly explore some of them.

Stack Trace Analysis
In order to observe stack trace analysis in action, you will implant a bug into the hello-jni sample

application that will cause a crash. Using Eclipse, open up the hello-jni.c source file. Modify the

content of the native function as shown in Listing 5-16.

Listing 5-16. Bug Injected into the Native Function

static jstring func1(JNIEnv* env)
{
 /* BUG BEGIN */
 env = 0;
 /* BUG END */

 return (*env)->NewStringUTF(env, "Hello from JNI !");
}

http://freepdf-books.com

http://www.gnu.org/software/gdb/documentation/

146 CHAPTER 5: Logging, Debugging, and Troubleshooting

jstring
Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env,
 jobject thiz)
{
 return func1(env);
}

By setting the value of the JNIEnv interface pointer to zero, you will trigger the crash. Now build and run

the application. When the application starts, click the Call Native method to invoke the native function.

The application will crash, and a stack trace will be displayed in logcat, as shown in Figure 5-11.

Figure 5-11. Logcat displaying the stack trace after the crash

The lines starting with the hash sign indicates the call stack. The first line that starts with #00 is

where the crash occurred; the next line, #01, is the previous function call, and so on. The number

following the pc is the code’s address. As seen in the stack trace, the native code crashed at

address 00000c3c, and the previous function call was the stringFromJNI native function. The address

00000c3c itself may not tell you much, but using the right tools this address can be used to find the

actual file and line number that the crash occurred. Android NDK comes with a tool called ndk-stack

that can translate the stack trace to the actual file names and line numbers. On the command line,

go into the project root directory, and issue

adb logcat | ndk-stack –sym obj/local/armeabi

The ndk-stack tool will translate the stack trace, as shown in Figure 5-12. The address got translated

to jni/hello-jni.c in source file line 33. Having this information makes the troubleshooting much

easier. By simply putting a breakpoint at this address you can stop the application and inspect the

application state.

http://freepdf-books.com

147CHAPTER 5: Logging, Debugging, and Troubleshooting

Extended Checking of JNI
By default, JNI functions do a very little error checking. Errors usually result in a crash. Android

provides an extended checking mode for JNI calls, known as CheckJNI. When enabled, JavaVM and

JNIEnv interface pointers gets switched to tables of functions that perform an extended level of error

checking before calling the actual implementation. CheckJNI can detect the following problems:

Attempt to allocate a negative-sized array	
Bad or 	 NULL pointers passed to JNI functions

Syntax errors while passing class names	
Making JNI calls while in critical section	
Bad arguments passed to 	 NewDirectByeBuffer

Making JNI calls when an exception is pending	
	JNIEnv interface pointer used in wrong thread

Field type and 	 Set<Type>Field function mismatch

Method type and 	 Call<Type>Method function mismatch

	DeleteGlobalRef/DeleteLocalRef called with wrong reference type

Bad release mode passed to 	 Release<Type>ArrayElement function

Incompatible type returned from native method	
Invalid UTF-8 sequence passed to a JNI call	

By default, the CheckJNI mode is only enabled in the emulator, not on the regular Android devices,

due to its effect on the overall performance of the system.

Figure 5-12. Ndk-stack translates the code address.

http://freepdf-books.com

148 CHAPTER 5: Logging, Debugging, and Troubleshooting

Enabling CheckJNI

On a regular device, using the command line, you can enable the CheckJNI mode by issuing the

following:

adb shell setprop debug.checkjni 1

This won’t affect the running applications but any application launched afterwards will have

CheckJNI enabled. CheckJNI status is also displayed in the logcat, as shown in Figure 5-13.

Figure 5-14. JNI warning about negative-sized array

Listing 5-17. Creating an Array with Native Size

jstring
Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env,
 jobject thiz)
{
 jintArray javaArray = (*env)->NewIntArray(env, -1);

 return (*env)->NewStringUTF(env, "Hello from JNI !");
}

 You will be creating a new integer array with a negative size. Build and run the application on the

emulator. When the application starts, click the Call Native button to invoke the native function. As

shown in Figure 5-14, CheckJNI will display a warning message on logcat and abort the execution.

 CheckJNI status displayed in logcat

http://freepdf-books.com

149CHAPTER 5: Logging, Debugging, and Troubleshooting

Memory Issues
Memory issues are very hard to troubleshoot in the absence of right tools. In this section you will

briefly explore two methods for analyzing the memory issues.

Using Libc Debug Mode

Using the emulator, the libc debug mode can be enabled to troubleshoot memory issues. In order to

enable libc debug mode, using the commands as shown in Listing 5-18.

Listing 5-18. Enabling libc debug mode

adb shell setprop libc.debug.malloc 1
adb shell stop
adb shell start

Supported libc debug mode values are

1: Perform leak detection.	
5: Fill allocated memory to detect overruns.	
10: Fill memory and add sentinel to detect overruns.	

In order to see Libc debug mode in action, using Eclipse, open up hello-jni.c source code. Modify

the native function as shown in Listing 5-19.

Listing 5-19. Modifying a Memory Beyond the Allocated Buffer

 jstring
Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env,
 jobject thiz)
{
 char* buffer;
 size_t i;

 buffer = (char*) malloc(1024);
 for (i = 0; i < 1025; i++)
 {
 buffer[i] = 'a';
 }

 free(buffer);

 return (*env)->NewStringUTF(env, "Hello from JNI !");
}

You will be allocating 1024 bytes, but the code will be modifying an extra byte beyond the allocated

size, causing a memory corruption. Enable the libc debug mode by issuing the commands shown in

Listing 5-20.

http://freepdf-books.com

150 CHAPTER 5: Logging, Debugging, and Troubleshooting

Listing 5-20. Enable libc Debug Mode for Memory Corruption Detection

adb shell setprop libc.debug.malloc 10
adb shell stop
adb shell start

Build and run the application on the emulator. When the application starts, click the Call Native

button to invoke the native function. As shown in Figure 5-15, libc debug mode will display a

warning message about the memory corruption on logcat and abort the execution.

 Libc debug mode displaying memory corruption error

for more advanced memory analysis. It is an open source tool for memory debugging, memory leak

detection, and profiling. For this experiment, you can either download the prebuilt Valgrind binaries

from book’s web site or you can build it on your machine. If you would like build it, skip to the

“Building from Source Code” section.

Using the Prebuilt Binaries

Using your web browser, download the Valgrind binaries for ARM emulator as a zip file from

http://zdo.com/valgrind-arm-emulator-3.8.0.zip. Extract the content of the zip file and take a

note of its location. You can now skip to the “Installing to Emulator” section.

Building from Source Code

In order to properly build Valgrind for Android from the source code, you will need a Linux host

system. Official distribution of Valgrind now comes with Android support. Download the latest

version of Valgrind from http://valgrind.org/downloads/current.html. At the time of this writing,

the latest version of Valgrind was 3.8.0. and it comes as a BZip2 compressed TAR archive. Using the

command line, extract it by issuing

tar jxvf valgrind-3.8.0.tar.bz2

Upon extracting the Valgrind source code, using your editor, open up README.android file for the up

to date build instructions. Since you will be using Valgrind in an Android emulator, please make sure

to set HWKIND to emulator by issuing

export HWKIND=emulator

http://freepdf-books.com

http://zdo.com/valgrind-arm-emulator-3.8.0.zip
http://valgrind.org/downloads/current.html

151CHAPTER 5: Logging, Debugging, and Troubleshooting

Upon properly building Valgrind, the binaries and the other necessary components will be placed in

Inst sub-directory.

Deploying Valgrind to Emulator

Valgrind needs to be deployed into the emulator first before it can be used. In order to do so, open

up Cygwin or a Terminal window, and go in to the root directory where you have extracted the zip file

if you are using the prebuilt binaries or to the root directory of Valgrind source code, and issue the

following on the command line:

adb push Inst /

This will deploy the Valgrind files to /data/local/Inst directory on the emulator. Upon deploying

the files to the device, the execution bits should be fixed. In order to do so, issue the following

command:

adb shell chmod 755 \
 $(find Inst -type f -exec file {} \; | \
 grep executable | \
 sed -n -e 's/^Inst\([^:]*\).*$/\1/gp' | \
 xargs)

Valgrind Wrapper

In addition to Valgrind binaries, a helper script is also needed. Using Eclipse or your favorite editor,

create new file called valgrind_wrapper.sh with the content shown in Listing 5-21.

Listing 5-21. Valgrind Wrapper Shell Script

#!/system/bin/sh

export TMPDIR=/sdcard
exec /data/local/Inst/bin/valgrind --error-limit=no $*

Fix the wrapper script’s line ending, deploy it to the Emulator, and grant executable permission by

issuing the commands shown in Listing 5-22.

Listing 5-22. Deploying the Valgrind Wrapper Script

dos2unix.exe valgrind_wrapper.sh
adb push valgrind_wrapper.sh /data/local/Inst/bin
adb shell chmod 755 /data/local/Inst/bin/valgrind_wrapper.sh

Running Valgrind

In order to run the application under Valgrind, inject the wrapper script into the startup sequence by

issuing the command shown in Listing 5-23.

http://freepdf-books.com

152 CHAPTER 5: Logging, Debugging, and Troubleshooting

Listing 5-23. Injecting Valgrind Wrapper into Startup Sequence

adb shell setprop wrap.com.example.hellojni \
 "logwrapper /data/local/Inst/bin/valgrind_wrapper.sh"

The format for the property key is wrap.<package name>. To run your other applications under

Valgrind, simply substitute the package name with the proper value. Stop and restart the application.

Valgrind messages will be displayed on logcat, as shown in Figure 5-16.

 Logcat displaying Valgrind messages

Note Running application under Valgrind will slow down the application at a very high rate. Android may

complain about process not responding. Please click Wait button to give Valgrind more time in such cases.

Strace
In certain cases you may want to monitor every activity of your application without attaching a

debugger or adding numerous log messages. The strace tool can be used to easily achieve that. It

is a useful diagnostic tool because it intercepts and records the system calls that are called by the

application and the signals that are received. The name of each system call, its arguments, and its

return value are printed. Note that strace comes with the Android emulator.

In order to see strace in action, using Eclipse, open the hello-jni.c source code. Modify the source

file as shown in Listing 5-24.

Listing 5-24. Native Source Code with Two System Calls Added

#include <unistd.h>
...
jstring
Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env,
 jobject thiz)

http://freepdf-books.com

153CHAPTER 5: Logging, Debugging, and Troubleshooting

{
 getpid();
 getuid();

 return (*env)->NewStringUTF(env, "Hello from JNI !");
}

Build and run the application on the emulator. Open up Cygwin or a Terminal window. When the

application starts, issue the following command to obtain the process ID of the application:

adb shell ps | grep com.example.hellojni

The process ID is the number on the third column, as shown in Figure 5-17.

Figure 5-17. Getting the process ID of the application

Figure 5-18. Strace printing the system calls

Issue the following command to attach strace to the running application process by substituting the

process ID:

adb shell strace –v –p <Process ID>

As you can see, strace will attach to the application process and it will intercept and print the system

calls with their parameters and return values. Click the Call Native button to invoke the native

function, and strace will display two system calls that you have introduced into the native code, as

shown in Figure 5-18.

Strace is a very useful tool for troubleshooting both open and closed code applications.

http://freepdf-books.com

154 CHAPTER 5: Logging, Debugging, and Troubleshooting

Summary
In this chapter, you explored the tools and the techniques for effective logging, debugging, and

troubleshooting on Android platform. The concepts presented in this chapter will be highly beneficial

when experimenting with the native APIs offered by the Android platform, as you will see in the

following chapters.

http://freepdf-books.com

155

Chapter 6
Bionic API Primer

In previous chapter, you explored the logging, debugging, and troubleshooting tools and techniques

pertaining to Android native application development. Starting with this chapter, you will be exploring

the native APIs provided by the Android NDK.

Bionic is the POSIX standard C library that is provided by the Android platform for native application

development using C and C++ programming languages. Bionic is a derivation of BSD standard C

library by Google for the Android operating system. The name “Bionic” comes from the fact that it

consists of a mixture of BSD C library pieces with custom Linux-specific bits for handling threads,

processes, and signals.

Bionic is a highly vital subject for native application development, since it provides the minimal set

of constructs that are needed to develop any type of functional native code on Android platform. In

the following chapters, you will be relying heavily on the functionality provided by the Bionic. Before

getting into Bionic specifics, let’s quickly review standard libraries in general.

Reviewing Standard Libraries
A standard library for a programming language provides frequently needed constructs, algorithms,

data structures, and an abstract interface to tasks that would normally depend heavily on the

hardware and operating system, such as network access, multi-threading, memory management,

and file I/O. Depending on the philosophy behind the programming language itself, the scope of the

standard library varies greatly. It can either be fairly minimal with only a set of constructs for vital

tasks, or in contrast, it can be highly extensive. In all cases, the standard library is conventionally

made available in every implementation of the programming language in order to provide a

consistent base for application development.

There is a standard library for almost every programming language. The Java platform comes

with the Java Class Library (JCL), a standard library for Java programming language that contains

a comprehensive set of standard class libraries for common operations such as sorting, string

manipulation, and an abstract interface to underlying operating system services such as the stream

I/O for interacting with the files and the network. The Android framework extends the JCL by

incorporating additional constructs that are specific to Android application development.

http://freepdf-books.com

156 CHAPTER 6: Bionic API Primer

For the C programming language, the ANSI C standard defines the scope of the standard library.

This standard library is known as C standard library, or simply as libc. Implementations of the C

programming language also accompanied with an implementation of the C standard library. On

top of the standard C library specification, the POSIX C library specification declares the additional

constructs that should be included in such standard library on POSIX compliant systems.

Yet Another C Library?
Google’s motivation behind creating a new C library instead of reusing the existing GNU C Library

(glibc) or the C Library for Embedded Linux (uClibc) can be summarized under the three main goals

	License: Both the glibc and uClibc are available under GNU Lesser General

Public License (LGPL), thus restricting the way they can be used by proprietary

applications. Instead, Bionic is published under the BSD license, a highly

permissive license that does not set any restriction on the use of the library.

	Speed: Bionic is specifically crafted for mobile computing. It is tailored to work

efficiently despite the limited CPU cycles and memory available on the mobile

devices.

	Size: Bionic is designed with the core philosophy of keeping it simple. It provides

lightweight wrappers around kernel facilities and a lesser set of APIs, making it

smaller compared to other alternatives. This chapter will cover these APIs.

Binary Compatibility
Even though it is a C standard library, Bionic is not in any way binary-compatible with other C

libraries. Object files and static libraries that are produced against other C libraries should not be

dynamically linked with Bionic. Doing so will usually result in the inability to link or execute your

native applications properly.

Besides that, any application that is generated by statically linking with other C libraries and not

mixed with Bionic can run on the Android platform without any issues, unless it is dynamically

loading any other system library during runtime.

What is Provided?
Bionic provides C standard library macros, type definitions, functions, and small number of Android-

specific features that can be itemized under these functionality domains:

Memory Management	
File Input and Output	
String Manipulation	
Mathematics	

http://freepdf-books.com

157CHAPTER 6: Bionic API Primer

Date and Time	
Process Control	
Signal Handling	
Socket Networking	
Multithreading	
Users and Groups	
System Configuration	
Name Service Switch	

What is Missing?
As mentioned, Bionic is specifically designed for Android platform and tuned for mobile computing.

Not every function in the standard C library is supported by Bionic. Android NDK documentation

does provide a full list of missing functionality; however, such information is available within the

actual header files itself. Bionic header files can be located platforms/android- <api-level>/
arch- <architecture>/usr/include under the ANDROID_NDK_HOME directory.

Each header file in this directory contains a section clearly marking the list of missing functions. As

an example, the section listing the missing functions in stdio.h header file is shown in Listing 6-1.

Listing 6-1. Missing Functions in Bionic Implementation

#if 0 /* MISSING FROM BIONIC */
char *ctermid(char *);
char *cuserid(char *);
#endif /* MISSING */

The pre-processor if statement is used to disable these lines in the header file, and the associated

comment indicates that the section contains the list of missing functions. In addition to this list,

the Android NDK documentation also cites the functions that are exposed through Bionic but

implemented as a stub only, without any or minimal functionality.

Memory Management
Memory is the most basic resource available to a process. For Java applications, the memory is

managed by the virtual machine. Memory gets allocated as new objects are created, and through

the garbage collector, the unused memory automatically gets returned to the system. However,

in the native space, the applications are expected to manage their own memory explicitly. Managing

the memory properly is vital in native application development since failure to do so will result in

exhausting available system memory and will deeply impact the stability of the application as well as

the system in general.

http://freepdf-books.com

158 CHAPTER 6: Bionic API Primer

Memory Allocation
There are three types of memory allocation that are supported by the C/C++ programming language:

	Static allocation: For each static and global variable that is defined in the code,

static allocation happens automatically when the application starts.

	Automatic allocation: For each function argument and local variable, automatic

allocation happens when the compound statement containing the declaration is

entered; it’s freed automatically when compound statement is exited.

	Dynamic allocation: Both static and automatic allocation assumes that the

required memory size and its scope are fixed and defined during the compile-

time. Dynamic allocation comes into play when the size and the scope of

memory allocation depends on runtime factors that are not known in advance.

In the C programming language, dynamic memory can be allocated during runtime using the

standard C library function malloc.

void* malloc(size_t size);

In order to use this function, the stdlib.h standard C library header file should be included first. As

shown in Listing 6-2, malloc takes a single argument, the size of memory to be allocated as number

of bytes, and returns a pointer to the newly allocated memory.

Listing 6-2. Dynamic Memory Allocation in C Code Using malloc

/* Include standard C library header. */
#include < stdlib.h>

...

/* Allocate an integer array of 16 elements. */
int* dynamicIntArray = (int*) malloc(sizeof(int) * 16);
if (NULL == dynamicIntArray) {
 /* Unable to allocate enough memory. */
 ...
} else {
 /* Use the memory through the integer pointer. */
 *dynamicIntArray = 0;
 dynamicIntArray[8] = 8;
 ...

http://freepdf-books.com

159CHAPTER 6: Bionic API Primer

 /* Free the memory allocation. */
 free(dynamicIntArray);
 dynamicIntArray = NULL;
}

Tip Since malloc takes the size of memory as number of bytes, the C keyword sizeof can be used

to extract the size of a data types.

If the requested memory size is not achievable, malloc returns NULL to indicate that. Applications

should check the value returned from malloc prior using it. Once allocated, the dynamic memory can

be used by ordinary C code through the pointers, until it gets freed.

Freeing Dynamic Memory in C

Dynamic memory should be explicitly freed by the application when it is no longer needed. The

standard C library function free is used to release the dynamic memory.

void free(void* memory);

The free function takes a pointer the previously allocated dynamic memory and releases it, as

shown in Listing 6-3.

Listing 6-3. Releasing the Dynamic Memory in C Code Using free

int* dynamicIntArray = (int*) malloc(sizeof(int) * 16);
...
/* Use the allocated memory. */
...
free(dynamicIntArray);
dynamicIntArray = NULL;

Note that the pointer’s value does not change after this function call even though the memory that it

is pointing to got released. Any attempt to use this invalid pointer results in segmentation violation. It

is a good practice to set the pointer to NULL immediately after freeing it in order to prevent accidental

use of the invalid pointers.

Changing Dynamic Memory Allocation in C

Once the memory is allocated, its size can be changed through the realloc function that is provided

by the standard C library.

void* realloc(void* memory, size_t size);

The size of dynamic memory allocation gets either expanded or reduced based on its new size. The

realloc function takes the original dynamic memory allocation as its first argument and the new size

as the second argument, as shown in Listing 6-4.

http://freepdf-books.com

160 CHAPTER 6: Bionic API Primer

Listing 6-4. Reallocating Dynamic Memory Allocation Using realloc

int* newDynamicIntArray = (int*) realloc(
 dynamicIntArray, sizeof(int) * 32);

if (NULL == newDynamicIntArray) {
 /* Unable to reallocate enough memory. */
 ...
} else {
 /* Update the memory pointer. */
 dynamicIntArray = newDynamicIntArray;
 ...

realloc function returns the pointer to reallocated dynamic memory. The function may move the

NULL.

new and delete keywords can be used to manage dynamic memory allocation instead of

When dealing with C++ objects, it is highly recommended to use these C++ keywords instead of the

functions provided through the standard C library. Unlike the standard C library functions, the C++

dynamic memory management keywords are type-aware, and they support C++ object lifecycle.

In addition to allocating memory, the new keyword also invokes the class’ constructor; likewise, the

delete keyword invokes the class’ destructor prior releasing the memory.

Allocating Dynamic Memory in C++

Memory is allocated using the new keyword followed by the data type, as shown in Listing 6-5.

Listing 6-5. Dynamic Memory Allocation for Single Element in C++ Code

int* dynamicInt = new int;
if (NULL == dynamicInt) {
 /* Unable to allocate enough memory. */
 ...
} else {
 /* Use the allocated memory. */
 *dynamicInt = 0;
 ...
}

If an array of elements needs to be allocated, the number of elements is specified using the

brackets, as shown in Listing 6-6.

http://freepdf-books.com

161CHAPTER 6: Bionic API Primer

Listing 6-6. Dynamic Memory Allocation for Multiple Elements in C++ Code

int* dynamicIntArray = new int[16];
if (NULL == dynamicIntArray) {
 /* Unable to allocate enough memory. */
 ...
} else {
 /* Use the allocated memory. */
 dynamicIntArray[8] = 8;
 ...
}

Freeing Dynamic Memory in C++

Dynamic memory should be explicitly freed using the C++ delete keyword by the application when it

is no longer needed, as shown in Listing 6-7.

Listing 6-7. Freeing Single Element Dynamic Memory Using the delete Keyword

delete dynamicInt;
dynamicInt = 0;

If an array of elements needs to be freed, the C++ delete[] keyword should be used instead, as

shown in Listing 6-8.

Listing 6-8. Freeing Array Dynamic Memory Using delete[]

delete[] dynamicIntArray;
dynamicIntArray = 0;

Take care to use the proper delete keyword; failure to do so will result in memory leaks in the native

application.

Changing Dynamic Memory Allocation in C++

The C++ programming language does not have built-in support for reallocating dynamic memory.

The memory allocation is done based on the size of the data type and the number of elements. If the

application logic requires increasing or decreasing the number of elements during runtime, it is highly

recommended to use the suitable Standard Template Library (STL) container classes.

Mixing the Memory Functions and the Keywords

Developers must use the proper function and keyword pairs when dealing with dynamic memory.

Memory blocks that are allocated through malloc must be released through the free keyword;

likewise, memory blocks that are allocated through new keyword must be released with the delete

keyword accordingly. Failure to do so will result in unknown application behavior.

http://freepdf-books.com

162 CHAPTER 6: Bionic API Primer

Standard File I/O
Native applications can interact with the file system through the Standard File I/O (stdio) functions

that are provided by the standard C library. Two flavors of file I/O are provided through the standard

C library:

	Low-level I/O: Primitive I/O functions with finer grade of control over the data

source.

	Stream I/O: Higher-level, buffered I/O functions more suitable for dealing with

data streams.

The stream based I/O is more flexible and convenient when dealing with regular files. This section

	stdin: Standard input stream for the application

	stdout: Standard output stream for the application

	stderr: Standard error stream for the application

As the native application on Android runs as a module behind the graphical user interface (GUI),

these streams are not very useful. While integrating legacy code, you should make sure that any

use of these standard streams is properly handled through the GUI. As explained in the “Console

Logging” section in Chapter 5, the stdout and stderr streams can be directed to Android system log

by setting the log.redirect-stdio system property prior starting the application.

Using the Stream I/O
Stream I/O constructs and functions are defined in the stdio.h standard C library header file. In

order to use stream I/O in native applications, this header file should be included in advance, as

shown in Listing 6-9.

Listing 6-9. Including Standard I/O Header File to Use the Stream I/O

#include <stdio.h>

For historical reasons, the type of data structure representing a stream is called FILE, not a stream,

in the standard C library. A FILE object holds all of the internal state information for the stream

I/O connection. The FILE object is created and maintained by the stream I/O functions and is not

expected to be directly manipulated by the application code.

http://freepdf-books.com

163CHAPTER 6: Bionic API Primer

Opening Streams
A new stream to a new or an existing file can be opened through the stream I/O fopen function. The

fopen function takes the name of the file, and the open type as arguments, and returns a pointer to

the stream.

FILE* fopen(const char* filename, const char* opentype);

The second argument to fopen function, the opentype, is a string that controls how the file is opened.

It should begin with one of the following open types:

r: Opens an existing file as read-only.	
w: Opens the file as write-only. If the file already exists, it gets truncated to zero 	
length.

a: Opens the file in append mode. File content is preserved, and the new output 	
gets appended to the end of the file. If the file does not exist, a new file is

opened.

r+: Opens the file in read-write mode.	
w+: Opens the file in read-write mode. If the file already exists, it gets truncated 	
to zero length.

a+: Opens the file for reading and appending. The initial file position is set to the 	
beginning for reading and to the end of the file for appending.

Note The buffers should be flushed using the fflush function prior to switching between reading

and writing if the file is opened in dual-mode with either r+, w+, or a + .

If the file could not be opened with the requested mode, the fopen function returns a NULL pointer. In

case of success, a stream pointer, a FILE pointer, is returned for communicating with the stream, as

shown in Listing 6-10.

Listing 6-10. Opening a Stream in Write-Only Mode

#include <stdio.h>
...
FILE* stream = fopen("/data/data/com.example.hellojni/test.txt", "w");
if (NULL == stream)
{
 /* File could not be opened for writing. */
}
else
{
 /* Use the stream. */

 /* Close the stream. */
}

Once the stream is opened, it can be used for reading and writing until it gets closed.

http://freepdf-books.com

164 CHAPTER 6: Bionic API Primer

Writing to Streams
Stream I/O provides four functions for writing to a stream. This section will briefly explore these

functions.

Writing Block of Data to Streams

The fwrite function can be used for writing blocks of data to the streams.

size_t fwrite(const void* data, size_t size, size_t count, FILE* stream);

fwrite function writes count number of elements of size size from the

data to given stream stream.

 Writing Block of Data to Stream Using fwrite

 = fwrite(data, sizeof(char), count, stream))
{
 /* Error occured while writing to stream. */

It returns the number of elements actually written to the stream. In case of success, the returned

value should be equal to the value given as the count; otherwise, it indicates an error in writing.

Writing Character Sequences to Streams

Sequence of null-terminated characters can be written to a stream using the fputs function.

int fputs(const char* data, FILE* stream);

As shown in Listing 6-12, the fputs function writes the given character sequence data to the given

stream, named stream.

Listing 6-12. Writing Character Sequence to the Stream Using fputs

/* Writing character sequence to stream. */
if (EOF == fputs("hello\n", stream))
{
 /* Error occured while writing to the stream. */
}

If the character sequence cannot be written to the stream, fputs function returns EOF.

http://freepdf-books.com

165CHAPTER 6: Bionic API Primer

Writing a Single Character to Streams

A single character or byte can be written to a stream using the fputc function.

int fputc(int c, FILE* stream);

As shown in Listing 6-13, the fputc function takes the single character c as an integer and converts

it to a unsigned char prior writing to the given stream, named stream.

Listing 6-13. Writing a Single Character to Stream Using fputc

char c = 'c';

/* Writing a single character to stream. */
if (c ! = fputc(c, stream))
{
 /* Error occured while writing character to string.
}

If the character cannot be written to the stream, fputc function returns EOF; otherwise it returns the

character itself.

Writing Formatted Data to Streams

The fprintf function can be used to format and output variable number of arguments to the given

stream.

int fprintf(FILE* stream, const char* format, ...);

It takes a pointer to the stream, the format string, and variable number of arguments that are

referenced in the format. The format string consists of a mix of ordinary characters and format

specifiers. Ordinary characters in the format string are passed unchanged into the stream. Format

specifiers cause the fprintf function to format and write the given arguments to the stream

accordingly. The most frequently used specifiers are

%d, %i: Formats the integer argument as signed decimal.	
%u: Formats the unsigned integer as unsigned decimal.	
%o: Formats the unsigned integer argument as octal.	
%x: Formats the unsigned integer argument as hexadecimal.	
%c: Formats the integer argument as a single character.	
%f: Formats the double precision argument as floating point number.	
%e: Formats the double precision argument in fixed format.	
%s: Prints the given 	 NULL-terminated character array.

%p: Print the given pointer as memory address.	
%%: Writes a % character.	

http://freepdf-books.com

166 CHAPTER 6: Bionic API Primer

As shown in Listing 6-14, the order and the type of the provided arguments to fprintf function

should match the specifiers in the format string.

Listing 6-14. Writing Formatted Data to the Stream

/* Writes the formatted data. */
if (0 > fprintf(stream, "The %s is %d.", "number", 2))
{
 /* Error occurred while writing formatted data. */
}

The fprintf function returns the number of characters written to the stream. In case of an error, it

fprintf manual page at

.

Normal termination of the application.	
When a newline is written in case of line buffering.	
When the buffer is full.	
When the stream is closed.	

Stream I/O also provides the fflush function to enable applications to manually flush the buffer as

needed.

int fflush(FILE* stream);

As shown in Listing 6-15, the fflush function takes the stream pointer and flushes the output buffer.

Listing 6-15. Flushing the Buffer Using fflush Function

char data[] = { 'h', 'e', 'l', 'l', 'o', '\n' };
size_t count = sizeof(data) / sizeof(data[0]);

/* Write data to stream. */
fwrite(data, sizeof(char), count, stream);

/* Flush the output buffer. */
if (EOF == fflush(stream))
{
 /* Error occured while flushing the buffer. */
}

http://freepdf-books.com

http://pubs.opengroup.org/onlinepubs/009695399/functions/fprintf.html

167CHAPTER 6: Bionic API Primer

If the buffer cannot be written to the actual file, fflush function returns EOF; otherwise, it returns zero.

Reading from Streams
Similar to writing, stream I/O provides four functions for reading from a stream.

Reading Block of Data from Streams

The fread function can be used for reading blocks of data from the stream.

size_t fread(void* data, size_t size, size_t count, FILE* stream);

As shown in Listing 6-16, the fread function reads count number of elements of size (size) into the

buffer data from the given stream, named stream. It returns the number of elements actually read.

Listing 6-16. Reading Block Data of Four Characters from the Stream

char buffer[5];
size_t count = 4;

/* Read 4 characters from the stream. */
if (count ! = fread(buffer, sizeof(char), count, stream))
{
 /* Error occured while reading from the stream. */
}
else
{
 /* Null terminate. */
 buffer[4] = NULL;

 /* Output buffer. */
 MY_LOG_INFO("read: %s", buffer);
}

In the case of success, the returned number of elements should be equal to the value passed as

count.

Reading Character Sequences from Streams

The fgets function can be used to read a newline-terminated character sequence from the given

stream.

char* fgets(char* buffer, int count, FILE* stream);

As shown in Listing 6-17, the fgets function reads at most count-1 characters up to and including

the newline character into the character array buffer from the given stream, named stream.

http://freepdf-books.com

168 CHAPTER 6: Bionic API Primer

Listing 6-17. Reading a Newline-Terminated Character Sequence

char buffer[1024];

/* Read newline terminated character sequence from the stream. */
if (NULL == fgets(buffer, 1024, stream))
{
 /* Error occured while reading the stream. */
}
else
{
 MY_LOG_INFO("read: %s", buffer);

NULL pointer.

fgetc function can be used to read a single unsigned char from the streams.

fgetc functions reads a single character from the stream and returns it

Listing 6-18. Reading a Single Character from the Stream

unsigned char ch;
int result;

/* Read a single character from the stream. */
result = fgetc(stream);
if (EOF == result)
{
 /* Error occured while reading from the stream. */
}
else
{
 /* Get the actual character. */
 ch = (unsigned char) result;
}

If end-of-file indicator for the stream is set, it returns EOF.

Reading Formatted Data from Streams

The fscanf function can be used to read formatted data from the streams. It works in a way similar

to the fprintf function, except that it reads the data based on the given format into the provided

arguments.

http://freepdf-books.com

169CHAPTER 6: Bionic API Primer

int fscanf(FILE* stream, const char* format, ...);

It takes a pointer to the stream, the format string, and variable number of arguments that are

referenced in the format. The format string consists of a mix of ordinary characters and format

specifiers. Ordinary characters in the format string are used to specify characters that must be

present in the input. Format specifiers cause the fscanf function to read and place the data into

the given arguments. The most frequently used specifiers are

%d, %i: Reads a signed decimal.	
%u: Reads an unsigned decimal.	
%o: Reads an octal number as unsigned integer.	
%x: Reads a hexadecimal number as unsigned integer.	
%c: Reads a single character.	
%f: Reads a floating point number.	
%e: Reads a fixed format floating point number.	
%s: Scans a string.	
%%: Escapes the % character.	

As shown in Listing 6-19, the order and the type of the provided arguments to fscanf function

should match the specifiers in the format string.

Listing 6-19. Reading Formatted Data from the Stream

char s[5];
int i;

/* Stream has "The number is 2" */
/* Reads the formatted data. */
if (2 ! = fscanf(stream, "The %s is %d", s, &i))
{
 /* Error occured while reading formatted data. */
}

On success, the fscanf function returns the number of items read. In case of an error,

EOF is returned. More information on the format string, including the full list of specifiers

and other modifiers, can be found in fscanf manual page at

http://pubs.opengroup.org/onlinepubs/009695399/functions/fscanf.html.

Checking for End of File

When reading from a stream, the feof function can be used to check if the end-of-file indicator for

the stream is set.

int feof(FILE* stream);

http://freepdf-books.com

http://pubs.opengroup.org/onlinepubs/009695399/functions/fscanf.html

170 CHAPTER 6: Bionic API Primer

As shown in Listing 6-20, the feof function takes the stream pointer as an argument and returns a

non-zero value if the end of file is reached; otherwise, it returns zero if more data can be read from

the stream.

Listing 6-20. Reading Strings from stream Until the End of the File

char buffer[1024];

/* Until the end of the file. */
while (0 == feof(stream))
{
 /* Read and output string. */
 fgets(buffer, 1024, stream);
 MY_LOG_INFO("read: %s", buffer);

fseek function.

fseek function uses the stream pointer, the relative offset, and the whence as the reference point

	SEEK_SET: Offset is relative to the beginning of stream.

	SEEK_CUR: Offset is relative to current position.

	SEEK_END: Offset is relative to the end of the stream.

The example code, shown in Listing 6-21, writes four characters, rewinds back the stream 4 bytes,

and overwrites them with a different set of characters.

Listing 6-21. Rewinding the Stream for 4 Bytes

/* Write to the stream. */
fputs("abcd", stream);

/* Rewind for 4 bytes. */
fseek(stream, -4, SEEK_CUR);

/* Overwrite abcd with efgh. */
fputs("efgh", stream);

Error checking is omitted in the example code. The fseek function returns zero if the operation is

successful; otherwise a non-zero value indicates the failure.

http://freepdf-books.com

171CHAPTER 6: Bionic API Primer

Checking Errors
Most stream I/O functions returns EOF to indicate both the errors as well as to report end-of-file.

The ferror function can be used to check if an error has occurred on a previous operation.

int ferror(FILE* stream);

As shown in Listing 6-22, the ferror function returns a non-zero value if the error flag is set for the

given stream.

Listing 6-22. Checking for the Errors

/* Check for the errors. */
if (0 ! = ferror(stream))
{
 /* Error occured on the previous request. */
}

Closing Streams
Streams can be closed using the fclose function. Any buffered output gets written to the stream,

and any buffered input is discarded.

int fclose(FILE* stream);

The fclose function takes the stream pointer as argument. It returns zero in case of success and EOF

if an error is occurred while closing the stream, as shown in Listing 6-23.

Listing 6-23. Closing a Stream Using fclose Function

if (0 ! = fclose(stream))
{
 /* Error occured while closing the stream. */
}

The error may indicate that the buffered output could not be written to the stream due to insufficient

space on the disk. It is always a good practice to check the return value of the fclose function.

Interacting with Processes
Bionic enables native applications to start and interact with other native processes. Native code can

execute shell commands; it can execute a process in the background and communicate to it. This

section will briefly mention some of the key functions.

http://freepdf-books.com

172 CHAPTER 6: Bionic API Primer

Executing a Shell Command
The system function can be used to pass a command to the shell. In order to use this function, the

stdlib.h header file should be included first.

#include <stdlib.h>

As shown in Listing 6-24, the function blocks the native code until the command finishes executing.

Listing 6-24. Executing a Shell Command Using the System Function

int result;

 = system("mkdir /data/data/com.example.hellojni/temp");

{
 /* Execution of the shell failed. */

system command does not provide a communication channel for the native application to either

waits until the command finishes executing. In certain cases, having a communication channel

between the native code and the executed process is needed.

The popen function can be used to open a bidirectional pipe between the parent process and the

child process. In order o use this function, the stdio.h standard header file should be included first.

FILE *popen(const char* command, const char* type);

The popen function takes the command to be executed and the type of the requested

communication channel as arguments and returns a stream pointer. In case of an error, it returns

NULL. As shown in Listing 6-25, the stream I/O functions that you explorer earlier in this chapter can

be used to communicate with the child process as interacting with a file.

Listing 6-25. Opening a Channel to ls Command and Printing the Output

#include <stdio.h>
...
FILE* stream;

/* Opening a read-only channel to ls command. */
stream = popen("ls", "r");
if (NULL == stream)
{
 MY_LOG_ERROR("Unable to execute the command.");
}

http://freepdf-books.com

173CHAPTER 6: Bionic API Primer

else
{
 char buffer[1024];
 int status;

 /* Read each line from command output. */
 while (NULL ! = fgets(buffer, 1024, stream))
 {
 MY_LOG_INFO("read: %s", buffer);
 }

 /* Close the channel and get the status. */
 status = pclose(stream);
 MY_LOG_INFO("process exited with status %d", status);
}

Note The popen streams are fully buffered by default. You will need to use fflush function to flush

the buffer as needed.

When the child process finishes executing, the stream should be closed using the pclose function.

int pclose(FILE* stream);

It takes the stream pointer as the argument and waits for the child process to terminate and returns

the exit status.

System Configuration
The Android platform holds the system properties as a simple key-value pair. Bionic provides a

set of functions to enable native applications to query the system properties. In order to use these

functions, the system properties header file should be included first.

#include <sys/system_properties.h>

The system properties header file declares the necessary structures and functions. Each system

property consists of a maximum of PROP_NAME_MAX character long name for the property and a

maximum of PROP_VALUE_MAX characters long value.

Getting a System Property Value by Name
The __system_property_get function can be used to look up a system property by name.

int __system_property_get(const char* name, char* value);

http://freepdf-books.com

174 CHAPTER 6: Bionic API Primer

As shown in Listing 6-26, it copies the null-terminated property value to the provided value pointer

and returns the size of the value. The total bytes copied will not be greater than PROP_VALUE_MAX.

Listing 6-26. Getting a System Property Value by Name

char value[PROP_VALUE_MAX];

/* Gets the product model system property. */
if (0 == __system_property_get("ro.product.model", value))
{
 /* System property is not found or it has an empty value. */
}

{
 MY_LOG_INFO("product model: %s", value);

__system_property_find function can be used to get a direct pointer to the system property.

It searches the system property by name and returns a pointer to it if it is found; otherwise it returns

NULL. The returned pointer remains valid for the lifetime of the system, and it can be cached to avoid

future lookups. As shown in Listing 6-27, the __system_property_read function can be used to

obtain the property value from this pointer.

Listing 6-27. Getting a System Property by Name

const prop_info* property;

/* Gets the product model system property. */
property = __system_property_find("ro.product.model");
if (NULL == property)
{
 /* System property is not found. */
}
else
{
 char name[PROP_NAME_MAX];
 char value[PROP_VALUE_MAX];

 /* Get the system property name and value. */
 if (0 == __system_property_read(property, name, value))

http://freepdf-books.com

175CHAPTER 6: Bionic API Primer

 {
 MY_LOG_INFO("%s is empty.");
 }
 else
 {
 MY_LOG_INFO("%s: %s", name, value);
 }
}

The __system_property_read function takes pointers to the system property and two other character

array pointers to return the system property name and value.

int __system_property_read(const prop_info* pi, char* name, char* value);

It copies the null-terminated property value to the provided value pointer, and returns the size of

the value. The total characters copied will not be greater than PROP_VALUE_MAX. The name argument

is optional; if a character array is supplied, it copies the system property name to the given value

pointer. The total characters copied will not be greater than PROP_NAME_MAX.

Users and Groups
The Linux kernel is designed for multiuser platforms. Although Android is meant to be used by a

single handset user, it still takes advantage of the user-based permission model.

Android runs the applications within a virtual machine sandbox and treats them 	
as different users on the system. By simply relying on the user-based permission

model, Android easily secures the system by preventing the applications from

accessing other applications’ data and memory.

Services and hardware resources are also protected through the user-based 	
permission model. Each of these resources has its own protection group. During

application deployment, the application requests access to those resources.

The application won’t be allowed to access any additional resources if it is not a

member of the proper resource group.

Bionic provides basic support for the user and group information functions, and most of these

functions are only stubs with minimal or no functionality. This section covers the key ones. In order

to use these functions, the unistd.h standard header file needs to be included first.

#include <unistd.h>

Getting the Application User and Group IDs
Each installed application gets its own user and group ID starting from 10000. The lower IDs are

used for system services. The user ID for the current application can be obtained using the getuid

function, as shown in Listing 6-28.

http://freepdf-books.com

176 CHAPTER 6: Bionic API Primer

Listing 6-28. Getting the Application User ID Using the getuid Function

uid_t uid;

/* Get the application user ID. */
uid = getuid();

MY_LOG_INFO("Application User ID is %u", uid);

Similar to the user ID, the group ID for the current application can be obtained through the getgid

function, as shown in Listing 6-29.

 Getting the Application Group ID Using the getgid Function

 = getgid();

application number. For example, the user name for application with user ID 10040 will be

app_40. The user name be obtained through the getlogin function, as shown in Listing 6-30.

Listing 6-30. Getting the Application User Name Using the getlogin Function

char* username;

/* Get the application user name. */
username = getlogin();

MY_LOG_INFO("Application user name is %s", username);

Inter-Process Communication
Bionic does not provide support for System V inter-process communication (IPC), in order to avoid

denial-of-service attacks and kernel resource leakage. Although System V IPC is not supported, the

Android platform architecture makes heavy use of IPC using its own flavor known as Binder. Android

applications communicate with the system, services, and each other through the Binder interface.

At the time of this writing, Bionic does not provide any official APIs to enable native applications

to interact with the Binder interface. Currently, the Binder interface is only accessible through the

Android Java APIs.

http://freepdf-books.com

177CHAPTER 6: Bionic API Primer

Summary
In this chapter, you started exploring Bionic, a derivation of the BSD standard C library by Google

for the Android operating system. You studied the standard C library functions that are exposed to

the native applications through Bionic, such as memory management, standard I/O, process control,

system configuration, plus user and group management functions. Beside the APIs mentioned,

Bionic also provides multi-threading and networking APIs for the native applications. You will explore

these APIs separately in individual chapters.

http://freepdf-books.com

179

Chapter 7
Native Threads

A thread is a mechanism enabling a single process to perform multiple tasks concurrently. Threads are

lightweight processes sharing the same memory and resources of the same parent process. A single

process can contain multiple threads executing in parallel. As part of the same process, threads can

communicate with each other and share data. Android supports threads in both Java and the native

code. In this chapter, you will be exploring different strategies and APIs that can be used for concurrent

programming pertaining to native code. The following key topics are covered in this chapter:

Java vs. POSIX Threads	
Thread synchronization	
Controlling the thread lifecycle	
Thread priorities and scheduling strategies	
Interacting with Java from within native threads	

Creating the Threads Example Project
Before going into the details of having multithreading in native code, you will create a simple

example application that will act as a testbed. The example application will provide the following:

An Android application project with native code support.	
A simple GUI to define the number of threads, the number of iterations per 	
worker, a button to start threads, and a text view showing the progress

messages from the native workers during runtime.

A native worker function mimicking a long-lasting task.	
While working through the chapter, you will expand this example application to demonstrate different

techniques and APIs pertaining to multithreading in native code.

http://freepdf-books.com

180 CHAPTER 7: Native Threads

Creating the Android Project
Start by creating a new Android application project.

1. Open the Eclipse IDE and choose File ➤ New ➤ Other from the top menu bar

to launch the New dialog, as shown in Figure 7-1.

 New dialog

Figure 7-2. New Android App dialog

2. From the list of wizards, expand the Android category.

3. Choose Android Application Project from the sub-list.

4. Click the Next button to launch the New Android App wizard, as shown in

Figure 7-2.

http://freepdf-books.com

181CHAPTER 7: Native Threads

5. Set Application Name to Threads.

6. Set Project Name to Threads.

7. Set Package Name to com.apress.threads.

8. Set Build SDK to Android 4.0.

9. Set Minimum Required SDK to API 8.

10. Click the Next button to proceed.

11. Keep the default settings for the launcher icon by clicking the Next button.

12. Select the Create activity.

13. Choose Blank Activity from the template list.

14. Click the Next button to proceed.

15. In the New Blank Activity step, accept the default values by clicking the

Finish button.

Adding the Native Support
Native support should be added to the new Android project in order to use native code. Using the

Project Explorer view, right-click the Threads project, and choose Android Tools ➤ Add Native Support

from the context menu. As shown in Figure 7-3, the Add Android Native Support dialog will be

launched.

Figure 7-3. Add Android Native Support dialog

Set the Library Name to Threads and click the Finish button. Native code support will be added to

the project.

Declaring the String Resources
The application’s user interface will be referring to a set of string resources. Using the Project

Explorer view, expand the res directory for resources. Expand the values subdirectory, and double-

click on strings.xml to open the string resources in the editor. Replace the content as shown

in Listing 7-1.

http://freepdf-books.com

182 CHAPTER 7: Native Threads

Listing 7-1. Content of res/values/strings.xml File

<resources>
 <string name="app_name">Threads</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_main">Threads</string>
 <string name="threads_edit">Thread Count</string>
 <string name="iterations_edit">Iteration Count</string>
 <string name="start_button">Start Threads</string>
</resources>

 7-4).

Figure 7-4. Simple user interface for the example application

Using the Project Explorer view, expand the layout subdirectory under the res directory. Double-

click the activity_main.xml layout file to open it in the editor. Replace the content as shown in

Listing 7-2.

Listing 7-2. Content of res/layout/activity_main.xml File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <EditText
 android:id="@+id/threads_edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:ems="10"

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

183CHAPTER 7: Native Threads

 android:hint="@string/threads_edit"
 android:inputType="number" >

 <requestFocus />
 </EditText>

 <EditText
 android:id="@+id/iterations_edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:ems="10"
 android:hint="@string/iterations_edit"
 android:inputType="number" />

 <Button
 android:id="@+id/start_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/start_button" />

 <ScrollView
 android:id="@+id/scrollView1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" >

 <TextView
 android:id="@+id/log_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

 </ScrollView>

</LinearLayout>

Implementing the Main Activity
The main activity will be presenting the user interface that you defined in the previous section, and

it will enable the user interface to configure and control the threads and the workers during runtime.

Before going through the functions that are provided in the main activity, using the Project Explorer

view, expand the src directory, and select com.apress.thread Java package. Double-click the

MainActivity.java file, and replace the content as shown in Listing 7-3.

Listing 7-3. Content of src/com/apress/threads/MainActivity.java File

package com.apress.threads;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

http://freepdf-books.com

184 CHAPTER 7: Native Threads

import android.widget.EditText;
import android.widget.TextView;

/**
 * Main activity.
 *
 * @author Onur Cinar
 */
public class MainActivity extends Activity {
 /** Threads edit. */
 private EditText threadsEdit;

 /** Iterations edit. */
 private EditText iterationsEdit;

 /** Start button. */
 private Button startButton;

 /** Log view. */
 private TextView logView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Initialize the native code
 nativeInit();

 threadsEdit = (EditText) findViewById(R.id.threads_edit);
 iterationsEdit = (EditText) findViewById(R.id.iterations_edit);
 startButton = (Button) findViewById(R.id.start_button);
 logView = (TextView) findViewById(R.id.log_view);

 startButton.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 int threads = getNumber(threadsEdit, 0);
 int iterations = getNumber(iterationsEdit, 0);

 if (threads > 0 && iterations > 0) {
 startThreads(threads, iterations);
 }
 }
 });
 }

 @Override
 protected void onDestroy() {
 // Free the native resources
 nativeFree();

 super.onDestroy();
 }
 c

http://freepdf-books.com

185CHAPTER 7: Native Threads

 /**
 * On native message callback.
 *
 * @param message
 * native message.
 */
 private void onNativeMessage(final String message) {
 runOnUiThread(new Runnable() {
 public void run() {
 logView.append(message);
 logView.append("\n");
 }
 });
 }

 /**
 * Gets the value of edit text as integer. If the value
 * is empty or count not be parsed, it returns the
 * default value.
 *
 * @param editText edit text.
 * @param defaultValue default value.
 * @return numeric value.
 */
 private static int getNumber(EditText editText, int defaultValue) {
 int value;

 try {
 value = Integer.parseInt(editText.getText().toString());
 } catch (NumberFormatException e) {
 value = defaultValue;
 }

 return value;
 }

 /**
 * Starts the given number of threads for iterations.
 *
 * @param threads thread count.
 * @param iterations iteration count.
 */
 private void startThreads(int threads, int iterations) {
 // We will be implementing this method as we
 // work through the chapter
 }

 /**
 * Initializes the native code.
 */
 private native void nativeInit();

http://freepdf-books.com

186 CHAPTER 7: Native Threads

 /**
 * Free the native resources.
 */
 private native void nativeFree();

 /**
 * Native worker.
 *
 * @param id worker id.
 * @param iterations iteration count.
 */
 private native void nativeWorker(int id, int iterations);

 static {
 System.loadLibrary("Threads");
 }

	onNativeMessage is a callback function that will be invoked by the native code

to send progress messages to the UI. Android does not allow code running

in a different thread than the main UI thread to access or manipulate the UI

components. As the native worker functions are expected to execute within

a different thread, the onNativeMessage method simply schedules the actual

update operation in UI thread through the runOnUiThread method of the

android.app.Activity class.

	startThreads method will simply dispatch the start request to the proper

threading example. As you work through the chapter, you will be experimenting

with different features of threading. The startThreads method will facilitate

switching between these different examples.

	nativeInit method is implemented in the native code. It handles the

initialization of the native code prior executing the individual threads.

	nativeFree method is implemented in the native code. It frees the native

resources when the activity is getting destroyed.

	nativeWorker method is implemented in native code and mimics a long-lasting

task. It takes two arguments, the worked ID and the iterations count.

Generating the C/C++ Header File
In order to generate the function signatures for these two native methods, first select the

MainActivity.java source file using the Project Explorer, and choose Run ➤ External Tools ➤ Generate C

and C++ Header File from the top menu bar. The javah tool will generate the header file in the jni

directory with the content shown in Listing 7-4.

http://freepdf-books.com

187CHAPTER 7: Native Threads

Listing 7-4. Content of jni/com_apress_threads_MainActivity.h File

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_apress_threads_MainActivity */

...

/*
 * Class: com_apress_threads_MainActivity
 * Method: nativeInit
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_com_apress_threads_MainActivity_nativeInit
 (JNIEnv *, jobject);

/*
 * Class: com_apress_threads_MainActivity
 * Method: nativeFree
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_com_apress_threads_MainActivity_nativeFree
 (JNIEnv *, jobject);

/*
 * Class: com_apress_threads_MainActivity
 * Method: nativeWorker
 * Signature: (II)V
 */
JNIEXPORT void JNICALL Java_com_apress_threads_MainActivity_nativeWorker
 (JNIEnv *, jobject, jint, jint);

Implementing the Native Functions
Based on the function signatures that were generated in the previous section, you will now be

implementing the native functions.

1. Using the Project Explorer, right-click on jni directory.

2. Choose New ➤ Other from the context menu to launch the New dialog.

3. From the list of wizards, expand the C/C++ category.

4. Select the Source File wizard.

5. Click the Next button.

6. Using the New Source File dialog, set the source file to

com_apress_threads_MainActivity.cpp.

7. Click the Finish button.

http://freepdf-books.com

188 CHAPTER 7: Native Threads

The new source file will be opened in the editor. Replace its content as shown in Listing 7-5.

Listing 7-5. Content of jni/com_apress_threads_MainActivity.cpp File

#include <stdio.h>
#include <unistd.h>

#include "com_apress_threads_MainActivity.h"

// Method ID can be cached
static jmethodID gOnNativeMessage = NULL;

 JNIEnv* env,
 jobject obj)
{
 // If method ID is not cached
 if (NULL == gOnNativeMessage)
 {
 // Get the class from the object
 jclass clazz = env->GetObjectClass(obj);

 // Get the method id for the callback
 gOnNativeMessage = env->GetMethodID(clazz,
 "onNativeMessage",
 "(Ljava/lang/String;)V");

 // If method could not be found
 if (NULL == gOnNativeMessage)
 {
 // Get the exception class
 jclass exceptionClazz = env->FindClass(
 "java/lang/RuntimeException");

 // Throw exception
 env->ThrowNew(exceptionClazz, "Unable to find method");
 }
 }
}

void Java_com_apress_threads_MainActivity_nativeFree (
 JNIEnv* env,
 jobject obj)
{

}

void Java_com_apress_threads_MainActivity_nativeWorker (
 JNIEnv* env,
 jobject obj,
 jint id,
 jint iterations)

http://freepdf-books.com

189CHAPTER 7: Native Threads

{
 // Loop for given number of iterations
 for (jint i = 0; i < iterations; i++)
 {
 // Prepare message
 char message[26];
 sprintf(message, "Worker %d: Iteration %d", id, i);

 // Message from the C string
 jstring messageString = env->NewStringUTF(message);

 // Call the on native message method
 env->CallVoidMethod(obj, gOnNativeMessage, messageString);

 // Check if an exception occurred
 if (NULL != env->ExceptionOccurred())
 break;

 // Sleep for a second
 sleep(1);
 }
}

The native source file contains three native functions:

	Java_com_apress_threads_MainActivity_nativeInit function initializes the

native code by locating the method ID for the onNativeMessage callback function

and caching it in the gOnNativeMessage global variable.

	Java_com_apress_threads_MainActivity_nativeFree function is a placeholder

for releasing the native resources. You will implement this function as you work

through the chapter.

	Java_com_apress_threads_MainActivity_nativeWorker function mimics a

long-lasting task through a for loop. It loops based on the specified number of

iterations and sleeps a second between iterations. It communicates the iteration

status to the UI by invoking the onNativeMessage callback method.

Updating the Android.mk Build Script
The new source file should be added to the Android.mk build script for the Android build system

to compile it as part of the shared library. Using the Project Explorer, expand the jni directory, and

double-click the Android.mk file to open it in the editor. Replace the content as shown in Listing 7-6.

Listing 7-6. Content of jni/Android.mk File

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

http://freepdf-books.com

190 CHAPTER 7: Native Threads

LOCAL_MODULE := Threads
LOCAL_SRC_FILES := com_apress_threads_MainActivity.cpp

include $(BUILD_SHARED_LIBRARY)

The example application is now ready. You can validate the example project by running it in the

Android Emulator. Since the startThreads method is not implemented yet, the application will

not function, although the UI will be displayed. In the next section, you will add multithreading

functionality to the example application.

Java Threads

java.lang.Thread instance can be created in Java space using pure Java code, and it can invoke

MainActivity.java source file in the editor. Add the

 method into the MainActivity class as shown in Listing 7-7.

 Adding the javaThreads Method to MainActivity Class

public class MainActivity extends Activity {
 ...
 /**
 * Using Java based threads.
 *
 * @param threads thread count.
 * @param iterations iteration count.
 */
 private void javaThreads(int threads, final int iterations) {
 // Create a Java based thread for each worker
 for (int i = 0; i < threads; i++) {
 final int id = i;

 Thread thread = new Thread() {
 public void run() {
 nativeWorker(id, iterations);
 }
 };

 thread.start();
 }
 }
 ...
}

http://freepdf-books.com

191CHAPTER 7: Native Threads

The javaThreads method takes two arguments, number of threads and the number of iterations for

each worker, and it does the following:

Creates the requested number of 	 java.lang.Thread objects.

Overrides the 	 run method of java.lang.Thread class to invoke the nativeWorker
method in the thread context.

Starts each thread instance.	
In order to use the javaThreads method, you need to modify the startThreads method to point to it.

As you work through this chapter, you will be repeating the same procedure for other examples so

that you can easily switch between examples. Update the startThreads method as shown in

Listing 7-8.

Listing 7-8. Modified startThreads Method Invoking javaThreads Method

public class MainActivity extends Activity {
 ...
 /**
 * Starts the given number of threads for iterations.
 *
 * @param threads thread count.
 * @param iterations iteration count.
 */
 private void startThreads(int threads, int iterations) {
 javaThreads(threads, iterations);
 }
 ...
}

Executing the Java Threads Example
Run the example application on the Android Emulator, and follow these steps:

1. Set the Thread Count to 2 to have two threads run concurrently.

2. Set the Iteration Count to 10 to have each thread worker iterate through

ten steps.

3. Click the Start Threads button to start the Java threads.

The javaThreads method will create two threads, and each of these threads will run the nativeWorker
function with ten iterations. The threads will run for ten seconds. The nativeWorker function, while

starting each iteration step, will inform the UI by sending an update message, as shown in Figure 7-5.

http://freepdf-books.com

192 CHAPTER 7: Native Threads

Note Depending on the screen size you may need to scroll the results to see the latest update

messages.

 Native code running in multiple Java threads

Pros and Cons of using Java Threads for Native Code
Using Java threads for native code has the following advantages compared to native threads:

It’s much easier to set up.	
It does not require any change in the native code.	
It does not require being explicitly attached to the virtual machine, as Java 	
threads are already part of the Java platform. Native code can communicate

with the Java code using the supplied thread-specific JNIEnv interface pointer.

The methods provided through the 	 java.lang.Thread class can be used to

seamlessly interact with the thread instance from the Java code.

Besides its advantages, the Java threads have the following major shortcomings compared to native

threads when used for multithreading the native code:

Assumes that the logic to assign tasks to threads is part of the Java code, since 	
there is no API in native space to create Java threads.

Assumes that the native code is thread-safe, since Java-based threading is 	
transparent to the native code.

http://freepdf-books.com

193CHAPTER 7: Native Threads

Native code cannot benefit from other concurrent programming concepts and 	
components, such as semaphores, since no APIs for Java threads are available

in native space.

Native code running in separate threads cannot communicate or share 	
resources directly.

Note Although some of these shortcomings of Java threads can be resolved by using JNI to invoke

the necessary Java APIs, this approach is not preferable since passing through the JNI boundary is a

relatively expensive operation.

In the next section, you will start exploring the native threads.

POSIX Threads
POSIX Threads, also known as simply Pthreads, is a POSIX standard for threads. Prior to 1995,

several different threading APIs existed. The POSIX.1c, Threading Extensions, standard was

published in 1995 and defined a common API for creating and manipulating threads. Many of

the major operating systems, including Microsoft Windows, Mac OS X, BSD, and Linux provide

multithreading support conforming to the POSIX Threads standard. As it is based on the Linux

operating system, Android also provides non-compliant implementation of POSIX Threads for native

code. As POSIX Threads standard is rather large, this section will only cover the APIs that are fully

supported by Android platform.

Using POSIX Threads in Native Code
The POSIX Thread API is declared through the pthread.h header file. In order to use POSIX Threads

in native code, this header file needs to be included first.

#include <pthread.h>

The Android implementation of POSIX Threads is part of the Bionic standard C standard library.

Unlike other platforms, it does not require linking of any additional library during compile-time.

Creating Threads using pthread_create
The POSIX Threads are created through the pthread_create function.

int pthread_create(pthread_t* thread,
 pthread_attr_t const* attr,
 void* (*start_routine)(void*),
 void* arg);

http://freepdf-books.com

194 CHAPTER 7: Native Threads

The function takes the following arguments:

Pointer to a 	 thread_t type variable that will be used by the function to return the

handle for the new thread.

Attributes for the new thread in the form of a pointer to a 	 pthread_attr_t

structure. Stack base, stack size, guard size, scheduling policy, and scheduling

priority for the new thread can be specified through the attributes. You will learn

about some of these attributes later in the chapter. It can be NULL if the default

attributes are going to be used.

A function pointer to the start routine for the thread. The start routine function 	
signature should look like the following:

void* start_rountine (void* args)

The start routine takes the thread arguments as a void pointer, and it returns a result as a

void pointer.

Any arguments should be passed to the start routine when the thread gets 	
executed in the form of a void pointer. It can be NULL if not arguments needs to

be passed.

pthread_create function returns zero; otherwise it returns an error code.

You can now expand the example application to use POSIX Threads in order to experiment with the

pthread_create function.

Updating the Main Activity

Using the Project Explorer, open the MainActivity.java source file in the editor. Add the native

posixThreads method into the MainActivity class as shown in Listing 7-9.

Listing 7-9. Adding the Native posixThreads Method to MainActivity Class

public class MainActivity extends Activity {
 ...
 /**
 * Using the POSIX threads.
 *
 * @param threads thread count.
 * @param iterations iteration count.
 */
 private native void posixThreads(int threads, int iterations);
 ...
}

http://freepdf-books.com

195CHAPTER 7: Native Threads

Similar to the javaThreads method, the posixThreads method also takes two arguments, number of

threads and the number of iterations for each worker. In order to use the posixThreads method, you

need to modify the startThreads method to point to it instead of the javaThreads method. Update

the startThreads method as shown in Listing 7-10.

Listing 7-10. Modified startThreads Method Invoking posixThreads Method

public class MainActivity extends Activity {
 ...
 /**
 * Starts the given number of threads for iterations.
 *
 * @param threads thread count.
 * @param iterations iteration count.
 */
 private void startThreads(int threads, int iterations) {
 posixThreads(threads, iterations);
 }
 ...
}

Regenerating the C/C++ Header File for posixThreads Method

As you will be using the POSIX Threads, the implementation of the posixThreads method will

happen in native code instead of Java. Upon making these changes on the MainActivity class, the

com_apress_threads_MainActivity.h header file should be updated. Select the MainActivity.java

source file using the Project Explorer, and then choose Run ➤ External Tools ➤ Generate C and C++

Header File from the top menu bar. The updated header file will contain the function declaration the

posixThreads native method, as shown in Listing 7-11.

Listing 7-11. Generated Function Signature for posixThreads

/*
 * Class: com_apress_threads_MainActivity
 * Method: posixThreads
 * Signature: (II)V
 */
JNIEXPORT void JNICALL Java_com_apress_threads_MainActivity_posixThreads
 (JNIEnv *, jobject, jint, jint);

Updating the Native Code

You will now update the native code for POSIX Threads. As the POSIX Threads are not part of the

Java platform, multiple changes will be needed in the native code in order to provide the same

functionality. Using the Project Explorer, expand the jni directory, and double-click on the

com_apress_threads_MainActivity.cpp source file to open it. Then follow these steps:

1. Include the pthread.h in the source file in order to utilize the POSIX Thread

APIs in the native code, as shown in Listing 7-12.

http://freepdf-books.com

196 CHAPTER 7: Native Threads

Listing 7-12. Including the pthread.h header File for POSIX Threads

#include <stdio.h>
#include <unistd.h>

#include <pthread.h>

#include "com_apress_threads_MainActivity.h"
...

2. As mentioned earlier, the pthread_create function can pass a single void

pointer argument to the start routine when running a new thread. The

com_apress_threads_nativeWorker function requires two task specific

arguments, the worker ID and the iteration count to be supplied. In order to

pass more than one argument to the start routine, a new structure is needed

to wrap these multiple arguments. Add the definition of NativeWorkerArgs

structure, as shown in Listing 7-13.

Listing 7-13. Defining the NativeWorkerArgs Structure

#include "com_apress_threads_MainActivity.h"

// Native worker thread arguments
struct NativeWorkerArgs
{
 jint id;
 jint iterations;
};

// Method ID can be cached
static jmethodID gOnNativeMessage = NULL;

3. As the POSIX Threads are not part of the Java platform, they are not known

to the virtual machine. The POSIX Threads should first attach themselves

to the virtual machine in order to interact with the Java space. The Java

VM interface pointer should be available to the POSIX Threads in order to

properly attach them. Once they are attached, the worker code running in

the POSIX Threads needs to invoke the onNativeMessage callback method

to inform the UI. This requires having a reference to the MainActivity class

instance. The object reference that is provided with the JNI method call

cannot be cached here since it is a local reference. A global reference should

be created and stored for the threads to use. Add the two global variables in

Listing 7-14 to the native code.

http://freepdf-books.com

197CHAPTER 7: Native Threads

Listing 7-14. Global Variables to Hold Java VM Interface Pointer and Global Reference to Object Instance

// Method ID can be cached
static jmethodID gOnNativeMessage = NULL;

// Java VM interface pointer
static JavaVM* gVm = NULL;

// Global reference to object
static jobject gObj = NULL;

void Java_com_apress_threads_MainActivity_nativeInit (
 JNIEnv* env,
 jobject obj)

4. There are multiple ways to get the Java VM interface pointer in native code.

The easiest and most proper way of doing it is through the JNI_OnLoad

function. This function gets invoked automatically by the virtual machine

when the shared library gets loaded. The function takes the Java VM

interface pointer as one of its arguments. As shown in Listing 7-15, add the

JNI_OnLoad function to the native code in order to store the Java VM interface

pointer in the gVm global variable that was defined in the previous step.

Listing 7-15. JNI OnLoad Function to Store Java VM Interface Pointer

jint JNI_OnLoad (JavaVM* vm, void* reserved)
{
 // Cache the JavaVM interface pointer
 gVm = vm;

 return JNI_VERSION_1_4;
}

5. The object reference to MainActivity class instance is needed in order to

invoke the onNativeMessage callback method to deliver updates to the UI

from the native code. As shown in Listing 7-16, update the Java_com_apress_
threads_MainActivity_nativeInit method to create a global reference that

can be used by the threads.

Listing 7-16. Creating a Global Reference for the Object Instance

void Java_com_apress_threads_MainActivity_nativeInit (
 JNIEnv* env,
 jobject obj)
{
 // If object global reference is not set
 if (NULL == gObj)
 {

http://freepdf-books.com

198 CHAPTER 7: Native Threads

 // Create a new global reference for the object
 gObj = env->NewGlobalRef(obj);

 if (NULL == gObj)
 {
 goto exit;
 }
 }

 // If method ID is not cached
 if (NULL == gOnNativeMessage)
 ...

exit:
 return;
}

6. Global references should be properly deleted when they are no longer

needed; otherwise memory leaks will occur. Update the

Java_com_apress_threads_MainActivity_nativeFree function to delete the

global reference once the activity has stopped, as shown in Listing 7-17.

Listing 7-17. Updated nativeFree Method Deleting the Global Reference

void Java_com_apress_threads_MainActivity_nativeFree (
 JNIEnv* env,
 jobject obj)
{
 // If object global reference is set
 if (NULL != gObj)
 {
 // Delete the global reference
 env->DeleteGlobalRef(gObj);
 gObj = NULL;
 }
}
...

7. In order to run the Java_com_apress_threads_MainActivity_nativeWorker

function within the POSIX Thread, an intermediate start routine is required to

properly attach the POSIX Thread to the Java virtual machine, obtain a valid

JNIEnv interface pointer, and execute the native worker with the proper set of

arguments. As shown in Listing 7-18, add the nativeWorkerThread start routine.

Listing 7-18. Adding the Start Routine for Native Worker Threads

static void* nativeWorkerThread (void* args)
{
 JNIEnv* env = NULL;

http://freepdf-books.com

199CHAPTER 7: Native Threads

 // Attach current thread to Java virtual machine
 // and obrain JNIEnv interface pointer
 if (0 == gVm->AttachCurrentThread(&env, NULL))
 {
 // Get the native worker thread arguments
 NativeWorkerArgs* nativeWorkerArgs = (NativeWorkerArgs*) args;

 // Run the native worker in thread context
 Java_com_apress_threads_MainActivity_nativeWorker(env,
 gObj,
 nativeWorkerArgs->id,
 nativeWorkerArgs->iterations);

 // Free the native worker thread arguments
 delete nativeWorkerArgs;

 // Detach current thread from Java virtual machine
 gVm->DetachCurrentThread();
 }

 return (void*) 1;
}

8. As all the prerequisites have been satisfied, the Java_com_apress_threads_
MainActivity_posixThreads function can be implemented in the native code.

The function creates new threads using the pthread_create function and

supplies the worker arguments wrapped in a NativeWorkerArgs structure

that was defined earlier. In case of an error, the function throws a

java.lang.RuntimeException and terminates. As shown in Listing 7-19, add

the function to the native code.

Listing 7-19. The posixThreads Native Method Implementation

void Java_com_apress_threads_MainActivity_posixThreads (
 JNIEnv* env,
 jobject obj,
 jint threads,
 jint iterations)
{
 // Create a POSIX thread for each worker
 for (jint i = 0; i < threads; i++)
 {
 // Native worker thread arguments
 NativeWorkerArgs* nativeWorkerArgs = new NativeWorkerArgs();
 nativeWorkerArgs->id = i;
 nativeWorkerArgs->iterations = iterations;

 // Thread handle
 pthread_t thread;

http://freepdf-books.com

200 CHAPTER 7: Native Threads

 // Create a new thread
 int result = pthread_create(
 &thread,
 NULL,
 nativeWorkerThread,
 (void*) nativeWorkerArgs);

 if (0 != result)
 {
 // Get the exception class
 jclass exceptionClazz = env->FindClass(
 "java/lang/RuntimeException");

 // Throw exception
 env->ThrowNew(exceptionClazz, "Unable to create thread");
 }
 }
}

for the Java threads to test the application using POSIX Threads. The application should execute

identically, although the underlying threading mechanism is different.

Return Result from POSIX Threads
Threads can return a result back when they are terminating. This is achieved through the void pointer

that is returned from the thread start routine. In the previous example, the Java_com_apress_threads_
MainActivity_posixThreads function is designed to return immediately after executing the threads.

The function can be modified to wait for threads to finish their work and return. A function can wait

for a thread to terminate by using the pthread_join function.

int pthread_join(pthread_t thread, void** ret_val);

The pthread_join function takes the following arguments:

Thread handle that is returned from the 	 pthread_create function for the target

thread.

Pointer to a void pointer for obtaining the returned result from the start routine.	
It suspends the execution of the calling thread until the target thread terminates. If the ret_val is not

NULL, the function will set the value of ret_val pointer to the result returned from the start routine. In

case of success, pthread_join function returns zero; otherwise it returns the error code.

http://freepdf-books.com

201CHAPTER 7: Native Threads

Updating the Native Code to Use pthread_join
In order to see pthread_join in action, you will update the example application. Using the Project

Explorer, expand the jni directory, double-click the com_apress_threads_MainActivity.cpp source

file to open it in the editor, and update the Java_com_apress_threads_MainActivity_posixThreads
function as shown in Listing 7-20.

Listing 7-20. Adding pthread_join to Native Code

void Java_com_apress_threads_MainActivity_posixThreads (
 JNIEnv* env,
 jobject obj,
 jint threads,
 jint iterations)
{
 // Thread handles
 pthread_t* handles = new pthread_t[threads];

 // Create a POSIX thread for each worker
 for (jint i = 0; i < threads; i++)
 {
 // Native worker thread arguments
 NativeWorkerArgs* nativeWorkerArgs = new NativeWorkerArgs();
 nativeWorkerArgs->id = i;
 nativeWorkerArgs->iterations = iterations;

 // Create a new thread
 int result = pthread_create(
 &handles[i],
 NULL,
 nativeWorkerThread,
 (void*) nativeWorkerArgs);

 if (0 != result)
 {
 // Get the exception class
 jclass exceptionClazz = env->FindClass(
 "java/lang/RuntimeException");

 // Throw exception
 env->ThrowNew(exceptionClazz, "Unable to create thread");
 goto exit;
 }
 }

 // Wait for threads to terminate
 for (jint i = 0; i < threads; i++)
 {
 void* result = NULL;

 // Join each thread handle
 if (0 != pthread_join(handles[i], &result))

http://freepdf-books.com

202 CHAPTER 7: Native Threads

 {
 // Get the exception class
 jclass exceptionClazz = env->FindClass(
 "java/lang/RuntimeException");

 // Throw exception
 env->ThrowNew(exceptionClazz, "Unable to join thread");
 }
 else
 {
 // Prepare message
 char message[26];
 sprintf(message, "Worker %d returned %d", i, result);

 // Message from the C string
 jstring messageString = env->NewStringUTF(message);

 // Call the on native message method
 env->CallVoidMethod(obj, gOnNativeMessage, messageString);

 // Check if an exception occurred
 if (NULL != env->ExceptionOccurred())
 {
 goto exit;
 }
 }
 }

exit:
 return;
}

Upon making the necessary changes, run the example application on the Android Emulator. Set both

the thread count and the iteration count to a small number, such as 2, and click the Start Threads

button. You will immediately notice that the UI will hang for few seconds. This is due to pthread_join

function suspending the execution of the main UI thread until the created threads terminates. The UI

will show the returned result from the threads.

Synchronizing POSIX Threads
As they are running within the same process space, threads share the same memory and resources.

This makes it very easy for threads to communicate and share data, although it makes two kinds of

problems possible: thread interference and memory inconsistency due to concurrent modification of

shared resources. Thread synchronization becomes vital in these situations. Thread synchronization

provides the mechanism to ensure that two concurrently running threads do not execute specific

portions of the code at the same time. Similar to Java threads, the POSIX Thread API also provides

http://freepdf-books.com

203CHAPTER 7: Native Threads

synchronization functionality. In this chapter, you will mainly focus on the two most frequently used

synchronization mechanisms offered by the POSIX Threads:

	Mutexes allow mutual exclusion in the code where specific portions of the code

do not execute at the same time.

	Semaphores control access to a resource based on a defined number of

available resources. If no resource is available, the calling thread simply waits on

the semaphore until a resource becomes available.

Synchronizing POSIX Threads using Mutexes
POSIX Thread API exposes mutexes to the native code through the pthread_mutex_t data type.

The POSIX Thread API provides a set of functions for interacting with mutexes from the native code.

Prior to being used, the mutex variables should be initialized first.

Initializing Mutexes

The POSIX Thread API provides two ways of initializing the mutexes: pthread_mutex_init function

and the PTHREAD_MUTEX_INITIALIZER macro. The pthread_mutex_init function can be used to

initialize the mutexes.

int pthread_mutex_init(pthread_mutex_t* mutex,
 const pthread_mutexattr_t* attr);

The pthread_mutex_init function takes two arguments, a pointer to the mutex variable to initialize

and a pointer to the pthread_mutextattr_t structure defining the attributes for the mutex. If the

second argument is set to NULL, the default attributes gets used. If the default attributes are enough,

instead of the pthread_mutex_init function, the PTHREAD_MUTEX_INITIALIZER macro is more

appropriate.

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Upon successful initialization, the state of the mutex becomes initialized and unlocked, and the

function returns zero; otherwise it returns the error code.

Locking Mutexes

The pthread_mutex_lock function can be used to gain mutual exclusion by locking an already

initialized mutex.

int pthread_mutex_lock(pthread_mutex_t* mutex);

The function takes a pointer to the mutex variable. If the mutex is already being locked, the calling

thread gets suspended until the mutex becomes available. In case of success, the function returns

zero; otherwise it returns the error code.

http://freepdf-books.com

204 CHAPTER 7: Native Threads

Unlocking Mutexes

Upon completing executing the critical code section, the mutex can be unlocked using the

pthread_mutex_unlock function.

int pthread_mutex_unlock(pthread_mutex_t* mutex);

The function takes a pointer to the mutex variable and unlocks it. The scheduling policy decides

which thread waiting on the mutex gets executed next. In case of success, the function returns zero;

otherwise it returns the error code.

pthread_mutex_destroy

jni directory, double-click the com_apress_threads_MainActivity.cpp source file to open

1. Add the mutex variable to the native code as shown in Listing 7-21.

Listing 7-21. Adding the Mutex Variable to the Native Code

// Global reference to object
static jobject gObj = NULL;

// Mutex instance
static pthread_mutex_t mutex;

jint JNI_OnLoad (JavaVM* vm, void* reserved)

2. The mutex variable should be initialized prior being used. As shown in

Listing 7-22, update the Java_com_paress_threads_MainActivity_nativeInit

function to initialize the mutex.

Listing 7-22. Initializing the Mutex Variable

void Java_com_apress_threads_MainActivity_nativeInit (
 JNIEnv* env,
 jobject obj)
{
 // Initialize mutex
 if (0 != pthread_mutex_init(&mutex, NULL))

http://freepdf-books.com

205CHAPTER 7: Native Threads

 {
 // Get the exception class
 jclass exceptionClazz = env->FindClass(
 "java/lang/RuntimeException");

 // Throw exception
 env->ThrowNew(exceptionClazz, "Unable to initialize mutex");
 goto exit;
 }
 ...
}

3. Once the mutex is no longer needed, it should be destroyed. Update the

Java_com_apress_threads_MainActivity_nativeFree function as shown in

Listing 7-23.

Listing 7-23. Destroying the Mutex Variable

void Java_com_apress_threads_MainActivity_nativeFree (
 JNIEnv* env,
 jobject obj)
{
 ...
 // Destory mutex
 if (0 != pthread_mutex_destroy(&mutex))
 {
 // Get the exception class
 jclass exceptionClazz = env->FindClass(
 "java/lang/RuntimeException");

 // Throw exception
 env->ThrowNew(exceptionClazz, "Unable to destroy mutex");
 }
}

4. The thread worker can now lock the mutex at the beginning of the code

section and then unlock it when the code section terminates. Update the

Java_com_apress_threads_MainActivity_nativeWorker function as shown in

Listing 7-24.

Listing 7-24. Locking and Unlocking the Mutex Variable

void Java_com_apress_threads_MainActivity_nativeWorker (
 JNIEnv* env,
 jobject obj,
 jint id,
 jint iterations)
{
 // Lock mutex
 if (0 != pthread_mutex_lock(&mutex))

http://freepdf-books.com

206 CHAPTER 7: Native Threads

 {
 // Get the exception class
 jclass exceptionClazz = env->FindClass(
 "java/lang/RuntimeException");

 // Throw exception
 env->ThrowNew(exceptionClazz, "Unable to lock mutex");
 goto exit;
 }

 ...

 // Unlock mutex
 if (0 != pthread_mutex_unlock(&mutex))
 {
 // Get the exception class
 jclass exceptionClazz = env->FindClass(
 "java/lang/RuntimeException");

 // Throw exception
 env->ThrowNew(exceptionClazz, "Unable to unlock mutex");
 }

exit:
 return;
}

You can now run the example application on the Android Emulator. As the native code is now using

the mutex, threads will no longer execute concurrently. Only the thread with the mutex lock will

execute and send update messages to UI; the other threads will be suspended, waiting for the

mutex to become available.

Synchronizing POSIX Threads Using Semaphores
Unlike the other POSIX functions, the POSIX semaphores are declared in a different header file, the

semaphore.h.

#include <semaphore.h>

The POSIX semaphores are exposed to native code through the sem_t data type. The POSIX

Semaphore API provides a set of functions for interacting with the semaphores from the native code.

Prior being used, the semaphore variables should be initialized first.

http://freepdf-books.com

207CHAPTER 7: Native Threads

Initializing Semaphores

The POSIX Semaphore API provides the sem_init function to initialize the semaphore variables.

extern int sem_init(sem_t* sem, int pshared, unsigned int value);

It takes three arguments: a pointer to the semaphore variable that will be initialized, the share flag,

and its initial value. On success, the function returns zero; otherwise −1 is returned.

Locking Semaphores

Once the semaphore is properly initialized, threads can use the sem_wait function to decrease the

number of the semaphore.

extern int sem_wait(sem_t* sem);

The function takes a pointer to the semaphore variable. If semaphore’s value is greater than zero,

the locking succeeds and the value of the semaphore gets decremented accordingly. If the value

of the semaphore is zero, then the calling thread gets suspended until the semaphore value gets

incremented by another thread through unlocking it. On success, the function returns zero;

otherwise −1 is returned.

Unlocking Semaphores

Upon finishing executing the critical code section, the thread can unlock the semaphore using the

sem_post function.

extern int sem_post(sem_t* sem);

When the semaphore gets unlocked by the sem_post function, its value gets incremented by one.

Scheduling policy decides which thread waiting on the semaphore gets executed next. On success,

the function returns zero; otherwise −1 is returned.

Destroying Semaphores

Once the semaphore is no longer needed, it can be destroyed through the sem_destory function.

extern int sem_destroy(sem_t* sem);

The function takes a pointer to the semaphore variables that will be destroyed. Destroying a

semaphore that another thread is currently blocked on may result in undefined behavior. On success,

the function returns zero; otherwise −1 is returned.

Priority and Scheduling Strategy for POSIX Threads
Scheduling policies, with the thread priorities, orders the list of threads in a certain execution order.

This section will briefly explore these scheduling strategies and the thread priorities.

http://freepdf-books.com

208 CHAPTER 7: Native Threads

POSIX Thread Scheduling Strategy
The POSIX Thread specification requires a set of scheduling strategies to be implemented. The most

frequently used scheduling policies are the following:

SCHED_FIFO: The first in, first out scheduling policy orders the list of threads 	
based on the time the thread has been on the list. Based on its priority, the

thread can also move within the thread list.

SCHED_RR: the round-robin scheduling policy is identical to the SCHED_FIFO 	
scheduling policy with the addition of limiting the duration of the thread

execution to prevent any thread monopolizing the available CPU cycles.

sched.h header file. The scheduling strategy

sched_policy field of the thread attributes structure pthread_attr_t

pthread_create function, or during runtime through the

 function.

 int poilcy,
 struct sched_param const* param);

POSIX Thread Priority
The POSIX Thread API also provides functions to adjust the priority of the threads based on the

scheduling policy. The thread priority can either be defined using the sched_priority field of the

thread attributes structure pthread_attr_t while creating a new thread using the pthread_create

function, or during runtime through the pthread_setschedparam function and proving the thread

priority in sched_param structure. The minimum and maximum priority value differs based on the

scheduling policy in use. The application can query for these number by using the

sched_get_priority_max and sched_get_priority_min function.

Summary
In this chapter, you explored the possible multithreading mechanisms that are provided through

Java threads and POSIX Threads in the native space. The chapter provided a comparison of these

threading mechanisms. Then the chapter focused on POSIX Threads to provide a quick overview of

the threading APIs provided in the native space, such as synchronization, priority, and scheduling

pertaining to POSIX Threads.

http://freepdf-books.com

209

Chapter 8
POSIX Socket API:

Connection-Oriented

Communication

As they get executed in an isolated environment distant from the user, native code applications

require a medium of communication either with their parent applications or the external world

in order to provide any services. In Chapter 3, you explored the JNI technology enabling the

native code to communicate with its parent Java application. Starting with this chapter, you will

start exploring the POSIX Socket APIs available through Bionic that enable the native code to

communicate with the external world directly without calling into the Java layer.

A socket is a connection end-point that can be named and addressed in order to transmit data

between applications that are running either on the same machine or another machine on the

network. The POSIX Socket API, previously known as the Berkeley Socket API, is designed in a

highly generic fashion, enabling the applications to communicate over various protocol families

through the same set of API functions.

This chapter will give a brief overview of the POSIX Socket APIs for connection-oriented

communication with emphasis on the following key topics pertaining to Android platform:

Overview of POSIX sockets	
Socket families	
Connection-oriented sockets	

Prior to going into the details of the POSIX Socket APIs for connection-oriented communication, you

will create a simple example application called Echo. This example application will act as a testbed

enabling you to better understand the different aspects of socket programming as you work through

the material presented in this chapter and the next two chapters of the book.

http://freepdf-books.com

210 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

Echo Socket Example Application
The example application will provide the following:

A simple user interface for defining the parameters necessary to configure the 	
sockets.

Service logic for a simple echo service repeating the received bytes back to the 	
sender.

Boilerplate native code snippets to facilitate socket programming for Android in 	
native layer.

A connection-oriented socket communication example.	
A connectionless socket communication example.	
A local socket communication example.	

1. Launch the Android Application Project dialog.

2. Set Application Name to Echo.

3. Set Project Name to Echo.

4. Set Package Name to com.apress.echo.

5. Set Build SDK to Android 4.1.

6. Set Minimum Required SDK to API 8.

7. Click the Next button to accept the default values for all other settings.

8. Click the Next button to accept the default launcher icon.

9. Uncheck the Create activity, and click the Finish button to create the empty

project.

10. From the Project Explorer view, launch the Android Native Support wizard

through the Android Tools context menu item.

11. Set Library Name to Echo.

12. Follow the wizard to add native support to the project.

http://freepdf-books.com

211CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

Abstract Echo Activity
In order to facilitate the reuse of common functionality, you will create an abstract activity class prior

defining the actual activities. Using the Project Explorer view, expand the src directory, right-click on

the com.apress.echo package, and choose New ➤ Class from the context menu. Set the Name to

AbstractEchoActivity and click the Finish button. Using the Editor view, populate the content of the

new class file as shown in Listing 8-1.

Listing 8-1. Content of AbstractEchoActivity.java Class File

package com.apress.echo;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ScrollView;
import android.widget.TextView;

/**
 * Abstract echo activity object.
 *
 * @author Onur Cinar
 */
public abstract class AbstractEchoActivity extends Activity implements
 OnClickListener {
 /** Port number. */
 protected EditText portEdit;

 /** Server button. */
 protected Button startButton;

 /** Log scroll. */
 protected ScrollView logScroll;

 /** Log view. */
 protected TextView logView;

 /** Layout ID. */
 private final int layoutID;

 /**
 * Constructor.
 *
 * @param layoutID

http://freepdf-books.com

212 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 * layout ID.
 */
 public AbstractEchoActivity(int layoutID) {
 this.layoutID = layoutID;
 }

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(layoutID);

 portEdit = (EditText) findViewById(R.id.port_edit);
 startButton = (Button) findViewById(R.id.start_button);
 logScroll = (ScrollView) findViewById(R.id.log_scroll);
 logView = (TextView) findViewById(R.id.log_view);

 startButton.setOnClickListener(this);
 }

 public void onClick(View view) {
 if (view == startButton) {
 onStartButtonClicked();
 }
 }

 /**
 * On start button clicked.
 */
 protected abstract void onStartButtonClicked();

 /**
 * Gets the port number as an integer.
 *
 * @return port number or null.
 */
 protected Integer getPort() {
 Integer port;

 try {
 port = Integer.valueOf(portEdit.getText().toString());
 } catch (NumberFormatException e) {
 port = null;
 }

 return port;
 }

 /**
 * Logs the given message.
 *
 * @param message
 * log message.
 */

http://freepdf-books.com

213CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 protected void logMessage(final String message) {
 runOnUiThread(new Runnable() {
 public void run() {
 logMessageDirect(message);
 }
 });
 }

 /**
 * Logs given message directly.
 *
 * @param message
 * log message.
 */
 protected void logMessageDirect(final String message) {
 logView.append(message);
 logView.append("\n");
 logScroll.fullScroll(View.FOCUS_DOWN);
 }

 /**
 * Abstract async echo task.
 */
 protected abstract class AbstractEchoTask extends Thread {
 /** Handler object. */
 private final Handler handler;

 /**
 * Constructor.
 */
 public AbstractEchoTask() {
 handler = new Handler();
 }

 /**
 * On pre execute callback in calling thread.
 */
 protected void onPreExecute() {
 startButton.setEnabled(false);
 logView.setText("");
 }

 public synchronized void start() {
 onPreExecute();
 super.start();
 }

 public void run() {
 onBackground();

http://freepdf-books.com

214 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 handler.post(new Runnable() {
 public void run() {
 onPostExecute();
 }
 });
 }

 /**
 * On background callback in new thread.
 */
 protected abstract void onBackground();

 /**
 * On post execute callback in calling thread.
 */
 protected void onPostExecute() {
 startButton.setEnabled(true);
 }
 }

 static {
 System.loadLibrary("Echo");
 }

AbstractEchoActivity, besides handling the housekeeping tasks such as binding the user

interface components, provides a simple thread implementation enabling the application to execute

the network operations in a separate thread than the UI thread.

Echo Application String Resources
Using the Project Explorer view, expand the res directory for resources. Expand the values

subdirectory, and double-click strings.xml to open the string resources in the Editor view. Replace

the content as shown in Listing 8-2.

Listing 8-2. Content of res/values/strings.xml Resource File

<resources>

 <string name="app_name">Echo</string>
 <string name="title_activity_echo_server">Echo Server</string>
 <string name="port_edit">Port Number</string>
 <string name="start_server_button">Start Server</string>
 <string name="title_activity_echo_client">Echo Client</string>
 <string name="ip_edit">IP Address</string>
 <string name="start_client_button">Start Client</string>
 <string name="send_button">Send</string>

http://freepdf-books.com

215CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 <string name="message_edit">Message</string>
 <string name="title_activity_local_echo">Local Echo</string>
 <string name="local_port_edit">Port Name</string>

</resources>

The application’s user interface layouts will be referring to these common string resources.

Native Echo Module
The native echo module will provide the implementations of native socket methods to the Java

application. Using the Project Explorer view, expand the jni directory for native source files, and

double-click the Echo.cpp C++ source file. Replace its content as shown in Listing 8-3 with a set of

helper functions that will facilitate the implementation of the socket communication examples.

Listing 8-3. Content of jni/Echo.cpp File

// JNI
#include <jni.h>

// NULL
#include <stdio.h>

// va_list, vsnprintf
#include <stdarg.h>

// errno
#include <errno.h>

// strerror_r, memset
#include <string.h>

// socket, bind, getsockname, listen, accept, recv, send, connect
#include <sys/types.h>
#include <sys/socket.h>

// sockaddr_un
#include <sys/un.h>

// htons, sockaddr_in
#include <netinet/in.h>

// inet_ntop
#include <arpa/inet.h>

// close, unlink
#include <unistd.h>

http://freepdf-books.com

216 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

// offsetof
#include <stddef.h>

// Max log message length
#define MAX_LOG_MESSAGE_LENGTH 256

// Max data buffer size
#define MAX_BUFFER_SIZE 80

/**
 * Logs the given message to the application.
 *
 * @param env JNIEnv interface.

 JNIEnv* env,
 jobject obj,
 const char* format,
 ...)
{
 // Cached log method ID
 static jmethodID methodID = NULL;

 // If method ID is not cached
 if (NULL == methodID)
 {
 // Get class from object
 jclass clazz = env->GetObjectClass(obj);

 // Get the method ID for the given method
 methodID = env->GetMethodID(clazz, "logMessage",
 "(Ljava/lang/String;)V");

 // Release the class reference
 env->DeleteLocalRef(clazz);
 }

 // If method is found
 if (NULL != methodID)
 {
 // Format the log message
 char buffer[MAX_LOG_MESSAGE_LENGTH];

 va_list ap;
 va_start(ap, format);
 vsnprintf(buffer, MAX_LOG_MESSAGE_LENGTH, format, ap);
 va_end(ap);

http://freepdf-books.com

217CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 // Convert the buffer to a Java string
 jstring message = env->NewStringUTF(buffer);

 // If string is properly constructed
 if (NULL != message)
 {
 // Log message
 env->CallVoidMethod(obj, methodID, message);

 // Release the message reference
 env->DeleteLocalRef(message);
 }
 }
}

/**
 * Throws a new exception using the given exception class
 * and exception message.
 *
 * @param env JNIEnv interface.
 * @param className class name.
 * @param message exception message.
 */
static void ThrowException(
 JNIEnv* env,
 const char* className,
 const char* message)
{
 // Get the exception class
 jclass clazz = env->FindClass(className);

 // If exception class is found
 if (NULL != clazz)
 {
 // Throw exception
 env->ThrowNew(clazz, message);

 // Release local class reference
 env->DeleteLocalRef(clazz);
 }
}

/**
 * Throws a new exception using the given exception class
 * and error message based on the error number.
 *
 * @param env JNIEnv interface.
 * @param className class name.
 * @param errnum error number.
 */

http://freepdf-books.com

218 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

static void ThrowErrnoException(
 JNIEnv* env,
 const char* className,
 int errnum)
{
 char buffer[MAX_LOG_MESSAGE_LENGTH];

 // Get message for the error number
 if (-1 == strerror_r(errnum, buffer, MAX_LOG_MESSAGE_LENGTH))
 {
 strerror_r(errno, buffer, MAX_LOG_MESSAGE_LENGTH);
 }

 // Throw exception
 ThrowException(env, className, buffer);

throughout the lifetime of the communication, and handles the ordering and error checking of the

packets transparently from the application. You will modify the example Echo application to include

both TCP server and client activities in order to demonstrate the connection establishment and

message exchange using the sockets.

Echo Server Activity Layout
Using the Project Explorer view, expand the res directory for resources. Expand the layout

subdirectory, and create a new layout file called activity_echo_server.xml. Using the Editor view,

replace its content as shown in Listing 8-4.

Listing 8-4. Content of res/layout/activty_echo_server.xml File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content" >

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

219CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 <EditText
 android:id="@+id/port_edit"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:hint="@string/port_edit"
 android:inputType="number" >

 <requestFocus />
 </EditText>

 <Button
 android:id="@+id/start_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/start_server_button" />

 </LinearLayout>

 <ScrollView
 android:id="@+id/log_scroll"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView
 android:id="@+id/log_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 </ScrollView>

</LinearLayout>

The Echo Server provides a simple user interface to obtain the port number to bind the server and

also to present the status updates from the native TCP server while it is running.

Echo Server Activity
Using the Project Explorer view, create a new class file called EchoServerActivity.java under the

src directory. Using the Editor view, populate its content as shown in Listing 8-5.

Listing 8-5. Content of EchoServerActivity.java File

package com.apress.echo;

/**
 * Echo server.
 *
 * @author Onur Cinar
 */

http://freepdf-books.com

220 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

public class EchoServerActivity extends AbstractEchoActivity {
 /**
 * Constructor.
 */
 public EchoServerActivity() {
 super(R.layout.activity_echo_server);
 }

 protected void onStartButtonClicked() {
 Integer port = getPort();
 if (port != null) {
 ServerTask serverTask = new ServerTask(port);
 serverTask.start();
 }
 }

 /**
 * Starts the TCP server on the given port.
 *
 * @param port
 * port number.
 * @throws Exception
 */
 private native void nativeStartTcpServer(int port) throws Exception;

 /**
 * Starts the UDP server on the given port.
 *
 * @param port
 * port number.
 * @throws Exception
 */
 private native void nativeStartUdpServer(int port) throws Exception;

 /**
 * Server task.
 */
 private class ServerTask extends AbstractEchoTask {
 /** Port number. */
 private final int port;

 /**
 * Constructor.
 *
 * @param port
 * port number.
 */
 public ServerTask(int port) {
 this.port = port;
 }

http://freepdf-books.com

221CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 protected void onBackground() {
 logMessage("Starting server.");

 try {
 nativeStartTcpServer(port);
 } catch (Exception e) {
 logMessage(e.getMessage());
 }

 logMessage("Server terminated.");
 }
 }
}

The EchoServerActivity acquires the necessary parameters from the user and starts the

nativeStartTcpServer function, native TCP client implementation, within a separate thread.

Implementing the Native TCP Server
Using the Project Explorer, select the EchoServerActivity, and then choose “Generate C and C++

Header File” from the External Tools menu to generate the native header files. Using the Project

Explorer, expand the jni sub-directory, and open the Echo.cpp source file in the editor. Go the top

of the source file, and insert the include statement shown in Listing 8-6 in order to include the native

method declarations.

Listing 8-6. Including the EchoServerActivity Header File

#include "com_apress_echo_EchoServerActivity.h"

Creating a Socket: socket

A socket is represented through an integer called the socket descriptor. Socket API functions, other

than the one creating the socket itself, require a valid socket descriptor in order to function. A socket

can be created using the socket function.

int socket(int domain, int type, int protocol);

The socket function requires the following arguments to be provided in order to create a new socket:

	Domain specifies the socket domain where the communication will take place

and selects the protocol family that will be used. At the time of this writing, the

following protocol families are supported on Android platform:

PF_LOCAL: Host-internal communication protocol family. This protocol family enables 	
applications that are running physically on the same device to use the Socket APIs to

communicate with each other.

PF_INET: Internet version 4 protocol family. This protocol family enables applications 	
to communicate with applications that are running elsewhere on the network.

http://freepdf-books.com

222 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

	Type specifies the semantics of the communication. The following major socket

types are supported:

SOCK_STREAM: Stream socket type provides connection-oriented communication 	
using the TCP protocol.

SOCK_DGRAM: Datagram socket type provides connectionless communication using 	
the UDP protocol.

	Protocol specifies the protocol that will be used. For most protocol families and

types, there is only one possible protocol that can be used. In order to pick the

default protocol, this argument can be set to zero.

socket function returns the associated socket descriptor;

-1 and the errno global variable is set to the appropriate error.

NewTcpSocket helper function to the Echo.cpp native module

 NewTcpSocket Native Helper Function

 * @throws IOException
 */
static int NewTcpSocket(JNIEnv* env, jobject obj)
{
 // Construct socket
 LogMessage(env, obj, "Constructing a new TCP socket...");
 int tcpSocket = socket(PF_INET, SOCK_STREAM, 0);

 // Check if socket is properly constructed
 if (-1 == tcpSocket)
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }

 return tcpSocket;
}

This helper function creates a new TCP socket and throws a java.lang.IOException in case

of a failure.

http://freepdf-books.com

223CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

Binding the Socket to an Address: bind

When a socket is created through the socket function, it exists in a socket family space without

having a protocol address assigned to it. For clients to be able to locate and connect to this

socket, it needs to be bound to an address first. A socket can be bound to an address using the

bind function.

int bind(int socketDescriptor, const struct sockaddr* address,
 socklen_t addressLength);

The bind function requires the following arguments in order to bind the socket to an address:

The socket descriptor specifies the socket instance that will be bound to the 	
given address.

The address specifies the protocol address where the socket will be bound.	
The address length specifies the size of the protocol address structure that is 	
passed to the function.

Depending on the protocol family, a different flavor of protocol address gets used. For PF_INET

protocol family, the sockaddr_in structure is used to specify the protocol address. The definition of

sockaddr_in structure is shown in Listing 8-8.

Listing 8-8. The sockaddr_in address Structure

struct sockaddr_in {
 sa_family_t sin_family;
 unsigned short int sin_port;
 struct in_addr sin_addr;
}

If the socket is properly bound, the bind function returns zero; otherwise, it returns -1 and the errno

global variable is set to the appropriate error.

Using the Editor view, append the BindSocketToPort helper function to the Echo.cpp native module

source file, as shown in Listing 8-9.

Listing 8-9. BindSocketToPort Native Helper Function

/**
 * Binds socket to a port number.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.
 * @param port port number or zero for random port.
 * @throws IOException
 */

http://freepdf-books.com

224 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

static void BindSocketToPort(
 JNIEnv* env,
 jobject obj,
 int sd,
 unsigned short port)
{
 struct sockaddr_in address;

 // Address to bind socket
 memset(&address, 0, sizeof(address));
 address.sin_family = PF_INET;

 // Bind to all addresses
 address.sin_addr.s_addr = htonl(INADDR_ANY);

 // Convert port to network byte order
 address.sin_port = htons(port);

 // Bind socket
 LogMessage(env, obj, "Binding to port %hu.", port);
 if (-1 == bind(sd, (struct sockaddr*) &address, sizeof(address)))
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
}

If the port number is set to zero in the address structure, the bind function allocates the first

available port number for the socket. This port number can be retrieved from the socket using the

getsockname function. Using the Editor view, append the GetSocketPort helper function to the Echo.
cpp native module source file, as shown Listing 8-10.

Listing 8-10. GetSocketPort Native Helper Function

/**
 * Gets the port number socket is currently binded.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.
 * @return port number.
 * @throws IOException
 */
static unsigned short GetSocketPort(
 JNIEnv* env,
 jobject obj,
 int sd)
{
 unsigned short port = 0;

http://freepdf-books.com

225CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 struct sockaddr_in address;
 socklen_t addressLength = sizeof(address);

 // Get the socket address
 if (-1 == getsockname(sd,
 (struct sockaddr*) &address,
 &addressLength))
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 else
 {
 // Convert port to host byte order
 port = ntohs(address.sin_port);

 LogMessage(env, obj, "Binded to random port %hu.", port);
 }

 return port;
}

As you may have noticed, the port number does not get passed directly into the sockaddr_in

structure. Instead, the htons function is used to make a conversion first. This is due to the difference

between the host and the network byte ordering.

Network Byte Ordering

Different machine architectures use different conventions for ordering and representing data at the

hardware level. This is known as the machine byte ordering, or endianness. For example:

	Big-endian byte ordering stores the most significant byte first.

	Little-endian byte ordering stores the least significant byte first.

Machines with different byte ordering conventions cannot directly exchange data. In order to enable

machines with different byte order conventions to communicate over the network, the Internet

Protocol declares big-endian byte ordering as the official network byte ordering convention for data

transmission.

As a Java virtual machine already uses big-endian byte ordering, this could be the first time you are

hearing about the endianness of data. Java applications do not have to do any conversions on the

data while communicating over the network. In contrast, as native components are not executed by

the Java virtual machine, they use the machine byte ordering.

ARM and x86 machine architectures use little-endian byte ordering.	
MIPS machine architecture uses big-endian byte ordering.	

When communicating over the network, the native code should do the necessary conversion

between the machine byte ordering and network byte ordering.

http://freepdf-books.com

226 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

The socket library provides a set of convenience functions to enable native applications to

transparently handle the byte ordering conversions. These functions are declared through the

sys/endian.h header file.

#include <sys/endian.h>

The following convenience functions are provided through this header file:

	htons function converts an unsigned short from host machine byte ordering to

network byte ordering.

	ntohs function does the reverse of htons by converting an unsigned short from

network byte ordering to host machine byte ordering.

	htonl function converts an unsigned integer from host machine byte ordering to

network byte ordering.

	ntohl function does the reverse of htonl by converting an unsigned integer from

network byte ordering to host machine byte ordering.

should explicitly start listening on the socket for incoming connections.

Listen for Incoming Connections: listen

Listening on a socket is achieved through the listen function.

int listen(int socketDescriptor, int backlog);

The listen function requires the following arguments to be provided in order to start listening for

incoming connections on the given socket:

The socket descriptor specifies the socket instance that the application wants to 	
start listening for incoming connections.

The backlog specifies the size of the queue to hold the pending incoming 	
connections. If the application is busy serving a client, other incoming

connections get queued up to the number of pending connections specified

by the backlog. When the backlog limit is reached, other incoming connections

get refused.

http://freepdf-books.com

227CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

If the function is successful, it returns zero; otherwise, it returns -1 and the errno global variable is

set to the appropriate error. Using the Editor view, append the ListenOnSocket helper function to the

Echo.cpp native module source file, as shown in Listing 8-11.

Listing 8-11. ListenOnSocket Native Helper Function

/**
 * Listens on given socket with the given backlog for
 * pending connections. When the backlog is full, the
 * new connections will be rejected.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.
 * @param backlog backlog size.
 * @throws IOException
 */
static void ListenOnSocket(
 JNIEnv* env,
 jobject obj,
 int sd,
 int backlog)
{
 // Listen on socket with the given backlog
 LogMessage(env, obj,
 "Listening on socket with a backlog of %d pending connections.",
 backlog);

 if (-1 == listen(sd, backlog))
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
}

Listening for incoming connections through the listen function simply puts the incoming

connections into a queue and waits for the application to explicitly accept them.

Accepting Incoming Connections: accept

The accept function is used to explicitly pull an incoming connection from the listen queue and to

accept it.

int accept(int socketDescriptor, struct sockaddr* address, socklen_t* addressLength);

http://freepdf-books.com

228 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

The accept function is a blocking function. If there is no pending incoming connection request in

the listen queue, it puts the calling process into a suspended state until a new incoming connection

arrives. The accept function requires the following arguments to be provided in order to accept a

pending incoming connection:

The socket descriptor specifies the socket instance that the application wants to 	
accept a pending incoming connection on.

The address pointer provides an address structure that gets filled with the 	
protocol address of the connecting client. If this information is not needed by the

application, it can be set to NULL.

The address length pointer provides memory space for the size of the protocol 	
address of the connecting client to be filled in. If this information is not needed,

it can be set to NULL.

accept request is successful, the function returns the client socket descriptor that will be used

-1 and the errno global variable is set

LogAddress helper function to the

 native module source file, as shown in Listing 8-12, that will be used to extract and display

 LogAddress Native Helper Function

/**
 * Logs the IP address and the port number from the
 * given address.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param message message text.
 * @param address adress instance.
 * @throws IOException
 */
static void LogAddress(
 JNIEnv* env,
 jobject obj,
 const char* message,
 const struct sockaddr_in* address)
{
 char ip[INET_ADDRSTRLEN];

 // Convert the IP address to string
 if (NULL == inet_ntop(PF_INET,
 &(address->sin_addr),
 ip,
 INET_ADDRSTRLEN))

http://freepdf-books.com

229CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 else
 {
 // Convert port to host byte order
 unsigned short port = ntohs(address->sin_port);

 // Log address
 LogMessage(env, obj, "%s %s:%hu.", message, ip, port);
 }
}

Using the Editor view, append the AcceptOnSocket helper function to the Echo.cpp native module

source file, as shown in Listing 8-13. This function will be used by the application to accept pending

incoming connections, as mentioned earlier.

Listing 8-13. AcceptOnSocket Native Helper Function

/**
 * Blocks and waits for incoming client connections on the
 * given socket.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.
 * @return client socket.
 * @throws IOException
 */
static int AcceptOnSocket(
 JNIEnv* env,
 jobject obj,
 int sd)
{
 struct sockaddr_in address;
 socklen_t addressLength = sizeof(address);

 // Blocks and waits for an incoming client connection
 // and accepts it
 LogMessage(env, obj, "Waiting for a client connection...");

 int clientSocket = accept(sd,
 (struct sockaddr*) &address,
 &addressLength);

 // If client socket is not valid
 if (-1 == clientSocket)

http://freepdf-books.com

230 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 else
 {
 // Log address
 LogAddress(env, obj, "Client connection from ", &address);
 }

 return clientSocket;
}

accept

recv function.

 int flags);

recv function is also a blocking function. If there is no data that can be received from the given

socket, it puts the calling process into suspended state until data becomes available. The recv

function requires the following arguments to be provided in order to accept a pending incoming

connection:

The socket descriptor specifies the socket instance that the application wants to 	
receive data from.

The buffer pointer to a memory address that will be filled with the data received 	
from the socket.

The buffer length specifies the size of the buffer. The 	 recv function will only fill

the buffer up to this size and return.

Flags specify additional flags for receiving.	
If the recv function is successful, it returns the number of bytes received from the socket; otherwise,

it returns -1 and the errno global variable is set to the appropriate error. If the function returns zero,

it indicates that the socket is disconnected. Using the Editor view, append the ReceiveFromSocket

helper function to the Echo.cpp native module source file, as shown in Listing 8-14.

Listing 8-14. ReceiveFromSocket Native Helper Function

/**
 * Block and receive data from the socket into the buffer.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.

http://freepdf-books.com

231CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 * @param buffer data buffer.
 * @param bufferSize buffer size.
 * @return receive size.
 * @throws IOException
 */
static ssize_t ReceiveFromSocket(
 JNIEnv* env,
 jobject obj,
 int sd,
 char* buffer,
 size_t bufferSize)
{
 // Block and receive data from the socket into the buffer
 LogMessage(env, obj, "Receiving from the socket...");
 ssize_t recvSize = recv(sd, buffer, bufferSize - 1, 0);

 // If receive is failed
 if (-1 == recvSize)
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 else
 {
 // NULL terminate the buffer to make it a string
 buffer[recvSize] = NULL;

 // If data is received
 if (recvSize > 0)
 {
 LogMessage(env, obj, "Received %d bytes: %s",
 recvSize, buffer);
 }
 else
 {
 LogMessage(env, obj, "Client disconnected.");
 }
 }

 return recvSize;
}

The ReceiveFromSocket function uses the recv function to receive data from the given socket into the

given buffer. In case of an error, it throws an IOException. Sending data through a socket is done in a

similar way.

http://freepdf-books.com

232 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

Sending Data to the Socket: send

Sending data to the socket is achieved through the send function.

ssize_t send(int socketDescriptor, void* buffer, size_t bufferLength,
 int flags);

Like the recv function, the send function is also a blocking function. If the socket is busy sending

data, it puts the calling process into a suspended state until the socket becomes available to

transmit the data. The send function requires the following arguments to be provided in order to

accept a pending incoming connection:

The socket descriptor specifies the socket instance that the application wants to 	
send data to.

The buffer pointer to a memory address that will be sent through the given 	
socket.

The buffer length specifies the size of the buffer. The 	 send function will only

transmit the buffer up to this size and return.

Flags specify additional flags for sending.	
send function returns the number of bytes transmitted;

-1 and the errno global variable is set to the appropriate error. Like the recv

SendToSocket helper function to the Echo.cpp native module source file, as shown

in Listing 8-15.

Listing 8-15. SendToSocket Native Helper Function

/**
 * Send data buffer to the socket.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.
 * @param buffer data buffer.
 * @param bufferSize buffer size.
 * @return sent size.
 * @throws IOException
 */
static ssize_t SendToSocket(
 JNIEnv* env,
 jobject obj,
 int sd,
 const char* buffer,
 size_t bufferSize)
{
 // Send data buffer to the socket
 LogMessage(env, obj, "Sending to the socket...");
 ssize_t sentSize = send(sd, buffer, bufferSize, 0);

http://freepdf-books.com

233CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 // If send is failed
 if (-1 == sentSize)
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 else
 {
 if (sentSize > 0)
 {
 LogMessage(env, obj, "Sent %d bytes: %s", sentSize, buffer);
 }
 else
 {
 LogMessage(env, obj, "Client disconnected.");
 }
 }

 return sentSize;
}

The SendToSocket function uses the send function to send data from the given buffer to the given

socket. In case of an error while sending the data, it throws an IOException. Now all necessary

helper functions are ready to implement the TCP server flow.

Native TCP Server Method

The nativeStartTcpServer native method is the core of the TCP Echo application. Using the Editor

view, append the nativeStartTcpServer native method to the Echo.cpp native module source file, as

shown in Listing 8-16.

Listing 8-16. The nativeStartTcpServer Native Method

void Java_com_apress_echo_EchoServerActivity_nativeStartTcpServer(
 JNIEnv* env,
 jobject obj,
 jint port)
{
 // Construct a new TCP socket.
 int serverSocket = NewTcpSocket(env, obj);
 if (NULL == env->ExceptionOccurred())
 {
 // Bind socket to a port number
 BindSocketToPort(env, obj, serverSocket, (unsigned short) port);
 if (NULL != env->ExceptionOccurred())
 goto exit;

http://freepdf-books.com

234 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 // If random port number is requested
 if (0 == port)
 {
 // Get the port number socket is currently binded
 GetSocketPort(env, obj, serverSocket);
 if (NULL != env->ExceptionOccurred())
 goto exit;
 }

 // Listen on socket with a backlog of 4 pending connections
 ListenOnSocket(env, obj, serverSocket, 4);
 if (NULL != env->ExceptionOccurred())
 goto exit;

 // Accept a client connection on socket
 int clientSocket = AcceptOnSocket(env, obj, serverSocket);
 if (NULL != env->ExceptionOccurred())
 goto exit;

 char buffer[MAX_BUFFER_SIZE];
 ssize_t recvSize;
 ssize_t sentSize;

 // Receive and send back the data
 while (1)
 {
 // Receive from the socket
 recvSize = ReceiveFromSocket(env, obj, clientSocket,
 buffer, MAX_BUFFER_SIZE);

 if ((0 == recvSize) || (NULL != env->ExceptionOccurred()))
 break;

 // Send to the socket
 sentSize = SendToSocket(env, obj, clientSocket,
 buffer, (size_t) recvSize);

 if ((0 == sentSize) || (NULL != env->ExceptionOccurred()))
 break;
 }

 // Close the client socket
 close(clientSocket);
 }

exit:
 if (serverSocket > 0)
 {
 close(serverSocket);
 }
}

http://freepdf-books.com

235CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

Through the native helper functions that are specified in this section, it opens up a server socket on

the port provided through the arguments and waits for incoming connections. When an incoming

connection request arrives, it accepts the connection, starts receiving data on client socket, and

echoes back the bytes to the client.

Echo Client Activity Layout
Using the Project Explorer view, expand the res directory for resources. Expand the layout

subdirectory, and create a new layout file called activity_echo_client.xml. Using the Editor view,

replace its content as shown in Listing 8-17.

Listing 8-17. Content of res/layout/activity_echo_client.xml File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <EditText
 android:id="@+id/ip_edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/ip_edit" >

 <requestFocus />

 </EditText>

 <EditText
 android:id="@+id/port_edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/port_edit"
 android:inputType="number" />

 <EditText
 android:id="@+id/message_edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/message_edit" />

 <Button
 android:id="@+id/start_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/start_client_button" />

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

236 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 <ScrollView
 android:id="@+id/log_scroll"
 android:layout_width="match_parent"
 android:layout_height="0dip"
 android:layout_weight="1.0" >

 <TextView
 android:id="@+id/log_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 </ScrollView>

EchoClientActivity.java under the

 directory. Using the Editor view, populate its content as shown in Listing 8-18.

 Content of EchoClientActivity.java File

package com.apress.echo;

import android.os.Bundle;
import android.widget.EditText;

/**
 * Echo client.
 *
 * @author Onur Cinar
 */
public class EchoClientActivity extends AbstractEchoActivity {
 /** IP address. */
 private EditText ipEdit;

 /** Message edit. */
 private EditText messageEdit;

 /**
 * Constructor.
 */
 public EchoClientActivity() {
 super(R.layout.activity_echo_client);
 }

http://freepdf-books.com

237CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ipEdit = (EditText) findViewById(R.id.ip_edit);
 messageEdit = (EditText) findViewById(R.id.message_edit);
 }

 protected void onStartButtonClicked() {
 String ip = ipEdit.getText().toString();
 Integer port = getPort();
 String message = messageEdit.getText().toString();

 if ((0 != ip.length()) && (port != null)
 && (0 != message.length())) {
 ClientTask clientTask = new ClientTask(ip, port, message);
 clientTask.start();
 }
 }

 /**
 * Starts the TCP client with the given server IP address and
 * port number, and sends the given message.
 *
 * @param ip
 * IP address.
 * @param port
 * port number.
 * @param message
 * message text.
 * @throws Exception
 */
 private native void nativeStartTcpClient(String ip, int port,
 String message) throws Exception;

 /**
 * Client task.
 */
 private class ClientTask extends AbstractEchoTask {
 /** IP address to connect. */
 private final String ip;

 /** Port number. */
 private final int port;

 /** Message text to send. */
 private final String message;

 /**
 * Constructor.
 *
 * @param ip
 * IP address to connect.

http://freepdf-books.com

238 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 * @param port
 * port number to connect.
 * @param message
 * message text to send.
 */
 public ClientTask(String ip, int port, String message) {
 this.ip = ip;
 this.port = port;
 this.message = message;
 }

 protected void onBackground() {
 logMessage("Starting client.");

 try {
 nativeStartTcpClient(ip, port, message);
 } catch (Throwable e) {
 logMessage(e.getMessage());
 }

 logMessage("Client terminated.");
 }
 }

EchoClientActivity acquires the necessary parameters from the user and starts the

nativeStartTcpClient function, native TCP client implementation, within a separate thread.

Implementing the Native TCP Client
Using the Project Explorer, select the EchoClientActivity, and then choose “Generate C and C++

Header File” from the External Tools menu to generate the native header files. Using the Project

Explorer, open the Echo.cpp source file in the editor. Go the top of the source file, and insert the

include statement shown in Listing 8-19.

Listing 8-19. Including the EchoClientActivity Header File

#include "com_apress_echo_EchoClientActivity.h"

The header file contains the function declaration of the nativeStartTcpClient function. Prior to

implementing this function, a helper function for the connecting to an address needs to be defined.

Connect to Address: connect

Connecting a socket to a server socket by providing the protocol address is achieved through the

connect function.

int connect(int socketDescriptor, const struct sockaddr *address,
 socklen_t addressLength);

http://freepdf-books.com

239CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

The connect function requires the following arguments to be provided in order to accept a pending

incoming connection:

The socket descriptor specifies the socket instance that the application wants to 	
connect to a protocol address.

The address specifies the protocol address that the socket will connect.	
The address length specifies the length of the address structure provided.	

If the connection attempt is successful, the connect function returns zero; otherwise, it returns

-1 and the errno global variable is set to the appropriate error. Using the Editor view, append the

ConnectToAddress helper function to the Echo.cpp native module source file, as shown in Listing 8-20.

Listing 8-20. ConnectToAddress Native Helper Function

/**
 * Connects to given IP address and given port.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.
 * @param ip IP address.
 * @param port port number.
 * @throws IOException
 */
static void ConnectToAddress(
 JNIEnv* env,
 jobject obj,
 int sd,
 const char* ip,
 unsigned short port)
{
 // Connecting to given IP address and given port
 LogMessage(env, obj, "Connecting to %s:%uh...", ip, port);

 struct sockaddr_in address;

 memset(&address, 0, sizeof(address));
 address.sin_family = PF_INET;

 // Convert IP address string to Internet address
 if (0 == inet_aton(ip, &(address.sin_addr)))
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 else
 {
 // Convert port to network byte order
 address.sin_port = htons(port);

http://freepdf-books.com

240 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 // Connect to address
 if (-1 == connect(sd, (const sockaddr*) &address,
 sizeof(address)))
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 else
 {
 LogMessage(env, obj, "Connected.");
 }
 }
}

nativeStartTcpClient native method is the client piece of the TCP Echo application. Using the

nativeStartTcpClient native method to the Echo.cpp native module source

 The nativeStartTcpClient Native Method

void Java_com_apress_echo_EchoClientActivity_nativeStartTcpClient(
 JNIEnv* env,
 jobject obj,
 jstring ip,
 jint port,
 jstring message)
{
 // Construct a new TCP socket.
 int clientSocket = NewTcpSocket(env, obj);
 if (NULL == env->ExceptionOccurred())
 {
 // Get IP address as C string
 const char* ipAddress = env->GetStringUTFChars(ip, NULL);
 if (NULL == ipAddress)
 goto exit;

 // Connect to IP address and port
 ConnectToAddress(env, obj, clientSocket, ipAddress,
 (unsigned short) port);

 // Release the IP address
 env->ReleaseStringUTFChars(ip, ipAddress);

 // If connection was successful
 if (NULL != env->ExceptionOccurred())
 goto exit;

http://freepdf-books.com

241CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 // Get message as C string
 const char* messageText = env->GetStringUTFChars(message, NULL);
 if (NULL == messageText)
 goto exit;

 // Get the message size
 jsize messageSize = env->GetStringUTFLength(message);

 // Send message to socket
 SendToSocket(env, obj, clientSocket, messageText, messageSize);

 // Release the message text
 env->ReleaseStringUTFChars(message, messageText);

 // If send was not successful
 if (NULL != env->ExceptionOccurred())
 goto exit;

 char buffer[MAX_BUFFER_SIZE];

 // Receive from the socket
 ReceiveFromSocket(env, obj, clientSocket, buffer,
 MAX_BUFFER_SIZE);
 }

exit:
 if (clientSocket > -1)
 {
 close(clientSocket);
 }
}

Through the native helper functions that are specified in this section, it opens up a socket and

connects it to the IP address and the port number provided through the arguments. When the

connection is established, it sends the provided message text through the socket, switches to

receiving mode, and displays the data received back from the socket. If everything is successful, the

same data should be echoed back from the TCP Echo server. Prior to executing the application, the

Echo TCP client and the server activities need to be added to the Android Manifest file.

Updating the Android Manifest
Using the Project Explorer view, open the AndroidManifest.xml in the editor, and replace its content

as shown in Listing 8-22.

Listing 8-22. AndroidManifest.xml File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.echo"
 android:versionCode="1"
 android:versionName="1.0" >

http://freepdf-books.com

http://schemas.android.com/apk/res/android

242 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="15" />

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".EchoServerActivity"
 android:label="@string/title_activity_echo_server"
 android:launchMode="singleTop" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".EchoClientActivity"
 android:label="@string/title_activity_echo_client"
 android:launchMode="singleTop" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Rebuild the Android project to reflect the changes. The example application is now ready to

be tested.

Running the TCP Sockets Example
In order to test the TCP Echo application, you will need two Android Emulator instances. As

described in Chapter XX, create a new Android Emulator instance with the exact same settings. Start

the EchoClientActivity and the EchoServerActivity on two separate Android Emulator instances

using the Eclipse IDE.

Configuring the Echo TCP Server

The EchoServerActivity will provide a simple user interface, as shown in Figure 8-1, allowing you to

specify the port number that the TCP server will be accepting connections on.

z

http://freepdf-books.com

243CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

Set the Port Number to 	 0. This will request a random port assignment from the

bind function.

Click the Start Server button to start the Echo TCP server.	
Upon starting the TCP server, the bind function will assign the first available port number to the

server socket, and this port number will be reported on the screen, as shown in Figure 8-2.

Take a note of this port number because you will need it in order to have the Echo TCP Client to

connect to the TCP Server.

Interconnecting Emulators for TCP

As both the Echo TCP Client and the TCP Server are running on two separate Android Emulator

instances, they cannot directly establish a connection among them. Android Emulators run in a

sandboxed environment as a virtual device on a virtual network. Applications running on the Android

Emulator can only communicate with the machine hosting the Android Emulator process. The TCP

port number should be bridged through the host machine in order to enable the TCP Client and the

TCP Server to communicate. This can be achieved through the port forwarding functionality that is

provided by the Android Debug Bridge (adb).

Open a command prompt or a Terminal window based on your operating system, as shown in

Listing 8-23, and issue the following command by substituting the <port number> with the port

number that you have noted earlier, and the <emulator name> with the device name of the Android

Emulator instance.

Figure 8-2. Echo TCP server binded to a random port number

Figure 8-1. Echo TCP server user interface

http://freepdf-books.com

244 CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

Listing 8-23. Port Forwarding Through adb

adb –s <emulator-name> forward tcp:<port number> tcp:<port number>

This will map the <port number> on the Android Emulator to the <port number> on the host machine.

Any incoming connections to the <port number> on the host machine will get forward to the <port
number> on Android Emulator through the adb. Port forwarding is a runtime setting, and it will be

cleared once the Android Emulator stops.

Figure 8-3. Echo TCP client user interface

Note If you are using a firewall application, make sure that the port number is open for incoming

connections.

EchoClientActivity will provide a simple user interface, as shown in Figure 8-3, allowing you

Follow these steps to start the TCP echo client application:

1. Set the IP Address to 10.0.2.2. This is the static IP address that can be used

to communicate with the host machine from the Android Emulator.

2. Set the Port Number to the port number you noted earlier.

3. Set the Message to test, or any other string that you would like to send to

the server.

4. Click the Start Client button to start the Echo TCP client.

http://freepdf-books.com

245CHAPTER 8: POSIX Socket API: Connection-Oriented Communication

Upon clicking the Start Client button, the Echo TCP client will connect to the Echo TCP server that

is running on the other Android Emulator instance, and it will send the message payload. Both the

client and the server activities will display the socket events and the message transmitted, as shown

in Figure 8-4.

Connection-oriented protocols like TCP provides an error-free communication channel to the

applications requiring a reliable medium of communication in order to properly function. This is

achieved at the expense of maintaining an open connection. Certain applications can still perform

without having to maintain a connection channel, such as the media applications. The POSIX Socket

API also provides support for connectionless communication in the native layer.

Summary
In this chapter, you explored the POSIX Socket APIs that are provided through the Bionic library for

connection-oriented communication. You learned about both client and server modes using the TCP

protocol. The next two chapters of the book continue the discussion of POSIX Socket APIs. The next

chapter will start exploring the POSIX Socket APIs for connectionless communication.

Figure 8-4. Echo TCP client exchanging messages

http://freepdf-books.com

247

Chapter 9
POSIX Socket API:

Connectionless Communication

In the previous chapter, you started exploring the POSIX Socket APIs by going through an example

of a connection-oriented communication application using the TCP protocol. In this chapter, you

will learn how to establish a connectionless communication between the Android application and

a remote end-point. Connectionless communication through UDP sockets provides a lightweight

communication medium tailed for real-time applications that can work with unordered and lost

data packets. This type of connection does not maintain an open connection. Packets get sent

to the target protocol address as needed. Since there is no connection in place, packets may get

lost or get out of order during transition. The protocol does not provide any service to handle such

situations. Throughout this chapter you will continue to modify the example Echo application to

include both UDP server and client native implementations.

Adding Native UDP Server Method to Echo Server Activity
In order to experiment with the UDP-based Echo server, the EchoServerActivity needs to be

modified to include a new native method, as shown in Listing 9-1.

Listing 9-1. The nativeStartUdpServer Method Added

public class EchoServerActivity extends AbstractEchoActivity {
 ...

 /**
 * Starts the UDP server on the given port.
 *
 * @param port
 * port number.

http://freepdf-books.com

248 CHAPTER 9: POSIX Socket API: Connectionless Communication

 * @throws Exception
 */
 private native void nativeStartUdpServer(int port) throws Exception;

 /**
 * Server task.
 */
 private class ServerTask extends AbstractEchoTask {
 ...

 protected void onBackground() {
 logMessage("Starting server.");

 try {
 nativeStartUdpServer(port);
 } catch (Exception e) {
 logMessage(e.getMessage());
 }

 logMessage("Server terminated.");
 }
 }

Echo.cpp native source file.

Implementing the Native UDP Server
Using the Project Explorer, select the EchoServerActivity, and then choose "Generate C and C++

Header File" from the External Tools menu to update the generated the native header files.

New UDP Socket: socket
The same socket function can be used to create a socket using the UDP protocol. This is achieved

by instructing the function to create a datagram socket instead of a stream socket. In order to make

it possible for you to experiment with both types of connections simultaneously, instead of modifying

the existing native helper function, a new native function will be defined to create the UDP sockets.

Using the Editor view, append the NewUdpSocket helper function to the Echo.cpp native module

source file, as shown in Listing 9-2.

Listing 9-2. NewUdpSocket Native Helper Function

/**
 * Constructs a new UDP socket.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @return socket descriptor.
 * @throws IOException
 */

http://freepdf-books.com

249CHAPTER 9: POSIX Socket API: Connectionless Communication

static int NewUdpSocket(JNIEnv* env, jobject obj)
{
 // Construct socket
 LogMessage(env, obj, "Constructing a new UDP socket...");
 int udpSocket = socket(PF_INET, SOCK_DGRAM, 0);

 // Check if socket is properly constructed
 if (−1 == udpSocket)
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }

 return udpSocket;
}

The NewUdpSocket is a simple function that creates a new datagram socket and returns the socket

descriptor. In case of an error while creating the socket, the socket function returns -1 and sets the

errno global variable to the error code. The NewUdpSocket function throws an IOException with an

error message mapped to that error code. Once the socket is created, it can be used to send and

receive datagrams.

Receive Datagram from Socket: recvfrom
Receiving data from a UDP socket is achieved through the recvfrom function instead of the recv

function that you used earlier.

ssize_t recvfrom(int socketDescriptor, void* buffer, size_t bufferLength,
 int flags, struct sockaddr* address, socklen_t* addressLength);

Like the recv function, the recvfrom function is also a blocking function. If there is no data that

can be received from the given socket, it puts the calling process into suspended state until data

becomes available. The recvfrom function requires the following arguments to be provided in order

to accept a pending incoming connection:

	Socket descriptor specifies the socket instance that the application wants to

receive data from.

	Buffer pointer to a memory address that will be filled with the data received from

the socket.

	Buffer length specifies the size of the buffer. The recv function will only fill the

buffer up to this size and return.

	Flags specify additional flags for receiving.

	Address pointer provides an address structure that gets filled with the protocol

address of the client sending the packet. If this information is not needed by the

application, it can be set to NULL.

	Address length pointer provides memory space for the size of the protocol address

of the client to be filled in. If this information is not needed, it can be set to NULL.

http://freepdf-books.com

250 CHAPTER 9: POSIX Socket API: Connectionless Communication

If the recvfrom function is successful, it returns the number of bytes received from the socket;

otherwise, it returns -1 and the errno global variable is set to the appropriate error. Using the Editor

view, append the ReceiveDatagramFromSocket helper function to the Echo.cpp native module source

file, as shown Listing 9-3.

Listing 9-3. ReceiveDatagramFromSocket Native Helper Function

/**
 * Block and receive datagram from the socket into
 * the buffer, and populate the client address.
 *
 * @param env JNIEnv interface.

 JNIEnv* env,
 jobject obj,
 int sd,
 struct sockaddr_in* address,
 char* buffer,
 size_t bufferSize)
{
 socklen_t addressLength = sizeof(struct sockaddr_in);

 // Receive datagram from socket
 LogMessage(env, obj, "Receiving from the socket...");
 ssize_t recvSize = recvfrom(sd, buffer, bufferSize, 0,
 (struct sockaddr*) address,
 &addressLength);

 // If receive is failed
 if (−1 == recvSize)
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 else
 {
 // Log address
 LogAddress(env, obj, "Received from", address);

 // NULL terminate the buffer to make it a string
 buffer[recvSize] = NULL;

http://freepdf-books.com

251CHAPTER 9: POSIX Socket API: Connectionless Communication

 // If data is received
 if (recvSize > 0)
 {
 LogMessage(env, obj, "Received %d bytes: %s",
 recvSize, buffer);
 }
 }

 return recvSize;
}

The ReceiveDatagramFromSocket function relies on the recvfrom function to receive a datagram from

the given socket into the provided data buffer. In case of an error, it throws an IOException with the

appropriate error message. Sending a datagram is also done in a similar way.

Send Datagram to Socket: sendto
Like the recvfrom function, sending data to a UDP socket is achieved through the sendto function

instead of the send function.

ssize_t sendto(int socketDescriptor, const void* buffer,
 size_t bufferSize, int flags, const struct sockaddr* address,
 socklen_t addressLength);

Like the send function, the sendto function is also a blocking function. If the socket is busy sending

data, it puts the calling process into suspended state until the socket becomes available for

transmitting the data. The sendto function requires the following arguments to be provided in order

to accept a pending incoming connection:

	Socket descriptor specifies the socket instance that the application wants to

send data to.

	Buffer pointer to a memory address that will be sent through the given socket.

	Buffer length specifies the size of the buffer. The sendto function will only

transmit the buffer up to this size and return.

	Flags specify additional flags for sending.

	Address specifies the protocol address for the target server.

	Address length is the size of the protocol address structure that is passed to the

function.

If the sending operation is successful, the send function returns the number of bytes transmitted;

otherwise, it returns -1 and the errno global variable is set to the appropriate error. Using the Editor

view, append the SendDatagramToSocket helper function to the Echo.cpp native module source file, as

shown in Listing 9-4.

http://freepdf-books.com

252 CHAPTER 9: POSIX Socket API: Connectionless Communication

Listing 9-4. SendDatagramToSocket Native Helper Function

/**
 * Sends datagram to the given address using the given socket.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.
 * @param address remote address.
 * @param buffer data buffer.
 * @param bufferSize buffer size.
 * @return sent size.

 JNIEnv* env,
 jobject obj,
 int sd,
 const struct sockaddr_in* address,
 const char* buffer,
 size_t bufferSize)
{
 // Send data buffer to the socket
 LogAddress(env, obj, "Sending to", address);
 ssize_t sentSize = sendto(sd, buffer, bufferSize, 0,
 (const sockaddr*) address,
 sizeof(struct sockaddr_in));

 // If send is failed
 if (−1 == sentSize)
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 else if (sentSize > 0)
 {
 LogMessage(env, obj, "Sent %d bytes: %s", sentSize, buffer);
 }

 return sentSize;
}

The SendDatagramToSocket function relies on the sendto function to send the given data buffer as a

datagram through the given socket. Upon implementing these helper functions, you are now ready

to implement the UDP Server function.

http://freepdf-books.com

253CHAPTER 9: POSIX Socket API: Connectionless Communication

Native UDP Server Method
The nativeStartUdpServer uses these methods to provide UDP-based Echo server. Using the Editor

view, append the nativeStartUdpServer helper function to the Echo.cpp native module source file, as

shown in Listing 9-5.

Listing 9-5. The nativeStartUdpServer Native Method

void Java_com_apress_echo_EchoServerActivity_nativeStartUdpServer(
 JNIEnv* env,
 jobject obj,
 jint port)
{
 // Construct a new UDP socket.
 int serverSocket = NewUdpSocket(env, obj);
 if (NULL == env->ExceptionOccurred())
 {
 // Bind socket to a port number
 BindSocketToPort(env, obj, serverSocket, (unsigned short) port);
 if (NULL != env->ExceptionOccurred())
 goto exit;

 // If random port number is requested
 if (0 == port)
 {
 // Get the port number socket is currently binded
 GetSocketPort(env, obj, serverSocket);
 if (NULL != env->ExceptionOccurred())
 goto exit;
 }

 // Client address
 struct sockaddr_in address;
 memset(&address, 0, sizeof(address));

 char buffer[MAX_BUFFER_SIZE];
 ssize_t recvSize;
 ssize_t sentSize;

 // Receive from the socket
 recvSize = ReceiveDatagramFromSocket(env, obj, serverSocket,
 &address, buffer, MAX_BUFFER_SIZE);

 if ((0 == recvSize) || (NULL != env->ExceptionOccurred()))
 goto exit;

 // Send to the socket
 sentSize = SendDatagramToSocket(env, obj, serverSocket,
 &address, buffer, (size_t) recvSize);
 }

http://freepdf-books.com

254 CHAPTER 9: POSIX Socket API: Connectionless Communication

exit:
 if (serverSocket > 0)
 {
 close(serverSocket);
 }
}

As the UDP-based server is connectionless, it does not use neither of listen or accept functions.

Adding Native UDP Client Method to Echo Client Activity
EchoClientActivity needs to be

 The nativeStartUdpClient Method Added

 ...

 /**
 * Starts the UDP client with the given server IP address
 * and port number.
 *
 * @param ip
 * IP address.
 * @param port
 * port number.
 * @param message
 * message text.
 * @throws Exception
 */
 private native void nativeStartUdpClient(String ip, int port,
 String message)
 throws Exception;

 /**
 * Client task.
 */
 private class ClientTask extends AbstractEchoTask {
 ...

 protected void onBackground() {
 logMessage("Starting client.");

 try {
 nativeStartUdpClient(ip, port, message);
 } catch (Throwable e) {
 logMessage(e.getMessage());
 }

http://freepdf-books.com

255CHAPTER 9: POSIX Socket API: Connectionless Communication

 logMessage("Client terminated.");
 }
 }
}

After adding the native method declaration to the ClientTask, compile the application project to

generate the class files. You will now implement the native implementation for this function.

Implementing the Native UDP Client
Using the Project Explorer, select the EchoClientActivity, and then choose "Generate C and C++

Header File" from the external tools menu to update the generated the native header files.

Native UDP Client Method
Using the Editor view, append the nativeStartUdpClient helper function to the Echo.cpp native

module source file, as shown in Listing 9-7.

Listing 9-7. The nativeStartUdpClient Native Method

void Java_com_apress_echo_EchoClientActivity_nativeStartUdpClient(
 JNIEnv* env,
 jobject obj,
 jstring ip,
 jint port,
 jstring message)
{
 // Construct a new UDP socket.
 int clientSocket = NewUdpSocket(env, obj);
 if (NULL == env->ExceptionOccurred())
 {
 struct sockaddr_in address;

 memset(&address, 0, sizeof(address));
 address.sin_family = PF_INET;

 // Get IP address as C string
 const char* ipAddress = env->GetStringUTFChars(ip, NULL);
 if (NULL == ipAddress)
 goto exit;

 // Convert IP address string to Internet address
 int result = inet_aton(ipAddress, &(address.sin_addr));

 // Release the IP address
 env->ReleaseStringUTFChars(ip, ipAddress);

 // If conversion is failed

http://freepdf-books.com

256 CHAPTER 9: POSIX Socket API: Connectionless Communication

 if (0 == result)
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 goto exit;
 }

 // Convert port to network byte order
 address.sin_port = htons(port);

 // Get message as C string
 const char* messageText = env->GetStringUTFChars(message, NULL);
 if (NULL == messageText)
 goto exit;

 // Get the message size
 jsize messageSize = env->GetStringUTFLength(message);

 // Send message to socket
 SendDatagramToSocket(env, obj, clientSocket, &address,
 messageText, messageSize);

 // Release the message text
 env->ReleaseStringUTFChars(message, messageText);

 // If send was not successful
 if (NULL != env->ExceptionOccurred())
 goto exit;

 char buffer[MAX_BUFFER_SIZE];

 // Clear address
 memset(&address, 0, sizeof(address));

 // Receive from the socket
 ReceiveDatagramFromSocket(env, obj, clientSocket, &address,
 buffer, MAX_BUFFER_SIZE);
 }

exit:
 if (clientSocket > 0)
 {
 close(clientSocket);
 }
}

The nativeStartUdpServer function starts by creating a new UDP socket. Later it sends the given

message text as a datagram to the given IP address and the port number. Upon sending the

datagram, it starts waiting for receiving the response datagram.

http://freepdf-books.com

257CHAPTER 9: POSIX Socket API: Connectionless Communication

Running the UDP Sockets Example
The Echo UDP server and the client can be tested using the same way as the Echo TCP server and

client. Run both the server and the client on two different Android Emulator instances. Start the Echo

UDP server with port number set to zero. Once the UDP server is started, note the assigned port number.

Interconnecting the Emulators for UDP
In order set up port forwarding for UDP ports, you need to use the Android Emulator console.

1. First find out the console port number for the Android Emulator instance by

looking at its window title; note the four digit number displayed on its title

bar, such as 5556.

2. Using your favorite telnet client, connect to localhost and the port number

that you noted in the previous step.

3. Issuing the following command on the Android Emulator console by

substituting the <port number> with the port number that the Echo UDP

Server to setup UDP port redirection:

redir add udp:<port number>:<port number>

Note If you are using a firewall application, make sure that the port number is opened through the

firewall in order to receive the incoming packets.

This will map the UDP port <port number> on the Android Emulator to the UDP port <port number>

on the host machine. Any incoming connections to the <port number> on the host machine will get

forward to the <port number> on Android Emulator. Port forwarding is a runtime setting, and it will be

cleared once the Android Emulator stops.

Starting the Echo UDP Client
Configure the Echo UDP client with the same set of parameters that are provided for the Echo TCP

client, and click the Start Client button. Upon clicking the Start Client button, the Echo TCP client

will send the message payload. Both the client and the server activities will display the socket events

and the message transmitted, as shown in Figure 9-1.

http://freepdf-books.com

258 CHAPTER 9: POSIX Socket API: Connectionless Communication

that were presented in this and the previous chapter, you can virtually implement any networking

protocol to communicate from the native space with various services on the network. The next

chapter will demonstrate how the POSIX Socket APIs can be used to establish a communication

channel locally on the device between two applications.

 Echo UDP client exchanging messages

http://freepdf-books.com

259

Chapter 10
POSIX Socket API:

Local Communication

In the previous two chapters, you explored the POSIX Socket API as it pertains to communication

with remote parties. The POSIX Socket API can also be used to establish a communication channel

locally on the device between two applications, or between the native and Java layers. In this chapter,

you will continue to build on top of the Echo example application. The local socket communication

example will demonstrate the following:

Local socket server implementation in the native layer.	
Local client implementation in the Java layer.	
Establishing a local socket communication between two applications.	

Echo Local Activity Layout
Using the Project Explorer view, expand the res directory for resources. Expand the layout

subdirectory, and create a new layout file called activity_echo_local.xml. Using the Editor view,

replace its content as shown in Listing 10-1.

Listing 10-1. Content of res/layout/activity_echo_local.xml File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

260 CHAPTER 10: POSIX Socket API: Local Communication

 <EditText
 android:id="@+id/port_edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/local_port_edit" >

 <requestFocus />

 </EditText>

 <EditText
 android:id="@+id/message_edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/message_edit" />

 <Button
 android:id="@+id/start_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/start_client_button" />

 <ScrollView
 android:id="@+id/log_scroll"
 android:layout_width="match_parent"
 android:layout_height="0dip"
 android:layout_weight="1.0" >

 <TextView
 android:id="@+id/log_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 </ScrollView>

</LinearLayout>

The Echo Local provides a simple user interface to obtain the port name to bind the local socket, the

message to send, and also to present the status updates from the native local socket server and the

client while they are running.

Echo Local Activity
As described earlier, using the Project Explorer view, create a new class file called

LocalSocketActivity.java under the src directory. Using the Editor view, populate its content as

shown in Listing 10-2.

http://freepdf-books.com

261CHAPTER 10: POSIX Socket API: Local Communication

Listing 10-2. LocalSocketActivity.java File

package com.apress.echo;

import java.io.File;
import java.io.InputStream;
import java.io.OutputStream;
import java.nio.charset.Charset;

import android.net.LocalSocket;
import android.net.LocalSocketAddress;
import android.os.Bundle;
import android.widget.EditText;

/**
 * Echo local socket server and client.
 *
 * @author Onur Cinar
 */
public class LocalEchoActivity extends AbstractEchoActivity {
 /** Message edit. */
 private EditText messageEdit;

 /**
 * Constructor.
 */
 public LocalEchoActivity() {
 super(R.layout.activity_local_echo);
 }

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 messageEdit = (EditText) findViewById(R.id.message_edit);
 }

 protected void onStartButtonClicked() {
 String name = portEdit.getText().toString();
 String message = messageEdit.getText().toString();

 if ((name.length() > 0) && (message.length() > 0)) {
 String socketName;

 // If it is a filesystem socket, prepend the
 // application files directory
 if (isFilesystemSocket(name)) {
 File file = new File(getFilesDir(), name);
 socketName = file.getAbsolutePath();
 } else {
 socketName = name;
 }

http://freepdf-books.com

262 CHAPTER 10: POSIX Socket API: Local Communication

 ServerTask serverTask = new ServerTask(socketName);
 serverTask.start();

 ClientTask clientTask = new ClientTask(socketName, message);
 clientTask.start();
 }
 }

 /**
 * Check if name is a filesystem socket.
 *
 * @param name
 * socket name.
 * @return filesystem socket.
 */
 private boolean isFilesystemSocket(String name) {
 return name.startsWith("/");
 }

 /**
 * Starts the Local UNIX socket server binded to given name.
 *
 * @param name
 * socket name.
 * @throws Exception
 */
 private native void nativeStartLocalServer(String name)
 throws Exception;

 /**
 * Starts the local UNIX socket client.
 *
 * @param port
 * port number.
 * @param message
 * message text.
 * @throws Exception
 */
 private void startLocalClient(String name, String message)
 throws Exception {
 // Construct a local socket
 LocalSocket clientSocket = new LocalSocket();
 try {
 // Set the socket namespace
 LocalSocketAddress.Namespace namespace;
 if (isFilesystemSocket(name)) {
 namespace = LocalSocketAddress.Namespace.FILESYSTEM;
 } else {
 namespace = LocalSocketAddress.Namespace.ABSTRACT;
 }

http://freepdf-books.com

263CHAPTER 10: POSIX Socket API: Local Communication

 // Construct local socket address
 LocalSocketAddress address = new LocalSocketAddress(
 name, namespace);

 // Connect to local socket
 logMessage("Connecting to " + name);
 clientSocket.connect(address);
 logMessage("Connected.");
 // Get message as bytes
 byte[] messageBytes = message.getBytes();

 // Send message bytes to the socket
 logMessage("Sending to the socket...");
 OutputStream outputStream = clientSocket.getOutputStream();
 outputStream.write(messageBytes);
 logMessage(String.format("Sent %d bytes: %s",
 messageBytes.length, message));

 // Receive the message back from the socket
 logMessage("Receiving from the socket...");
 InputStream inputStream = clientSocket.getInputStream();
 int readSize = inputStream.read(messageBytes);

 String receivedMessage = new String(messageBytes,
 0, readSize);
 logMessage(String.format("Received %d bytes: %s",
 readSize, receivedMessage));

 // Close streams
 outputStream.close();
 inputStream.close();

 } finally {
 // Close the local socket
 clientSocket.close();
 }
 }

 /**
 * Server task.
 */
 private class ServerTask extends AbstractEchoTask {
 /** Socket name. */
 private final String name;

 /**
 * Constructor.
 *
 * @param name
 * socket name.

http://freepdf-books.com

264 CHAPTER 10: POSIX Socket API: Local Communication

 */
 public ServerTask(String name) {
 this.name = name;
 }

 protected void onBackground() {
 logMessage("Starting server.");

 try {
 nativeStartLocalServer(name);
 } catch (Exception e) {
 logMessage(e.getMessage());
 }

 logMessage("Server terminated.");
 }
 }

 /**
 * Client task.
 */
 private class ClientTask extends Thread {
 /** Socket name. */
 private final String name;

 /** Message text to send. */
 private final String message;

 /**
 * Constructor.
 *
 * @parma name socket name.
 * @param message
 * message text to send.
 */
 public ClientTask(String name, String message) {
 this.name = name;
 this.message = message;
 }

 public void run() {
 logMessage("Starting client.");

 try {
 startLocalClient(name, message);
 } catch (Exception e) {
 logMessage(e.getMessage());
 }

 logMessage("Client terminated.");
 }
 }
}

http://freepdf-books.com

265CHAPTER 10: POSIX Socket API: Local Communication

The LocalEchoActivity activity the local socket port, and the test message from the UI, and creates

two background tasks. The first task runs the native nativeStartLocalServer method which creates

a local server socket and waits for connections. The second task runs the startLocalClient Java

method which creates a local socket client using the Java based socket API to communicate with

the local socket server. As with the other examples, upon connecting to the server socket, the client

sends the test message and waits for the server to echo the test message back.

Implementing the Native Local Socket Server
Using the Project Explorer, select the LocalSocketActivty, and then choose “Generate C and C++

Header File” from the External Tools menu to generate the native header files. Using the Project

Explorer, expand the jni subdirectory, and open the Echo.cpp source file in the editor. Go the top of

the source file, and insert the include statement shown in Listing 10-3.

Listing 10-3. Including the LocalSocketActivity Header File

#include "com_apress_echo_LocalEchoActivity.h"

The header file contains the nativeStartLocalServer native method declaration. Set of helper

functions needs to be implemented first, in order to facilitate the implementation of this native

method.

New Local Socket: socket
The same socket function can be used to create a local socket. This is achieved by instructing the

function to create the socket in the PF_LOCAL protocol family. In order to make it possible for you to

experiment with all types of connections simultaneously, instead of modifying the existing native

helper function, a new native function will be defined to create the local sockets. Using the Editor

view, append the NewLocalSocket helper function to the Echo.cpp native module source file as shown

in Listing 10-4.

Listing 10-4. NewLocalSocket Native Helper Function

/**
 * Constructs a new Local UNIX socket.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @return socket descriptor.
 * @throws IOException
 */
static int NewLocalSocket(JNIEnv* env, jobject obj)
{
 // Construct socket
 LogMessage(env, obj, "Constructing a new Local UNIX socket...");
 int localSocket = socket(PF_LOCAL, SOCK_STREAM, 0);

http://freepdf-books.com

266 CHAPTER 10: POSIX Socket API: Local Communication

 // Check if socket is properly constructed
 if (−1 == localSocket)
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }

 return localSocket;
}

The local socket family supports both stream- and datagram-based socket protocols. For this

example, you will be using the stream-based protocol.

bind function can be used to bind

sockaddr_un structure, as shown in Listing 10-5.

 The sockaddr_un Address Structure

 sa_family_t sun_family;
 char sun_path[UNIX_PATH_MAX];
};

The local socket protocol addresses consists of only a name. It does not have an IP address or a

port number. Local socket names can be created under two different namespaces:

	Abstract namespace is maintained within the local socket communication

protocol module. The socket name gets prefixed by a NULL character for binding

the socket name.

	Filesystem namespace is maintained through the file system as a special socket

file. The socket name gets directly passed to the sockaddr_un structure for

binding the socket name to the socket.

Using the Editor view, append the BindLocalSocketToName helper function to the Echo.cpp native

module source file, as shown in Listing 10-6.

Listing 10-6. BindLocalSocketToName Native Helper Function

/**
 * Binds a local UNIX socket to a name.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.
 * @param name socket name.
 * @throws IOException
 */

http://freepdf-books.com

267CHAPTER 10: POSIX Socket API: Local Communication

static void BindLocalSocketToName(
 JNIEnv* env,
 jobject obj,
 int sd,
 const char* name)
{
 struct sockaddr_un address;

 // Name length
 const size_t nameLength = strlen(name);

 // Path length is initiall equal to name length
 size_t pathLength = nameLength;

 // If name is not starting with a slash it is
 // in the abstract namespace
 bool abstractNamespace = ('/' != name[0]);

 // Abstract namespace requires having the first
 // byte of the path to be the zero byte, update
 // the path length to include the zero byte
 if (abstractNamespace)
 {
 pathLength++;
 }

 // Check the path length
 if (pathLength > sizeof(address.sun_path))
 {
 // Throw an exception with error number
 ThrowException(env, "java/io/IOException", "Name is too big.");
 }
 else
 {
 // Clear the address bytes
 memset(&address, 0, sizeof(address));
 address.sun_family = PF_LOCAL;

 // Socket path
 char* sunPath = address.sun_path;

 // First byte must be zero to use the abstract namespace
 if (abstractNamespace)
 {
 *sunPath++ = NULL;
 }

 // Append the local name
 strcpy(sunPath, name);

 // Address length
 socklen_t addressLength =

http://freepdf-books.com

268 CHAPTER 10: POSIX Socket API: Local Communication

 (offsetof(struct sockaddr_un, sun_path))
 + pathLength;

 // Unlink if the socket name is already binded
 unlink(address.sun_path);

 // Bind socket
 LogMessage(env, obj, "Binding to local name %s%s.",
 (abstractNamespace) ? "(null)" : "",
 name);

 if (−1 == bind(sd, (struct sockaddr*) &address, addressLength))
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }
 }

BindLocalSocketToName native function binds the given local socket to the given local socket

Accept on Local Socket: accept
The same accept function is also used to accept incoming connections to the local socket, the

only difference being the client protocol address that is returned by the accept function will be a

socketaddr_un type. Using the Editor view, append the AcceptOnLocalSocket helper function to the

Echo.cpp native module source file, as shown in Listing 10-7.

Listing 10-7. AcceptOnLocalSocket Native Helper Function

/**
 * Blocks and waits for incoming client connections on the
 * given socket.
 *
 * @param env JNIEnv interface.
 * @param obj object instance.
 * @param sd socket descriptor.
 * @return client socket.
 * @throws IOException
 */
static int AcceptOnLocalSocket(
 JNIEnv* env,
 jobject obj,
 int sd)
{
 // Blocks and waits for an incoming client connection
 // and accepts it

http://freepdf-books.com

269CHAPTER 10: POSIX Socket API: Local Communication

 LogMessage(env, obj, "Waiting for a client connection...");
 int clientSocket = accept(sd, NULL, NULL);

 // If client socket is not valid
 if (−1 == clientSocket)
 {
 // Throw an exception with error number
 ThrowErrnoException(env, "java/io/IOException", errno);
 }

 return clientSocket;
}

Native Local Socket Server
The nativeStartLocalServer native method is very similar to the nativeStartTcpServer native

method, the only difference being that it is using a local socket instead of a TCP socket. Using the

Editor view, append the nativeStartLocalServer helper function to the Echo.cpp native module

source file, as shown in Listing 10-8.

Listing 10-8. The nativeStartLocalServer Native Method

void Java_com_apress_echo_LocalEchoActivity_nativeStartLocalServer(
 JNIEnv* env,
 jobject obj,
 jstring name)
{
 // Construct a new local UNIX socket.
 int serverSocket = NewLocalSocket(env, obj);
 if (NULL == env->ExceptionOccurred())
 {
 // Get name as C string
 const char* nameText = env->GetStringUTFChars(name, NULL);
 if (NULL == nameText)
 goto exit;

 // Bind socket to a port number
 BindLocalSocketToName(env, obj, serverSocket, nameText);

 // Release the name text
 env->ReleaseStringUTFChars(name, nameText);

 // If bind is failed
 if (NULL != env->ExceptionOccurred())
 goto exit;

 // Listen on socket with a backlog of 4 pending connections
 ListenOnSocket(env, obj, serverSocket, 4);
 if (NULL != env->ExceptionOccurred())
 goto exit;

http://freepdf-books.com

270 CHAPTER 10: POSIX Socket API: Local Communication

 // Accept a client connection on socket
 int clientSocket = AcceptOnLocalSocket(env, obj, serverSocket);
 if (NULL != env->ExceptionOccurred())
 goto exit;

 char buffer[MAX_BUFFER_SIZE];
 ssize_t recvSize;
 ssize_t sentSize;

 // Receive and send back the data
 while (1)
 {
 // Receive from the socket
 recvSize = ReceiveFromSocket(env, obj, clientSocket,
 buffer, MAX_BUFFER_SIZE);

 if ((0 == recvSize) || (NULL != env->ExceptionOccurred()))
 break;

 // Send to the socket
 sentSize = SendToSocket(env, obj, clientSocket,
 buffer, (size_t) recvSize);

 if ((0 == sentSize) || (NULL != env->ExceptionOccurred()))
 break;
 }

 // Close the client socket
 close(clientSocket);
 }

exit:
 if (serverSocket > 0)
 {
 close(serverSocket);
 }
}

The nativeStartLocalServer native method relies on the helper functions that you have defined

earlier. It create a local socket and binds it to the given name. It starts waiting for local connections

and simply echoes back the received bytes. Both the server and client parts of the local socket

communication application is now implemented.

Adding Local Echo Activity to Manifest
The Echo local activity needs to be added to the Android Manifest file in order to be used. Using the

Project Explorer view, open up the AndroidManifest.xml in editor, and modify its content as shown

in Listing 10-9.

http://freepdf-books.com

271CHAPTER 10: POSIX Socket API: Local Communication

Listing 10-9. Local Echo Activity Added to AndroidManifest.xml File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.echo"
 android:versionCode="1"
 android:versionName="1.0" >

 <activity
 android:name=".LocalEchoActivity"
 android:label="@string/title_activity_local_echo" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

</manifest>

Running the Local Sockets Example
Since both the server and the client portions of the local socket example are part of the same

activity, it can be tested on a single Android Emulator instance by following these steps.

1. Start the local socket activity on the Android Emulator.

2. Set the Socket Name to /file to create the local socket in the filesystem

namespace.

3. Set the Message to the text that will be transmitted.

4. Click the Start button to start both the client and the server.

The socket events and the messages will be displayed as shown in Figure 10-1.

http://freepdf-books.com

http://schemas.android.com/apk/res/android

272 CHAPTER 10: POSIX Socket API: Local Communication

operation. The asynchronous I/O support for the sockets is provided through the select function.

Unlike the other socket APIs that can operate on only one socket descriptor at any given time, the

select function can take more than one socket descriptor and monitor their states simultaneously.

The function blocks until either a monitored event occurs or the specified timeout is reached.

To use the select function, the sys/select.h header file should be included first.

#include <sys/select.h>

The select function requires the following arguments to be provided:

int select(int nfds, fd_set* readfds, fd_set* writefds,

 fd_set* exceptfds, struct timeval* timeout);

The 	 nfds specifies the highest numbered descriptor plus one. The select
function will monitor descriptors including to this number.

The 	 readfds set lists the descriptors that will be monitored for readability.

The 	 writefs set lists the descriptors that will be monitored for writability.

The 	 exceptfds set lists the descriptors that will be monitored for any type of

error.

The 	 timeout specifies the maximum interval to block the current process for the

selection to complete. If this is not necessary, it can be set to NULL.

 Local echo client and server exchanging messages

http://freepdf-books.com

273CHAPTER 10: POSIX Socket API: Local Communication

If the selection is successful, the select function returns the number of ready descriptors; otherwise

-1 is returned and the errno is set to the error.

The lists of descriptors are provided to the select function through the fd_set structure.

struct fd_set readfds;

In order to manipulate the list of descriptors, the following set of macros are provided:

FD_ZERO macro takes a pointer to the 	 fd_set structure and clears it.

FD_SET macro takes a pointer to the 	 fd_set structure and adds a descriptor to

the set.

FD_CLR macro takes a pointer to the 	 fd_set structure and removes a descriptor

from the set.

FD_ISSET macro can be used after the selection completes to check if a 	
descriptor is part of the set that the select function returned.

Summary
In this chapter, you explored the POSIX Socket APIs pertaining to local socket communication on the

same device. This chapter briefly introduced the asynchronous I/O capabilities for the POSIX Socket

API. Throughout the last three chapters (including this one), you learned the fundamental concepts

and the APIs that are offered by Bionic to develop networking applications in the native layer. With

this information, any networking protocol can easily be implemented on the native layer.

http://freepdf-books.com

275

Chapter 11
C++ Support

In the previous chapters you explored the functionality that is offered by the Bionic C standard library.

Bionic provides frequently needed basic constructs and a common abstract interface to interact with

the functionality provided through the operating system and the hardware. Compared to the Java

framework, the extent of generic constructs that are offered by Bionic is fairly minimal. In addition

to the standard C library, the C++ ISO standard specifies an additional standard library for the C++

programming language, known as the C++ standard library. This library provides several generic

containers, strings, streams, and everyday utility functions. Through the building bricks that it provides,

the C++ standard library simplifies the native development by allowing the developers to focus on the

actual application logic rather than developing the constructs that are necessary to implement the

logic. This takes C++ development to a higher level of productivity and promotes code reuse.

In this chapter you will start exploring the C++ runtime support that is provided through the Android

platform and the Android NDK. This chapter will emphasize the following key topics:

Different available C++ runtimes	
Availability of exception and RTTI support	
Overview of C++ standard library concepts	
Thread safety of C++ runtime	
C++ runtime debug mode	

Supported C++ Runtimes
The Android platform comes with a very minimal C++ runtime support library, called the system

runtime. This runtime does not provide any of the following features:

C++ standard library	
Exceptions support	
RTTI support	

http://freepdf-books.com

276 CHAPTER 11: C++ Support

complete set of C++ standard library headers and support for RTTI. At the time of this writing,

STLport C++ runtime support in Android NDK is based on STLport version 5.2.0. STLport is

available as both static and shared libraries. It is provided under a royalty-free license for use in both

commercial and open-source projects.

GNU STL C++ Runtime
The GNU Standard C++ Library, also known as libstdc++-v3, is the most complete standard C++

runtime available through Android NDK. It is an ongoing open-source project to implement ISO

standard C++ library.

Both the C++ exceptions and C++ RTTI are supported through the GNU standard C++ runtime. If the

native code does require any of these features, it should be explicitly mentioned through the build

system variables as described in the C++ exceptions and C++ RTTI sections in this chapter.

The GNU Standard C++ Library is available as both static and shared libraries through the Android

NDK. Different from the other components of the Android NDK components, it is distributed under

the GNU General Public License version 3, with the addition of the GCC Runtime Library Exception.

Android NDK provides additional C++ runtime libraries to compliment the system runtime in order to

compensate a subset of these missing features. Comparison between the available C++ runtimes is

shown in Table 11-1.

Table 11-1. Comparison of Supported C++ Runtimes

C++ Runtime C++ Exceptions Support C++ RTTI Support C++ Standard Library

System No No No

GAbi++ No Yes No

STLport No Yes Yes

Yes Yes Yes

http://freepdf-books.com

277CHAPTER 11: C++ Support

Specifying the C++ Runtime
The Android NDK build system variable APP_STL can be used to specify which C++ runtime library

should be used by the native Android project. The APP_STL variable is an application-scope variable

that can be only defined in the Application.mk build file in the jni sub-directory, as shown in

Listing 11-1.

Listing 11-1. Content of jni/Application.mk File Selecting the C++ Runtime

APP_ABI := armeabi armeabi-v7a
...
APP_STL := system

The APP_STL variable can take a single value, the name of the C++ runtime to use. At the time of this

writing, the following values are supported by the APP_STL variable:

	system: Default minimal system C++ runtime. If APP_STL is not set, the system

runtime gets used by default.

	gabi++_static: GAbi++ runtime as a static library.

	gabi++_shared: GAbi++ runtime as a shared library.

	stlport_static: STLport runtime as static library.

	stlport_shared: STLport runtime as shared library.

	gnustl_static: GNU STL runtime as static library.

	gnustl_shared: GNU STL runtime as shared library.

Static vs. Shared Runtimes
For all supported C++ runtimes except the system runtime, both static and shared libraries are

provided. Application developers can choose to either statically or dynamically link the preferred

C++ runtime with their native modules.

Static library is only supported if the project contains a single native module.	
Shared library is recommended if the project contains more than one native 	
module.

When the C++ runtime is used in shared library form, the application should explicitly load the

necessary shared library before loading any native module that depends on it. As shown in

Listing 11-2, you should load the libraries in reverse dependency order.

Listing 11-2. Explicitly Loading C++ Runtime Shared Library

static {
 System.loadLibrary("strport_shared");
 System.loadLibrary("module1");
 System.loadLibrary("module2");
}

http://freepdf-books.com

278 CHAPTER 11: C++ Support

This will load the stlport_shared shared library before loading the native modules, so that the C++

runtime is available while loading the modules that are linked to it. Otherwise, the loading of native

modules will fail.

C++ Exception Support
An exception is a mechanism to transfer control to a specific function, called an exception handler,

when an exceptional circumstance, such as an error, occurs in a wrapped block of code. Android

NDK provides support for C++ exceptions through the GNU STL C++ runtime. In order to use C++

exception with your native module, you need to first specify GNU STL in Application.mk, like so:

LOCAL_CPP_FEATURES build

Android.mk build file, as shown in Listing 11-3.

 Content of Android.mk Build File Enabling C++ Exceptions

include $(BUILD_SHARED_LIBRARY)

The C++ exception support can be enabled for all native modules through the APP_CPPFLAGS build

system variable in the Application.mk build file, as shown in Listing 11-4.

Listing 11-4. Content of Application.mk Build File Enabling C++ Exceptions

APP_STL := gnustl_shared
APP_CPPFLAGS += −fexceptions

This enables C++ exception support on all native modules that are part of the application. C++ RTTI

support can also be enabled in a similar way.

C++ RTTI Support
Run-Time Type Information (RTTI) is a mechanism that exposes object type information during

runtime. It is primarily used for performing safe typecasts. The dynamic_cast and typeid operators

and the type_info class are part of the RTTI. Android NDK provides support for RTTI through

GAbi++, STLport, or GNU STL C++ runtimes. In order to use RTTI with your native module, you need

to first specify the proper C++ runtime in Application.mk, like so:

APP_STL := gnustl_shared

For compatibility and performance reasons, C++ exception support is disabled by default. The C++

exception support can be enabled for a single native module using the LOCAL_CPP_FEATURES build

system variable in the Android.mk build file, as shown in Listing 11-5.

http://freepdf-books.com

279CHAPTER 11: C++ Support

Listing 11-5. Content of Android.mk Build File Enabling RTTI Support

LOCAL_MODULE := module
...
LOCAL_CPP_FEATURES += rtti
...
include $(BUILD_SHARED_LIBRARY)

The C++ exception support can be enabled for all native modules through the APP_CPPFLAGS build

system variable in the Application.mk build file, as shown Listing 11-6.

Listing 11-6. Content of Application.mk Build File Enabling RTTI Support

APP_STL := gnustl_shared
APP_CPPFLAGS += −frtti

This enables C++ RTTI support for all native modules that are part of the application.

C++ Standard Library Primer
As the C++ standard library specification is rather large, this section will only provide a brief overview

of the functionality that is provided. More information can be found at the respective C++ runtime

documentation:

STLport documentation at 	 www.stlport.org/doc/

GNU STL documentation at 	 http://gcc.gnu.org/onlinedocs/libstdc++/

Containers
A container is an object that stores other objects and provides methods for accessing and

manipulating its elements. Containers own the elements within, and the lifetime of an element

cannot exceed the lifetime of the container.

Sequence

A sequence is a variable-sized container whose elements are in a linear order. The following

sequence containers are supported by the C++ standard library:

	vector supports random access to its elements. It provides constant time

insertion and removal of elements at the end, and linear time insertion and

removal of elements at other positions.

	deque is similar to a vector, with the addition of constant time insertion of

removal of elements at the beginning of the sequence. This makes deque the

candidate as the base of queue implementations.

	list is a doubly linked list. It supports both forward and backward traversal of

the sequence.

	slist is a singly linked list. It supports only forward traversal of the sequence.

http://freepdf-books.com

http://www.stlport.org/doc/
http://gcc.gnu.org/onlinedocs/libstdc

280 CHAPTER 11: C++ Support

Associative Container

An associative container is a variable-sized container that supports efficient retrieval of elements

through keys. Each element in an associative container must have a key. There are two main types of

associative containers: sorted associative container and hashed associative container.

Sorted Associative Container

A sorted associative container stores the keys in a case-insensitive ascending order. It guarantees

that the complexity of most operations is never worse than logarithmic. The following sorted

associative containers are supported by the C++ standard library:

	set is a sorted simple associative container. All of its elements are sorted, and

no two elements are the same.

	map is a sorted unique associative container. It associates elements with keys.

No two elements are the same.

	multiset is a sorted, simple, and multiple associative container. All of its

elements are sorted, and duplicate elements are supported.

	multimap is a sorted, multiple container. It associated elements with keys. There

is no limit on the number elements with the same key.

A hashed associative container is implemented based on a hash table. It does not store the elements

in any meaningful order. A hashed associative container is much faster than a sorted associative

container. It guarantees that the worst case complexity of most operations is linear in the size of the

container, average case complexity being constant time. This makes the hashed associative container

a perfect match when quick lookup of elements are needed. In contrast to sorted associative

containers, hashed associative containers do not store the elements and the keys in any meaningful

order. The following hashed associative containers are supported by the standard C++ library:

	hashed_set is a hashed simple associative container. It does not allow duplicate

elements. It is the best match when you would like to quickly check if an

element is in a set.

	hash_map is a hashed pair associative container. It associates elements with keys

and provides quick lookup of elements through these keys. Neither the elements

nor the keys are sorted in any meaningful order.

	hash_multiset is a hashed, simple, and multiple associative container.

It allows duplicate elements to be present in the container. As with other

hashed associative containers, it provides a fast lookup of elements through the

provided keys.

	hash_multimap is a hashed, pair, and multiple associative container. It associates

elements with keys and provides quick lookup. It allows duplicate elements with

the same key to be present in the container.

http://freepdf-books.com

281CHAPTER 11: C++ Support

Adaptors

Container adaptors are used to provide specialized container types based on the existing generic

containers. They achieve this by restricting the set of container functionality for the specialized type.

The following containers are provided through the adaptors:

	stack is a last in, first out (LIFO) data structure. It is implemented on top of a

deque container by restricting its functionality through the adaptors.

	queue is a first in, first out (FIFO) data structure. It is also implemented on top of

deque container by restricting its functionality through adaptors.

String

String is also a container type. It is represented as a sequence of characters. Besides the usual

methods that are available to a sequence, the string class also provides additional methods for

standard string operations, such as concatenation and search. Through the provided methods,

the string values can be converted to and from ordinary C strings.

Iterators
Iterators allow iterating over a range of objects or a container. They are the generalization of pointers,

but they are implemented as regular classes. It is a key component of C++ standard library, since

iterators are the interface between containers and the algorithms. Five base iterators are provided by the

C++ standard library based on the level of access and the type of the operation that will be performed:

	Input iterator is used to refer to an element for reading its value.

	Output iterator is used to modify the value of the object at the current location.

	Forward iterator can be used in multiple algorithms as it corresponds to the

usual notion of a linear sequence of values, and it does not dictate either input

or output operation.

	Bidirectional iterator can be used to traverse the given range of elements both in

forward and backward directions.

	Random access iterator provides all of the operations of ordinary C pointer

arithmetic. It provides constant-time methods for traversing the elements in

arbitrary-sized steps.

Derivatives of these iterators are also provided through the adaptors, such as the reverse iterator and

the front insert iterator.

Algorithms
The C++ standard library also provides an extensive set of everyday functions to operate on a range

of elements, such as collections. Algorithms provide functions for searching, replacing, copying,

and extracting boundaries of elements in a given range of elements. They rely on iterators as the

interface to traverse through the containers.

http://freepdf-books.com

282 CHAPTER 11: C++ Support

Thread Safety of C++ Runtime
All C++ runtime implementations are thread safe in the sense that simultaneous read access to

shared containers is safe; however, the application is responsible for ensuring mutual exclusion if

threads are both reading from and writing to shared containers.

C++ Runtime Debug Mode
The C++ runtimes are optimized for performance, so they perform little or no error checking. GNU

STL and STLport C++ runtimes provide a debug mode to make it easier to detect incorrect use

of the C++ standard library and obscure bugs in application code. The debug mode replaces the

	Safe iterators track the container to which the iterator is attached. They perform

runtime checking of the iterator’s validity and ownership. Errors such as

dereferencing an iterator that points to a container that has been destructed are

detected immediately in debug mode.

	Algorithm preconditions attempt to validate the input parameters to detect

errors immediately. Preconditions are validated using any additional information

that is available at runtime, such as the position of an iterator within a container.

GNU STL Debug Mode
GNU STL C++ runtime allows the debug mode to be enabled either for a specific portion of the code

or for the entire application.

Using Individual GNU STL Debugging Containers

In order to only enable debug mode for a specific portion of the code, GNU STL provides debug

mode-enabled counterparts for most containers in the __gnu_debug namespace instead of the std

namespace. These debugging containers can be included by prefixing the header file name with the

debug sub-directory, as shown in Listing 11-7.

Listing 11-7. Enabling GNU STL Debug Mode in a Portion of the Code

// Including debugging vector container
#include <debug/vector>
...
__gnu_debug::vector v;

Using the individual GNU STL debugging containers requires code modification, which is not

preferable in most cases. GNU STL debug mode can also be enabled during compile-time without

modifying the source code.

http://freepdf-books.com

283CHAPTER 11: C++ Support

Enabling GNU STL Debug Mode

The debug mode is controlled through the _GLIBCXX_DEBUG preprocessor symbol. This symbol can

be defined either through APP_CFLAGS build system variable for all native modules in the project or

through LOCAL_CFLAGS build system variable for a specific native module, as shown in Listing 11-8.

Listing 11-8. Enabling GNU STL Debug Mode for the Module

LOCAL_MODULE := module
...
LOCAL_CFLAGS += −D_GLIBCXX_DEBUG
...
include $(BUILD_SHARED_LIBRARY)

The native module needs to be recompiled upon enabling or disabling the debug mode.

STLport Debug Mode
The debug mode is controlled through the _STLP_DEBUG preprocessor symbol. This symbol can be

defined either through the APP_CFLAGS build system variable for all native modules in the project, or

through LOCAL_CFLAGS build system variable for a specific native module, as shown in Listing 11-9.

Listing 11-9. Enabling STLport Debug Mode for Module

LOCAL_MODULE := module
...
LOCAL_CFLAGS += −D_STLP_DEBUG
...
include $(BUILD_SHARED_LIBRARY)

The native module needs to be recompiled upon enabling or disabling the debug mode.

Redirecting Debug Mode Messages to Android Logs

By default, the error messages get displayed on the standard error output. STLport allows you to

override the default behavior by redirecting the error messages to a user-defined function. In order to

do so, follow these steps.

Modify the 1. Android.mk build file to define the _STLP_DEBUG_MESSAGE
preprocessor macro, as shown in Listing 11-10.

Listing 11-10. Enabling User-Defined Debug Message Output Function

LOCAL_MODULE := module
...
LOCAL_CFLAGS += −D_STLP_DEBUG
LOCAL_CFLAGS += −D_STLP_DEBUG_MESSAGE
LOCAL_LDLIBS += −llog
...
include $(BUILD_SHARED_LIBRARY)

http://freepdf-books.com

284 CHAPTER 11: C++ Support

2. Implement the __stl_debug_message global function to redirect the error

messages to Android logs, as shown in Listing 11-11.

Listing 11-11. Implementation of __stl_debug_message Function

#include <stdarg.h>
#include <android/log.h>
...
void __stl_debug_message(const char* format_str, ...)
{
 va_list ap;

 va_start(ap, format_str);
 __android_log_vprint(ANDROID_LOG_FATAL, "STLport", format_str, ap);
 va_end(ap);
}

Upon making this change, any STL debug message will get directed to the Android logs

with the tag STLport and the log level FATAL, and can be monitored through the logcat.

compared in terms of the functionality that they offer, such C++ exception support and C++ RTTI

support. As the C++ standard library is rather large and complex, the thread safety and the debug

mode of C++ runtime was presented in this chapter to facilitate the troubleshooting pertaining to

invalid use of C++ components in native applications. In the following chapters, you will be seeing

examples of the C++ standard library functions in action.

http://freepdf-books.com

285

Chapter 12
Native Graphics API

Needless to say, games and multimedia applications benefit from the Android NDK the most. These

applications rely on native code for performance-critical operations. Having the capability to render

graphics directly to the display from within the native layer is a highly crucial for such applications.

This chapter will explore the following set of native graphics APIs that are provided through the

Android NDK:

JNI Graphics API (aka Bitmap API)	
OpenGL ES 1.x and 2.0	
Native Window API	

Throughout this chapter, you will be building an AVI video player application that will be used as a

test bed to demonstrate rendering of video frames through the various native graphics APIs that are

available.

Availability of Native Graphics API
Not all native graphics API are available for all versions of the Android operating system. These

APIs are introduced over time, and they are applicable to only a subset of Android versions. The

availability of native graphics API is shown in Table 12-1.

Table 12-1. Availability of Native Graphics API

Native Graphics API Android Version API Level

JNI Graphics API 2.2 and later 8 and later

OpenGL ES 1.x 1.6 and later 4 and later

OpenGL ES 2.0 2.0 and later 5 and later

Native Window 2.3 and later 9 and later

http://freepdf-books.com

286 CHAPTER 12: Native Graphics API

Before going into the details of displaying graphics in native code, you will be creating a simple AVI

video player application.

Creating an AVI Video Player
The AVI video player application will act as a test bed. Throughout this chapter you will be expanding

this test application to experiment with the different native graphics APIs that are available in native

space. The example application will provide the following:

An Android application project with native code support.	
A Statically linked AVI library, with basic functions exposed to the Java layer and 	
tied with activity lifecycle.

A simple GUI to specify the name of the AVI video file and the type of native 	
graphics API to use for playing.

steps to make AVILib available as a NDK import module.

1. Using your favorite browser, navigate to http://tcforge.berlios.de/.

2. At the time of this writing, the latest version of Transcode is 1.1.5. Follow the

Download link for transcode-1.1.5.tar.bz2 source archive file.

3. Open up a Terminal window if you are using Mac OS or Linux, or Cygwin if

you are using Windows.

4. Change the current directory to Android NDK import modules directory by

issuing the following on the command line:

cd $ANDROID_NDK_HOME/sources

5. The transcode source archive file comes as a BZip2 compressed TAR

archive. By replacing <Download Location> with the actual directory name

that you have downloaded transcode-1.1.5.tar.bz2 into, issue the following

command to extract the compressed archive file:

tar jxvf <Download Location>/transcode-1.1.5.tar.bz2

6. Change the current directory to the avilib subdirectory of Transcode by

issuing the following:

cd transcode-1.1.5/avilib

http://freepdf-books.com

http://tcforge.berlios.de/

287CHAPTER 12: Native Graphics API

7. Open the platform.h header file in Eclipse. As shown in Listing 12-1, add the

bold lines around the include statement for the config.h header file.

Listing 12-1. Modified Content of AVILib platform.h Header File

#ifndef PLATFORM_H
#define PLATFORM_H

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#ifdef OS_DARWIN
#include <sys/uio.h>
#endif

 You are making this change because the AVILib will be compiled through the

Android NDK build system, not with the Makefile that came with Transcode

project.

8. The Android NDK build system requires the import module described in its

own Android.mk file. Using Eclipse, create a new Android.mk in the current

directory, with the content shown in Listing 12-2.

Listing 12-2. Android.mk Build File for AVILib Import Module

LOCAL_PATH := $(call my-dir)

#
Transcode AVILib
#

Source files
MY_AVILIB_SRC_FILES := avilib.c platform_posix.c

Include path to export
MY_AVILIB_C_INCLUDES := $(LOCAL_PATH)

#
AVILib static
#
include $(CLEAR_VARS)

Module name
LOCAL_MODULE := avilib_static

Source files
LOCAL_SRC_FILES := $(MY_AVILIB_SRC_FILES)

Include path to export
LOCAL_EXPORT_C_INCLUDES := $(MY_AVILIB_C_INCLUDES)

http://freepdf-books.com

288 CHAPTER 12: Native Graphics API

Build a static library
include $(BUILD_STATIC_LIBRARY)

#
AVILib shared
#
include $(CLEAR_VARS)

Module name
LOCAL_MODULE := avilib_shared

Source files
LOCAL_SRC_FILES := $(MY_AVILIB_SRC_FILES)

Include path to export
LOCAL_EXPORT_C_INCLUDES := $(MY_AVILIB_C_INCLUDES)

Build a shared library
include $(BUILD_SHARED_LIBRARY)

 This build script defines both a static and shared import module for the

AVILib library.

Create the AVI Player Android Application
As described earlier in the book, launch the New Android Application Project dialog in Eclipse, and

follow these steps.

1. Set Application Name to AVI Player.

2. Set Project Name to AVI Player.

3. Set Package Name to com.apress.aviplayer.

4. Click the Next button to accept the default values for all other settings.

5. Click the Next button to accept the default launcher icon.

6. Uncheck the Create Activity and click the Finish button to create the empty

AVI Player project.

7. In order to add native support, using the Project Explorer, launch the Add

Android Native Support wizard through the Android Tools context menu.

8. Set Library Name to AVIPlayer.

9. Click the Finish button to add native support to the AVI Player project.

http://freepdf-books.com

289CHAPTER 12: Native Graphics API

Create the AVI Player Main Activity
The main activity will provide a simple GUI to enable you to specify the name of the AVI video file

and the type of native graphics API to use for rendering. Using Eclipse, choose New ➤ Other from

the top menu bar, expand Android, select the Android Activity, and click Next to launch the New

Android Activity dialog. Then follow these steps.

1. Select the Blank Activity template.

2. Click the Next button to proceed.

3. Set Activity Name to MainActivity.

4. Click the Finish button to accept the default settings and to create the new

activity.

5. Using the Project Explorer, open the AndroidManifest.xml manifest file, and

replace its content with code in the Listing 12-3.

Listing 12-3. Content of AndroidManifest.xml File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.aviplayer"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="15" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android:label="@string/main_activity_title" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

6. Using the Project Explorer, expand the res directory for resources. From the

values subdirectory, open the strings.xml string resources file. Replace its

content with the code in Listing 12-4.

http://freepdf-books.com

http://schemas.android.com/apk/res/android

290 CHAPTER 12: Native Graphics API

Listing 12-4. Content of res/values/strings.xml Resource File

<resources>
 <string name="app_name">AVI Player</string>
 <string name="main_activity_title">MainActivity</string>
 <string name="file_name_hint">AVI Video File Name</string>
 <string name="file_name_text">galleon.avi</string>
 <string name="play_button">Play</string>
 <string name="hello_world">Hello world!</string>
 <string name="menu_settings">Settings</string>
 <string name="error_alert_title">Error Occurred</string>
</resources>

7. The main activity provides a very simple GUI, with a text field for specifying the

AVI file and a radio group to choose the native graphics API to use. Using the

Project Explorer, expand the layout subdirectory under the res directory. Open

the activity_main.xml layout file and replace its content with Listing 12-5.

Listing 12-5. Content of res/layout/activity_main.xml Layout File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <EditText
 android:id="@+id/file_name_edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:ems="10"
 android:hint="@string/file_name_hint"
 android:text="@string/file_name_text" >

 <requestFocus />
 </EditText>

 <RadioGroup
 android:id="@+id/player_radio_group"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" >

 </RadioGroup>

 <Button
 android:id="@+id/play_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/play_button" />

</LinearLayout>

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

291CHAPTER 12: Native Graphics API

8. And lastly, you need to implement the activity itself. Using the Project

Explorer, open the MainActivity.java source file and replace its content with

the code in Listing 12-6.

Listing 12-6. Content of MainActivity.java Source File

package com.apress.aviplayer;

import java.io.File;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.os.Environment;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.RadioGroup;

/**
 * Main activity.
 *
 * @author Onur Cinar
 */
public class MainActivity extends Activity implements OnClickListener {
 /** AVI file name edit. */
 private EditText fileNameEdit;

 /** Player type radio group. */
 private RadioGroup playerRadioGroup;

 /** Play button. */
 private Button playButton;

 /**
 * On create.
 *
 * @param savedInstanceState saved state.
 */
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 fileNameEdit = (EditText) findViewById(R.id.file_name_edit);
 playerRadioGroup = (RadioGroup) findViewById(
 R.id.player_radio_group);

 playButton = (Button) findViewById(R.id.play_button);
 playButton.setOnClickListener(this);
 }

http://freepdf-books.com

292 CHAPTER 12: Native Graphics API

 /**
 * On click event handler.
 *
 * @param view view instance.
 */
 public void onClick(View view) {
 switch (view.getId()) {
 case R.id.play_button:
 onPlayButtonClick();
 break;
 }
 }

 /**
 * On play button click event handler.
 */
 private void onPlayButtonClick() {
 Intent intent;

 // Get the checked radio button id
 int radioId = playerRadioGroup.getCheckedRadioButtonId();

 // Choose the activity based on id
 switch (radioId) {

 // You will be adding cases here later in this chapter
 default:
 throw new UnsupportedOperationException(
 "radioId=" + radioId);
 }

 // Under the external storage
 File file = new File(Environment.getExternalStorageDirectory(),
 fileNameEdit.getText().toString());

 // Put AVI file name as extra
 intent.putExtra(AbstractPlayerActivity.EXTRA_FILE_NAME,
 file.getAbsolutePath());

 // Start the player activity
 startActivity(intent);
 }
}

Creating the Abstract Player Activity
While experimenting with different native graphics APIs, a large percentage of the AVI player code will

be the same across all these implementations, such as opening and closing the AVI file. The abstract

player activity will provide the common code, leaving only the rendering piece to the actual player

implementations that are extending it. Follow these steps to implement the abstract player activity.

http://freepdf-books.com

293CHAPTER 12: Native Graphics API

1. Using the Project Explorer, expand the src directory.

2. Right-click on the com.apress.aviplayer package.

3. Choose New ➤ Class from the context menu to launch the New Java

Class dialog.

4. Set Name to AbstractPlayerActivity.

5. Click the Finish button to create the new class.

6. Replace the content of AbstractPlayerActivity.java source file with the

Listing 12-7.

Listing 12-7. Content of AbstractPlayerActivity.java Source File

package com.apress.aviplayer;

import java.io.IOException;

import android.app.Activity;
import android.app.AlertDialog;

/**
 * Player activity.
 *
 * @author Onur Cinar
 */
public abstract class AbstractPlayerActivity extends Activity {
 /** AVI file name extra. */
 public static final String EXTRA_FILE_NAME =
 "com.apress.aviplayer.EXTRA_FILE_NAME";

 /** AVI video file descriptor. */
 protected long avi = 0;

 /**
 * On start.
 */
 protected void onStart() {
 super.onStart();

 // Open the AVI file
 try {
 avi = open(getFileName());
 } catch (IOException e) {
 new AlertDialog.Builder(this)
 .setTitle(R.string.error_alert_title)
 .setMessage(e.getMessage())
 .show();
 }
 }

http://freepdf-books.com

294 CHAPTER 12: Native Graphics API

 /**
 * On stop.
 */
 protected void onStop() {
 super.onStop();

 // If the AVI video is open
 if (0 != avi) {
 // Close the file descriptor
 close(avi);
 avi = 0;
 }
 }

 /**
 * Gets the AVI video file name.
 *
 * @return file name.
 */
 protected String getFileName() {
 return getIntent().getExtras().getString(EXTRA_FILE_NAME);
 }

 /**
 * Opens the given AVI file and returns a file descriptor.
 *
 * @param fileName file name.
 * @return file descriptor.
 * @throws IOException
 */
 protected native static long open(String fileName)
 throws IOException;

 /**
 * Get the video width.
 *
 * @param avi file descriptor.
 * @return video width.
 */
 protected native static int getWidth(long avi);

 /**
 * Get the video height.
 *
 * @param avi file descriptor.
 * @return video height.
 */
 protected native static int getHeight(long avi);

 /**
 * Gets the frame rate.
 *

http://freepdf-books.com

295CHAPTER 12: Native Graphics API

 * @param avi file descriptor.
 * @return frame rate.
 */
 protected native static double getFrameRate(long avi);

 /**
 * Closes the given AVI file based on given file descriptor.
 *
 * @param avi file descriptor.
 */
 protected native static void close(long avi);

 static {
 System.loadLibrary("AVIPlayer");
 }
}

 The AbstractPlayerActivity also contains a set of native methods to process

AVI video files. These methods need to be implemented in the native space.

7. Choose Project ➤ Build Project from the top menu bar to compile the

Java source code. This will allow you to use the javah tool to generate

the necessary header files for implementing the native portion of

AbstractPlayerActivity.

8. Using the Project Explorer, select the AbstractPlayerActivity.

9. Choose Run ➤ External Tools ➤ Generate C and C++ Header File from the

top menu bar to invoke the javah tool for AbstractPlayerActivity class.

10. Under the jni subdirectory of the project, the com_apress_aviplayer_
AbstractPlayerActivity.h header file will be generated by the javah tool,

with the content shown in Listing 12-8.

Listing 12-8. Content of com_apress_aviplayer_AbstractPlayerActivity.h

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_apress_aviplayer_AbstractPlayerActivity */

#ifndef _Included_com_apress_aviplayer_AbstractPlayerActivity
#define _Included_com_apress_aviplayer_AbstractPlayerActivity
#ifdef __cplusplus
extern "C" {
#endif

...

/*
 * Class: com_apress_aviplayer_AbstractPlayerActivity
 * Method: open

http://freepdf-books.com

296 CHAPTER 12: Native Graphics API

 * Signature: (Ljava/lang/String;)J
 */
JNIEXPORT jlong JNICALL Java_com_apress_aviplayer_AbstractPlayerActivity_open
 (JNIEnv *, jclass, jstring);

/*
 * Class: com_apress_aviplayer_AbstractPlayerActivity
 * Method: getWidth
 * Signature: (J)I
 */
JNIEXPORT jint JNICALL Java_com_apress_aviplayer_AbstractPlayerActivity_
getWidth
 (JNIEnv *, jclass, jlong);

/*
 * Class: com_apress_aviplayer_AbstractPlayerActivity
 * Method: getHeight
 * Signature: (J)I
 */
JNIEXPORT jint JNICALL Java_com_apress_aviplayer_AbstractPlayerActivity_
getHeight
 (JNIEnv *, jclass, jlong);

/*
 * Class: com_apress_aviplayer_AbstractPlayerActivity
 * Method: getFrameRate
 * Signature: (J)D
 */
JNIEXPORT jdouble JNICALL Java_com_apress_aviplayer_AbstractPlayerActivity_
getFrameRate
 (JNIEnv *, jclass, jlong);

/*
 * Class: com_apress_aviplayer_AbstractPlayerActivity
 * Method: close
 * Signature: (J)V
 */
JNIEXPORT void JNICALL Java_com_apress_aviplayer_AbstractPlayerActivity_
close
 (JNIEnv *, jclass, jlong);

#ifdef __cplusplus
}
#endif
#endif

11. In order to implement these native functions, a new C++ source file is

needed. Right-click on the jni directory, and choose New ➤ Source File

from the context menu.

12. Set the Source File to com_apress_aviplayer_AbstractPlayerActivity.cpp.

http://freepdf-books.com

297CHAPTER 12: Native Graphics API

13. Click the Finish button to create a new C++ source file.

14. The native portion of abstract player activity provides functions to parse

the given AVI video file by using the API provided through AVILib third party

library. Using the Eclipse, replace the content of com_apress_aviplayer_
AbstractPlayerActivity.cpp source file with Listing 12-9.

Listing 12-9. Content of com_apress_aviplayer_AbstractPlayerActivity.cpp

extern "C" {
#include <avilib.h>
}

#include "Common.h"
#include "com_apress_aviplayer_AbstractPlayerActivity.h"

jlong Java_com_apress_aviplayer_AbstractPlayerActivity_open(
 JNIEnv* env,
 jclass clazz,
 jstring fileName)
{
 avi_t* avi = 0;

 // Get the file name as a C string
 const char* cFileName = env->GetStringUTFChars(fileName, 0);
 if (0 == cFileName)
 {
 goto exit;
 }

 // Open the AVI file
 avi = AVI_open_input_file(cFileName, 1);

 // Release the file name
 env->ReleaseStringUTFChars(fileName, cFileName);

 // If AVI file cannot be opened throw an exception
 if (0 == avi)
 {
 ThrowException(env, "java/io/IOException", AVI_strerror());
 }

exit:
 return (jlong) avi;
}

jint Java_com_apress_aviplayer_AbstractPlayerActivity_getWidth(
 JNIEnv* env,
 jclass clazz,
 jlong avi)

http://freepdf-books.com

298 CHAPTER 12: Native Graphics API

{
 return AVI_video_width((avi_t*) avi);
}

jint Java_com_apress_aviplayer_AbstractPlayerActivity_getHeight(
 JNIEnv* env,
 jclass clazz,
 jlong avi)
{
 return AVI_video_height((avi_t*) avi);
}

jdouble Java_com_apress_aviplayer_AbstractPlayerActivity_getFrameRate(
 JNIEnv* env,
 jclass clazz,
 jlong avi)
{
 return AVI_frame_rate((avi_t*) avi);
}

void Java_com_apress_aviplayer_AbstractPlayerActivity_close(
 JNIEnv* env,
 jclass clazz,
 jlong avi)
{
 AVI_close((avi_t*) avi);
}

15. The native portion of abstract player activity will share some common code

between the player implementations. This common code will be provided

through the Common.h and Common.cpp source files. Right-click on jni

directory, and choose New ➤ Header File from the context menu.

16. Set the Header File to Common.h.

17. Click the Finish button to create the new header file.

18. Replace the content of new header file with Listing 12-10.

Listing 12-10. Content of the Common.h header File

#pragma once

#include <jni.h>

/**
 * Throws a new exception using the given exception class
 * and exception message.
 *
 * @param env JNIEnv interface.
 * @param className class name.
 * @param message exception message.
 */

http://freepdf-books.com

299CHAPTER 12: Native Graphics API

void ThrowException(
 JNIEnv* env,
 const char* className,
 const char* message);

19. Right-click the jni directory, and choose New ➤ Source File from the

context menu.

20. Set the Source File to Common.cpp.

21. Click the Finish button to create the new C++ source file.

22. Replace the content of the new source file with the code in Listing 12-11.

Listing 12-11. Content the of Common.cpp Source File

#include "Common.h"

void ThrowException(
 JNIEnv* env,
 const char* className,
 const char* message)
{
 // Get the exception class
 jclass clazz = env->FindClass(className);

 // If exception class is found
 if (0 != clazz)
 {
 // Throw exception
 env->ThrowNew(clazz, message);

 // Release local class reference
 env->DeleteLocalRef(clazz);
 }
}

23. The build file for the native project should now be updated to include the new

source files, as well as to statically linking with the AVILib third party module.

Open the Android.mk file from the jni subdirectory and replace its content

with the code in Listing 12-12.

Listing 12-12. Content of the Android.mk Build File

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := AVIPlayer
LOCAL_SRC_FILES := \
 Common.cpp \
 com_apress_aviplayer_AbstractPlayerActivity.cpp

http://freepdf-books.com

300 CHAPTER 12: Native Graphics API

Use AVILib static library
LOCAL_STATIC_LIBRARIES += avilib_static

include $(BUILD_SHARED_LIBRARY)

Import AVILib library module
$(call import-module, transcode-1.1.5/avilib)

24. Although you have not yet implemented the rendering functionality for AVI

video playback, build and run the example application on the emulator to

make sure that it is properly implemented before going to the next step.

android.graphics.Bitmap class for manipulating and using

1. Include the android/bitmap.h header file.

#include <android/bitmap.h>

2. Update the Android.mk build file to dynamically link with jnigraphics library.

LOCAL_LDLIBS += −ljnigraphics

Upon making these changes, the JNI Graphics API is now available to your native application.

Using the JNI Graphics API
The JNI Graphics API provides four native functions for accessing and manipulating the Bitmap

objects.

Retrieving Information about a Bitmap Object

The AndroidBitmap_getInfo function allows native code to retrieve information about a Bitmap

object in terms of its dimensions, as well as its pixel format.

int AndroidBitmap_getInfo(JNIEnv* env,
 jobject bitmap,
 AndroidBitmapInfo* info);

http://freepdf-books.com

301CHAPTER 12: Native Graphics API

The function takes JNI interface pointer, the Bitmap object reference, and a pointer to a

AndroidBitmapInfo structure that will be used to return the information about the given bitmap, as

shown in Listing 12-13.

Listing 12-13. The AndroidBitmapInfo Structure Deceleration

typedef struct {
 uint32_t width;
 uint32_t height;
 uint32_t stride;
 int32_t format;
 uint32_t flags;
} AndroidBitmapInfo;

The format field contains information about the pixel format, as shown in Listing 12-14.

Listing 12-14. The AndroidBitmapFormat Enumeration Deceleration

enum AndroidBitmapFormat {
 ANDROID_BITMAP_FORMAT_NONE = 0,
 ANDROID_BITMAP_FORMAT_RGBA_8888 = 1,
 ANDROID_BITMAP_FORMAT_RGB_565 = 4,
 ANDROID_BITMAP_FORMAT_RGBA_4444 = 7,
 ANDROID_BITMAP_FORMAT_A_8 = 8,
};

In case of success, the AndroidBitmap_getInfo function returns zero; otherwise, it returns a negative

value. The full list of error codes can be found in the android/bitmap.h header file.

Accessing the Native Pixel Buffer

The AndroidBitmap_lockPixels function locks the pixel buffer to ensure that the memory for the

pixels will not move. It returns a native pointer to the pixel buffer for the native application access the

pixel data and to manipulate it.

int AndroidBitmap_lockPixels(JNIEnv* env,
 jobject jbitmap,
 void** addrPtr);

It takes a JNIEnv interface pointer, the Bitmap object reference, and a pointer to a void pointer

to return the address for the native pixel buffer. In case of success, it returns zero; otherwise, it

returns a negative value. As with the AndroidBitmap_getInfo, the full list of error codes for the

AndroidBitmap_lockPixels function can be found in the android/bitmap.h header file.

Releasing the Native Pixel Buffer

Each call to AndroidBitmap_lockPixels should be balanced by a call to AndroidBitmap_unlockPixels to

release the native pixel buffer. The native application should release the native pixel buffer upon finishing

the reading or writing to it. Once it is released, the Bitmap object can be used at the Java layer.

http://freepdf-books.com

302 CHAPTER 12: Native Graphics API

int AndroidBitmap_unlockPixels(JNIEnv* env,
 jobject jbitmap);

The AndroidBitmap_unlockPixels function takes a JNIEnv interface pointer and the Bitmap object

reference. In case of success, it returns zero; otherwise, it returns a negative value.

Updating AVI Player with Bitmap Renderer
To update the AVI player, follow these steps.

1. Using Project Explorer, open the AndroidManifest.xml manifest file and

declare the new activity as shown in Listing 12-15.

Listing 12-15. New Bitmap Player Activity Declared in the Manifest File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.aviplayer"
 android:versionCode="1"
 android:versionName="1.0" >

 ...

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 ...

 <activity
 android:name=".BitmapPlayerActivity"
 android:label="@string/title_activity_bitmap_player" >
 </activity>

 </application>

</manifest>

2. The title of the new Bitmap Player activity, as well as the label for the Bitmap

Player radio button, should be added to the string resources. Open the

strings.xml string resources file, and add the new string resources as shown

in Listing 12-16.

Listing 12-16. Bitmap Player Activity String Resources Appended

<resources>

 ...
 <string name="bitmap_player_radio">Bitmap Player</string>
 <string name="title_activity_bitmap_player">Bitmap Player</string>

</resources>

http://freepdf-books.com

http://schemas.android.com/apk/res/android

303CHAPTER 12: Native Graphics API

3. The Bitmap Player activity requires a single SurfaceView widget in order to

function. Using the Project Explorer, expand the res directory.

4. Right-click the layout subdirectory, and choose New ➤ File from the context

menu.

5. Set File Name to activity_bitmap_player.xml.

6. Replace the content of the new layout with the code in Listing 12-17.

Listing 12-17. Content of the activity_bitmap_player.xml Layout File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <SurfaceView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/surface_view" />

</LinearLayout>

7. Using the Project Explorer, expand the src directory.

8. Right-click on the com.apress.aviplayer package, and choose New ➤ Class

from the context menu.

9. Set Name to BitmapPlayerActivity.

10. Click the Finish button to create the new class.

11. Replace its content with the code in Listing 12-18.

Listing 12-18. Content of the BitmapPlayerActivity.java Source File

package com.apress.aviplayer;

import java.util.concurrent.atomic.AtomicBoolean;

import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.os.Bundle;
import android.view.SurfaceHolder;
import android.view.SurfaceHolder.Callback;
import android.view.SurfaceView;

/**
 * AVI player through bitmaps.
 *
 * @author Onur Cinar
 */

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

304 CHAPTER 12: Native Graphics API

public class BitmapPlayerActivity extends AbstractPlayerActivity {
 /** Is playing. */
 private final AtomicBoolean isPlaying = new AtomicBoolean();

 /** Surface holder. */
 private SurfaceHolder surfaceHolder;

 /**
 * On create.
 *
 * @param savedInstanceState saved state.
 */
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_bitmap_player);

 SurfaceView surfaceView = (SurfaceView)
 findViewById(R.id.surface_view);

 surfaceHolder = surfaceView.getHolder();
 surfaceHolder.addCallback(surfaceHolderCallback);
 }

 /**
 * Surface holder callback listens for surface events.
 */
 private final Callback surfaceHolderCallback = new Callback() {
 public void surfaceChanged(SurfaceHolder holder, int format,
 int width, int height) {
 }

 public void surfaceCreated(SurfaceHolder holder) {
 // Start playing since surface is ready
 isPlaying.set(true);

 // Start renderer on a separate thread
 new Thread(renderer).start();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 // Stop playing since surface is destroyed
 isPlaying.set(false);
 }
 };

 /**
 * Renderer runnable renders the video frames from the
 * AVI file to the surface through a bitmap.
 */
 private final Runnable renderer = new Runnable() {
 public void run() {
 // Create a new bitmap to hold the frames

http://freepdf-books.com

305CHAPTER 12: Native Graphics API

 Bitmap bitmap = Bitmap.createBitmap(
 getWidth(avi),
 getHeight(avi),
 Bitmap.Config.RGB_565);

 // Calculate the delay using the frame rate
 long frameDelay = (long) (1000 / getFrameRate(avi));

 // Start rendering while playing
 while (isPlaying.get()) {
 // Render the frame to the bitmap
 render(avi, bitmap);

 // Lock canvas
 Canvas canvas = surfaceHolder.lockCanvas();

 // Draw the bitmap to the canvas
 canvas.drawBitmap(bitmap, 0, 0, null);

 // Post the canvas for displaying
 surfaceHolder.unlockCanvasAndPost(canvas);

 // Wait for the next frame
 try {
 Thread.sleep(frameDelay);
 } catch (InterruptedException e) {
 break;
 }
 }
 }
 };

 /**
 * Renders the frame from given AVI file descriptor to
 * the given Bitmap.
 *
 * @param avi file descriptor.
 * @param bitmap bitmap instance.
 * @return true if there are more frames, false otherwise.
 */
 private native static boolean render(long avi, Bitmap bitmap);
}

 The BitmapPlayerActivity handles the rendering of the video frames through

a native method called as render.

12. Choose Project ➤ Build Project from the top menu bar to compile the Java

source code.

13. Using the Project Explorer, select the BitmapPlayerActivity.

http://freepdf-books.com

306 CHAPTER 12: Native Graphics API

14. Choose Run ➤ External Tools ➤ Generate C and C++ Header File from

the top menu bar to invoke the javah tool for BitmapPlayerActivity class.

15. Under the jni subdirectory of the project, the com_apress_aviplayer_
BitmapPlayerActivity.h header file will be generated by the javah tool.

16. Right-click the jni directory, and choose New ➤ Source File from the

context menu.

17. Set Source File to com_apress_aviplayer_BitmapPlayerActivity.cpp.

18. Click the Finish button to create a new C++ source file.

19. Using the Eclipse, replace the content of the new source file with the code in

Listing 12-19.

Listing 12-19. Content of com_apress_aviplayer_BitmapPlayerActivity.cpp

extern "C" {
#include <avilib.h>
}

#include <android/bitmap.h>

#include "Common.h"
#include "com_apress_aviplayer_BitmapPlayerActivity.h"

jboolean Java_com_apress_aviplayer_BitmapPlayerActivity_render(
 JNIEnv* env,
 jclass clazz,
 jlong avi,
 jobject bitmap)
{
 jboolean isFrameRead = JNI_FALSE;

 char* frameBuffer = 0;
 long frameSize = 0;
 int keyFrame = 0;

 // Lock bitmap and get the raw bytes
 if (0 > AndroidBitmap_lockPixels(env, bitmap, (void**) &frameBuffer))
 {
 ThrowException(env, "java/io/IOException",
 "Unable to lock pixels.");
 goto exit;
 }

 // Read AVI frame bytes to bitmap
 frameSize = AVI_read_frame((avi_t*) avi, frameBuffer, &keyFrame);

http://freepdf-books.com

307CHAPTER 12: Native Graphics API

 // Unlock bitmap
 if (0 > AndroidBitmap_unlockPixels(env, bitmap))
 {
 ThrowException(env, "java/io/IOException",
 "Unable to unlock pixels.");
 goto exit;
 }

 // Check if frame is successfully read
 if (0 < frameSize)
 {
 isFrameRead = JNI_TRUE;
 }

exit:
 return isFrameRead;
}

20. The build file Android.mk needs to be modified, as shown in Listing

12-20, to compile the new source file, as well as to dynamically link with the

jnigraphics shared library in order to use the JNI Graphics Bitmap API.

Listing 12-20. Build File Modified for Bitmap Player

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := AVIPlayer
LOCAL_SRC_FILES := \
 Common.cpp \
 com_apress_aviplayer_AbstractPlayerActivity.cpp \
 com_apress_aviplayer_BitmapPlayerActivity.cpp

Use AVILib static library
LOCAL_STATIC_LIBRARIES += avilib_static

Link with JNI graphics
LOCAL_LDLIBS += −ljnigraphics

include $(BUILD_SHARED_LIBRARY)

Import AVILib library module
$(call import-module, transcode-1.1.5/avilib)

21. The bitmap player activity is now ready. In order to be able to use it, it needs

to be added as a radio button to the activity_main.xml layout file, as shown

in Listing 12-21.

http://freepdf-books.com

308 CHAPTER 12: Native Graphics API

Listing 12-21. Bitmap Player Radio Button Added to Main Activity Layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 ...

 <RadioGroup
 android:id="@+id/player_radio_group"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" >

 <RadioButton
 android:id="@+id/bitmap_player_radio"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="@string/bitmap_player_radio" />

 </RadioGroup>

 ...

</LinearLayout>

22. The main activity source code should also be modified, as shown in Listing

12-22, to dispatch the playback request to Bitmap Player activity when it is

selected by the user.

Listing 12-22. Bitmap Player Radio Added to Main Activity

/**
 * On play button click event handler.
 */
private void onPlayButtonClick() {

 ...

 // Choose the activity based on id
 switch (radioId) {
 case R.id.bitmap_player_radio:
 intent = new Intent(this, BitmapPlayerActivity.class);
 break;

 default:
 throw new UnsupportedOperationException("radioId=" + radioId);
 }

 ...
}

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

309CHAPTER 12: Native Graphics API

Running the AVI Player with Bitmap Renderer
Now the AVI player application is ready with the Bitmap renderer based on JNI graphics API. Follow

these steps to test the application on Android emulator.

1. In order to test the AVI video player application, an AVI-formatted video file

is needed. For the simplicity of the example, the application is only using

AVI format as a container, expecting that the video payload is provided as

uncompressed raw frames in RGB565 color-space. Using your favorite

browser, download the sample video file from author’s web site at

http://zdo.com/galleon.zip.

2. Extract the galleon.avi AVI video file from the downloaded ZIP archive.

3. Start the Android emulator.

4. Using the ADB, push the AVI video file to the Android emulator’s SD card, like

so:

adb push galleon.avi /sdcard/

Figure 12-1. Choosing the Bitmap Player using AVI player GUI

Note The galleon.avi AVI video file requires at least 74MB of free space on the SD card. If the ADB push

for the file fails, makes sure that you have enough space on the target Android device or the Android

emulator. Due to the large size of the video file, pushing it to the SD Card can take 30 or more seconds.

5. Start the AVI player application on the Android emulator.

6. Make sure that Bitmap Player radio button is selected, as shown

in Figure 12-1.

http://freepdf-books.com

http://zdo.com/galleon.zip

310 CHAPTER 12: Native Graphics API

7. Click the Play button to start the playback. The Bitmap Player activity will

be invoked, and the AVI video file will be rendered through the JNI Graphics

API, as shown in Figure 12-2. You should see the waving white flag on

the galleon.

 The AVI video file is getting rendered through the Bitmap renderer

The Android NDK provides OpenGL ES both version 1.x and 2.0 graphics API to the native code. As

indicated earlier in this chapter,

OpenGL ES 1.0 is supported from Android 1.6 and later.	
OpenGL ES 1.1 is supported only on specific devices that have the 	
corresponding GPU.

OpenGL ES 2.0 is supported on Android 2.0 and later.	
Applications should use the <uses-feature> tag in the Android manifest file to indicate the preferred

version of OpenGL ES version to use.

Using the OpenGL ES API
In order to use the OpenGL ES API, you need to have a android.opengl.GLSurfaceView instance on

the Java code. The native application can then call the OpenGL ES API functions to render graphics

to the GLSurfaceView. More information on available OpenGL ES API can be found at the Khronos

Groups web site at www.khronos.org/opengles/.

At the time of this writing, the Android emulator does not support OpenGL ES 2.0 hardware

emulation. In order to allow you to experiment with the OpenGL ES-based graphics API, the example

application will be using the OpenGL ES 1.x.

http://freepdf-books.com

http://www.khronos.org/opengles/

311CHAPTER 12: Native Graphics API

Enabling OpenGL ES 1.x API
Follow these steps to use the OpenGL ES 1.x in your native application.

1. Include the OpenGL ES 1.x header files.

#include <GLES/gl.h>
#include <GLES/glext.h>

2. Update the Android.mk build file to dynamically link with GLESv1_CM library.

LOCAL_LDLIBS += −lGLESv1_CM

Upon making these changes, the OpenGL ES 1.x API will now be available to your

native application.

Enabling OpenGL ES 2.0 API
Follow these steps to use the OpenGL ES 2.0 in your native application.

1. Include the OpenGL ES 2.0 header files.

#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>

2. Update the Android.mk build file to dynamically link with GLESv2 library.

LOCAL_LDLIBS += −lGLESv2

Upon making these changes, the OpenGL ES 2.0 API will now be available to your

native application.

Updating AVI Player with OpenGL ES Renderer
Follow these steps.

1. Using Project Explorer, open the AndroidManifest.xml manifest file and

declare the new activity, as shown in Listing 12-23.

Listing 12-23. New OpenGL Player Activity Declared in Manifest File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.aviplayer"
 android:versionCode="1"
 android:versionName="1.0" >

 ...

http://freepdf-books.com

http://schemas.android.com/apk/res/android

312 CHAPTER 12: Native Graphics API

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 ...

 <activity
 android:name=".OpenGLPlayerActivity"
 android:label="@string/title_activity_open_gl_player" >
 </activity>
 </application>

</manifest>

2. The title of the new OpenGL player activity, as well as the label for the

OpenGL player radio button, should be added to the string resources. Open

the strings.xml string resources file and add the new string resources, as

shown in Listing 12-24.

Listing 12-24. OpenGL Player Activity String Resources Appended

<resources>

 ...

 <string name="title_activity_open_gl_player">OpenGL Player</string>
 <string name="open_gl_player_radio">OpenGL Player</string>
</resources>

3. The Bitmap Player activity requires a single GLSurfaceView widget in order to

function. Using the Project Explorer, expand the res directory.

4. Right-click on the layout subdirectory, and choose New ➤ File from the

context menu.

5. Set File Name to activity_open_gl_player.xml.

6. Replace the content of new layout with the code in Listing 12-25.

Listing 12-25. Content of the activity_open_gl_player.xml Layout File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <android.opengl.GLSurfaceView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/gl_surface_view" />

</LinearLayout>

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

313CHAPTER 12: Native Graphics API

7. Using the Project Explorer, expand the src directory.

8. Right-click the com.apress.aviplayer package, and choose New ➤ Class

from the context menu.

9. Set Name to OpenGLPlayerActivity.

10. Click the Finish button to create the new class.

11. Replace its content with the code in Listing 12-26.

Listing 12-26. Content of the OpenGLPlayerActivity.java Source File

package com.apress.aviplayer;

import java.util.concurrent.atomic.AtomicBoolean;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView;
import android.opengl.GLSurfaceView.Renderer;
import android.os.Bundle;

/**
 * AVI player through OpenGL.
 *
 * @author Onur Cinar
 */
public class OpenGLPlayerActivity extends AbstractPlayerActivity {
 /** Is playing. */
 private final AtomicBoolean isPlaying = new AtomicBoolean();

 /** Native renderer. */
 private long instance;

 /** GL surface view instance. */
 private GLSurfaceView glSurfaceView;

 /**
 * On create.
 *
 * @param savedInstanceState saved state.
 */
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_open_gl_player);

 glSurfaceView = (GLSurfaceView)
 findViewById(R.id.gl_surface_view);

 // Set renderer
 glSurfaceView.setRenderer(renderer);

http://freepdf-books.com

314 CHAPTER 12: Native Graphics API

 // Render frame when requested
 glSurfaceView.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 }

 /**
 * On start.
 */
 protected void onStart() {
 super.onStart();

 // Initializes the native renderer
 instance = init(avi);
 }

 /**
 * On resume.
 */
 protected void onResume() {
 super.onResume();

 // GL surface view must be notified when activity is resumed
 glSurfaceView.onResume();
 }

 /**
 * On pause.
 */
 protected void onPause() {
 super.onPause();

 // GL surface view must be notified when activity is paused.
 glSurfaceView.onPause();
 }

 /**
 * On stop.
 */
 protected void onStop() {
 super.onStop();

 // Free the native renderer
 free(instance);
 instance = 0;
 }

 /**
 * Request rendering based on the frame rate.
 */
 private final Runnable player = new Runnable() {
 public void run() {
 // Calculate the delay using the frame rate
 long frameDelay = (long) (1000 / getFrameRate(avi));

http://freepdf-books.com

315CHAPTER 12: Native Graphics API

 // Start rendering while playing
 while (isPlaying.get()) {
 // Request rendering
 glSurfaceView.requestRender();

 // Wait for the next frame
 try {
 Thread.sleep(frameDelay);
 } catch (InterruptedException e) {
 break;
 }
 }
 }
 };

 /**
 * OpenGL renderer.
 */
 private final Renderer renderer = new Renderer() {
 public void onDrawFrame(GL10 gl) {
 // Render the next frame
 if (!render(instance, avi))
 {
 isPlaying.set(false);
 }
 }

 public void onSurfaceChanged(GL10 gl, int width, int height) {

 }

 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 // Initialize the OpenGL surface
 initSurface(instance, avi);

 // Start playing since surface is ready
 isPlaying.set(true);

 // Start player
 new Thread(player).start();
 }
 };

 /**
 * Initializes the native renderer.
 *
 * @param avi file descriptor.
 * @return native instance.
 */
 private native static long init(long avi);

http://freepdf-books.com

316 CHAPTER 12: Native Graphics API

 /**
 * Initializes the OpenGL surface.
 *
 * @param instance native instance.
 */
 private native static void initSurface(long instance, long avi);

 /**
 * Renders the frame from given AVI file descriptor.
 *
 * @param instance native instance.
 * @param avi file descriptor.
 * @return true if there are more frames, false otherwise.
 */
 private native static boolean render(long instance, long avi);

 /**
 * Free the native renderer.
 *
 * @param instance native instance.
 */
 private native static void free(long instance);
}

12. Choose Project ➤ Build Project from the top menu bar to compile the Java

source code.

13. Using the Project Explorer, select the OpenGLPlayerActivity.

14. Choose Run ➤ External Tools ➤ Generate C and C++ Header File from

the top menu bar to invoke the javah tool for OpenGLPlayerActivity class.

15. Under the jni subdirectory of the project, the com_apress_aviplayer_
OpenGLPlayerActivity.h header file will be generated by the javah tool.

16. Right-click the jni directory, and choose New ➤ Source File from the

context menu.

17. Set Source File to com_apress_aviplayer_OpenGLPlayerActivity.cpp.

18. Click the Finish button to create a new C++ source file.

19. Using the Eclipse, replace the content of the new source file with the code in

Listing 12-27.

Listing 12-27. Content of com_apress_aviplayer_OpenGLPlayerActivity.cpp

extern "C" {
#include <avilib.h>
}

#include <GLES/gl.h>
#include <GLES/glext.h>

http://freepdf-books.com

317CHAPTER 12: Native Graphics API

#include <malloc.h>

#include "Common.h"
#include "com_apress_aviplayer_OpenGLPlayerActivity.h"

struct Instance
{
 char* buffer;
 GLuint texture;

 Instance():
 buffer(0),
 texture(0)
 {

 }
};

jlong Java_com_apress_aviplayer_OpenGLPlayerActivity_init(
 JNIEnv* env,
 jclass clazz,
 jlong avi)
{
 Instance* instance = 0;

 long frameSize = AVI_frame_size((avi_t*) avi, 0);
 if (0 >= frameSize)
 {
 ThrowException(env, "java/io/RuntimeException",
 "Unable to get the frame size.");
 goto exit;
 }

 instance = new Instance();
 if (0 == instance)
 {
 ThrowException(env, "java/io/RuntimeException",
 "Unable to allocate instance.");
 goto exit;
 }

 instance->buffer = (char*) malloc(frameSize);
 if (0 == instance->buffer)
 {
 ThrowException(env, "java/io/RuntimeException",
 "Unable to allocate buffer.");
 delete instance;
 instance = 0;
 }

http://freepdf-books.com

318 CHAPTER 12: Native Graphics API

exit:
 return (jlong) instance;
}

void Java_com_apress_aviplayer_OpenGLPlayerActivity_initSurface(
 JNIEnv* env,
 jclass clazz,
 jlong inst,
 jlong avi)
{
 Instance* instance = (Instance*) inst;

 // Enable textures
 glEnable(GL_TEXTURE_2D);

 // Generate one texture object
 glGenTextures(1, &instance->texture);

 // Bind to generated texture
 glBindTexture(GL_TEXTURE_2D, instance->texture);

 int frameWidth = AVI_video_width((avi_t*) avi);
 int frameHeight = AVI_video_height((avi_t*) avi);

 // Crop the texture rectangle
 GLint rect[] = {0, frameHeight, frameWidth, -frameHeight};
 glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_CROP_RECT_OES, rect);

 // Full color
 glColor4f(1.0, 1.0, 1.0, 1.0);

 // Generate an empty texture
 glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGB,
 frameWidth,
 frameHeight,
 0,
 GL_RGB,
 GL_UNSIGNED_SHORT_5_6_5,
 0);
}

jboolean Java_com_apress_aviplayer_OpenGLPlayerActivity_render(
 JNIEnv* env,
 jclass clazz,
 jlong inst,
 jlong avi)
{
 Instance* instance = (Instance*) inst;

http://freepdf-books.com

319CHAPTER 12: Native Graphics API

 jboolean isFrameRead = JNI_FALSE;
 int keyFrame = 0;

 // Read AVI frame bytes to bitmap
 long frameSize = AVI_read_frame((avi_t*) avi,
 instance->buffer,
 &keyFrame);

 // Check if frame read
 if (0 >= frameSize)
 {
 goto exit;
 }

 // Frame read
 isFrameRead = JNI_TRUE;

 // Update the texture with the new frame
 glTexSubImage2D(GL_TEXTURE_2D,
 0,
 0,
 0,
 AVI_video_width((avi_t*) avi),
 AVI_video_height((avi_t*) avi),
 GL_RGB,
 GL_UNSIGNED_SHORT_5_6_5,
 instance->buffer);

 // Draw texture
 glDrawTexiOES(0, 0, 0,
 AVI_video_width((avi_t*) avi),
 AVI_video_height((avi_t*) avi));

exit:
 return isFrameRead;
}

void Java_com_apress_aviplayer_OpenGLPlayerActivity_free(
 JNIEnv* env,
 jclass clazz,
 jlong inst)
{
 Instance* instance = (Instance*) inst;

 if (0 != instance)
 {
 free(instance->buffer);
 delete instance;
 }
}

http://freepdf-books.com

320 CHAPTER 12: Native Graphics API

20. The build file Android.mk needs to be modified, as shown in Listing 12-28, to

compile the new source file, as well as to dynamically link with the GLESv1_CM

shared library in order to use the OpenGL ES API from native space.

Listing 12-28. Build File Modified for OpenGL Player

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := AVIPlayer
LOCAL_SRC_FILES := \
 Common.cpp \
 com_apress_aviplayer_AbstractPlayerActivity.cpp \
 com_apress_aviplayer_BitmapPlayerActivity.cpp \
 com_apress_aviplayer_OpenGLPlayerActivity.cpp

Use AVILib static library
LOCAL_STATIC_LIBRARIES += avilib_static

...

Enable GL ext prototypes
LOCAL_CFLAGS += −DGL_GLEXT_PROTOTYPES

Link with OpenGL ES
LOCAL_LDLIBS += −lGLESv1_CM

include $(BUILD_SHARED_LIBRARY)

...

21. The Bitmap Player activity is now ready. In order to be able to use it, it needs

to be added as a radio button to the activity_main.xml layout file, as shown

in Listing 12-29.

Listing 12-29. OpenGL Player Radio Button Added to the Main Layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 ...

 <RadioGroup
 android:id="@+id/player_radio_group"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" >

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

321CHAPTER 12: Native Graphics API

 <RadioButton
 android:id="@+id/bitmap_player_radio"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="@string/bitmap_player_radio" />

 <RadioButton
 android:id="@+id/open_gl_player_radio"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/open_gl_player_radio" />

 </RadioGroup>

 ...

</LinearLayout>

22. The main activity source code should also be modified, as shown in Listing

12-30, to dispatch the playback request to the Bitmap Player activity when it

is selected by the user.

Listing 12-30. OpenGL Player Radio Button Added to Main Activity

/**
 * On play button click event handler.
 */
private void onPlayButtonClick() {

 ...

 // Choose the activity based on id
 switch (radioId) {
 case R.id.bitmap_player_radio:
 intent = new Intent(this, BitmapPlayerActivity.class);
 break;

 case R.id.open_gl_player_radio:
 intent = new Intent(this, OpenGLPlayerActivity.class);
 break;

 default:
 throw new UnsupportedOperationException("radioId=" + radioId);
 }

 ...
}

http://freepdf-books.com

322 CHAPTER 12: Native Graphics API

23. The AVI player application is now ready with the OpenGL ES renderer.

Follow the same steps in JNI Graphics API section of this chapter to run the

example application on the Android emulator.

Rendering Using Native Window API
Starting from Android API level 9, the Android NDK provides an API to enable the native code to

directly access and manipulate the pixel buffer of the native window. This API is known as the native

windows API. In this section, you will learn how to use this API to do rendering from the native code

directly without involving any Java based API.

1. Include the native window header files.

#include <android/native_window.h>
#include <android/native_window_jni.h>

2. Update the Android.mk build file to dynamically link with android library.

LOCAL_LDLIBS += −landroid

Upon making these changes, the native window API will now be available to your native application.

Using the Native Window API
The native window API provides four native functions for accessing and manipulating the

Bitmap objects.

Retrieving Native Window from a Surface Object

The ANativeWindow_fromSurface function retrieves the native window from the given Surface object.

ANativeWindow* ANativeWindow_fromSurface(JNIEnv* env,
 jobject surface);

It takes a JNIEnv interface pointer and a Surface object reference and returns a pointer to the native

window instance. The ANativeWindow_fromSurface function also acquires a reference on the returned

native window instance, and it needs to be released through the ANativeWindow_release function to

prevent memory leaks.

http://freepdf-books.com

323CHAPTER 12: Native Graphics API

Acquiring a Reference on a Native Window Instance

In order to prevent the native window instance from being deleted, the native code can acquire a

reference to it using the ANativeWindow_acquire function.

void ANativeWindow_acquire(ANativeWindow* window);

Every call to ANativeWindow_acquire function should be balanced by a call to ANativeWindow_
release function.

Releasing the Native Window Reference

As mentioned earlier, to prevent memory leaks, each native window reference should be released

using the ANativeWindow_release function.

void ANativeWindow_release(ANativeWindow* window);

The ANativeWindow_release function takes a pointer to the native window instance.

Retrieving Native Window Information

The native window API provides a set of functions for the native code to obtain information regarding

the native window such as the dimensions and the pixel format.

The 	 ANativeWindow_getWidth function can be used to obtain the width of the

native window.

The 	 ANativeWindow_getHeight function can be used to obtain the height of the

native window.

The 	 ANativeWindow_getFormat function can be used to obtain the pixel format of

the native window.

Setting the Native Window Buffer Geometry

The dimensions and the pixel format of the native window should match the image data that will

be rendered. If the image data dimensions or the pixel format is different, the ANativeWindow_
setBuffersGeometry function can be used to reconfigure the native window buffer. The buffer will

then get automatically scaled to match the native window.

int32_t ANativeWindow_setBuffersGeometry(ANativeWindow* window,
 int32_t width,
 int32_t height,
 int32_t format);

The function takes a pointer to the previously acquired native window instance, the new width, the

new height, and the new pixel format for the native window buffer. In case of success, it returns zero.

For all parameters, if zero is supplied, then the parameter value will be reverted to the native window

buffer’s base.

http://freepdf-books.com

324 CHAPTER 12: Native Graphics API

Accessing the Native Window Buffer

The ANativeWindow_lock function is used to lock the native window buffer and to obtain a pointer to

the raw pixel buffer. Native code can then use this pointer to access and manipulate the pixel buffer.

int32_t ANativeWindow_lock(ANativeWindow* window,
 ANativeWindow_Buffer* outBuffer,
 ARect* inOutDirtyBounds);

The function takes a pointer to the previously acquired native window instance, a pointer to a

ANativeWindow_Buffer structure, and an optional pointer to a ARect structure. As shown in Listing 12-31,

the ANativeWindow_Buffer structure, in addition to the information about the native window, provides

 The ANativeWindow_Buffer Structure Declaration

 // The number of pixels that are show horizontally.
 int32_t width;

 // The number of pixels that are shown vertically.
 int32_t height;

 // The number of *pixels* that a line in the buffer takes in
 // memory. This may be >= width.
 int32_t stride;

 // The format of the buffer. One of WINDOW_FORMAT_*
 int32_t format;

 // The actual bits.
 void* bits;

 // Do not touch.
 uint32_t reserved[6];
} ANativeWindow_Buffer;

In case of success the ANativeWindow_lock function returns zero.

Releasing the Native Window Buffer

Once the native code is done, it should unlock and post the native window buffer back using the

ANativeWindow_unlockAndPost function.

int32_t ANativeWindow_unlockAndPost(ANativeWindow* window);

The function takes a pointer to the native window instance that is locked. In case of success, it

returns zero. You will now update the AVI Player test application with the native window renderer to

experiment with these functions.

http://freepdf-books.com

325CHAPTER 12: Native Graphics API

Updating AVI Player with Native Window Renderer
Follow these steps.

1. Using Project Explorer, open AndroidManifest.xml manifest file and declare

the new activity as shown on Listing 12-32.

Listing 12-32. New Native Window Player Declared in Manifest File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.aviplayer"
 android:versionCode="1"
 android:versionName="1.0" >

 ...

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 ...

 <activity
 android:name=".OpenGLPlayerActivity"
 android:label="@string/title_activity_open_gl_player" >
 </activity>
 <activity
 android:name=".NativeWindowPlayerActivity"
 android:label="@string/title_activity_native_window_player" >
 </activity>
 </application>

</manifest>

2. The title of the new Bitmap Player activity, as well as the label for the Bitmap

Player radio button should be added to the string resources. Open the

strings.xml string resources file and add the new string resources, as shown

in Listing 12-33.

Listing 12-33. Native Window Player Activity String Resources Appended

<resources>

 ...

 <string name="title_activity_native_window_player"
 >Native Window Player</string>
 <string name="native_window_player_radio"
 >Native Window Player</string>

</resources>

http://freepdf-books.com

http://schemas.android.com/apk/res/android

326 CHAPTER 12: Native Graphics API

3. The Bitmap Player activity requires a single SurfaceView widget in order to

function. Using the Project Explorer, expand the res directory.

4. Right-click the layout subdirectory, and choose New ➤ File from the context

menu.

5. Set File Name to activity_native_window_player.xml.

6. Replace the content of new layout with the code in Listing 12-34.

Listing 12-34. Content of activity_native_window_player.xml Layout File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <SurfaceView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/surface_view" />

</LinearLayout>

7. Using the Project Explorer, expand the src directory.

8. Right-click the com.apress.aviplayer package, and choose New ➤ Class

from the context menu.

9. Set Name to NativeWindowPlayerActivity.

10. Click the Finish button to create the new class.

11. Replace its content with the code in Listing 12-35.

Listing 12-35. Content of NativeWindowPlayerActivity.java Source File

package com.apress.aviplayer;

import java.util.concurrent.atomic.AtomicBoolean;

import android.os.Bundle;
import android.view.Surface;
import android.view.SurfaceHolder;
import android.view.SurfaceHolder.Callback;
import android.view.SurfaceView;

/**
 * AVI player through native window.
 *
 * @author Onur Cinar
 */

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

327CHAPTER 12: Native Graphics API

public class NativeWindowPlayerActivity extends AbstractPlayerActivity {
 /** Is playing. */
 private final AtomicBoolean isPlaying = new AtomicBoolean();

 /** Surface holder. */
 private SurfaceHolder surfaceHolder;

 /**
 * On create.
 *
 * @param savedInstanceState saved state.
 */
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_bitmap_player);

 SurfaceView surfaceView = (SurfaceView)
 findViewById(R.id.surface_view);

 surfaceHolder = surfaceView.getHolder();
 surfaceHolder.addCallback(surfaceHolderCallback);
 }

 /**
 * Surface holder callback listens for surface events.
 */
 private final Callback surfaceHolderCallback = new Callback() {
 public void surfaceChanged(SurfaceHolder holder, int format,
 int width,
 int height) {
 }

 public void surfaceCreated(SurfaceHolder holder) {
 // Start playing since surface is ready
 isPlaying.set(true);

 // Start renderer on a separate thread
 new Thread(renderer).start();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 // Stop playing since surface is destroyed
 isPlaying.set(false);
 }
 };

 /**
 * Renderer runnable renders the video frames from the
 * AVI file to the surface through a bitmap.
 */

http://freepdf-books.com

328 CHAPTER 12: Native Graphics API

 private final Runnable renderer = new Runnable() {
 public void run() {
 // Get the surface instance
 Surface surface = surfaceHolder.getSurface();

 // Initialize the native window
 init(avi, surface);

 // Calculate the delay using the frame rate
 long frameDelay = (long) (1000 / getFrameRate(avi));

 // Start rendering while playing
 while (isPlaying.get()) {
 // Render the frame to the surface
 render(avi, surface);

 // Wait for the next frame
 try {
 Thread.sleep(frameDelay);
 } catch (InterruptedException e) {
 break;
 }
 }
 }
 };

 /**
 * Initializes the native window.
 *
 * @param avi file descriptor.
 * @param surface surface instance.
 */
 private native static void init(long avi, Surface surface);

 /**
 * Renders the frame from given AVI file descriptor to
 * the given Surface.
 *
 * @param avi file descriptor.
 * @param surface surface instance.
 * @return true if there are more frames, false otherwise.
 */
 private native static boolean render(long avi, Surface surface);
}

12. Choose Project ➤ Build Project from the top menu bar to compile the Java

source code.

13. Using the Project Explorer, select the NativeWindowPlayerActivity.

14. Choose Run ➤ External Tools ➤ Generate C and C++ Header File from the

top menu bar to invoke the javah tool for NativeWindowPlayerActivity class.

http://freepdf-books.com

329CHAPTER 12: Native Graphics API

15. Under the jni subdirectory of the project, the com_apress_aviplayer_
NativeWindowPlayerActivity.h header file will be generated by the javah tool.

16. Right-click on jni directory, and choose New ➤ Source File from the

context menu.

17. Set Source File to com_apress_aviplayer_NativeWindowPlayerActivity.cpp.

18. Click the Finish button to create a new C++ source file.

19. Using the Eclipse, replace the content of the new source file with the code in

Listing 12-36.

Listing 12-36. Content of com_apress_aviplayer_NativeWindowPlayerActivity.cpp

extern "C" {
#include <avilib.h>
}

#include <android/native_window_jni.h>
#include <android/native_window.h>

#include "Common.h"
#include "com_apress_aviplayer_NativeWindowPlayerActivity.h"

void Java_com_apress_aviplayer_NativeWindowPlayerActivity_init(
 JNIEnv* env,
 jclass clazz,
 jlong avi,
 jobject surface)
{
 // Get the native window from the surface
 ANativeWindow* nativeWindow = ANativeWindow_fromSurface(
 env, surface);
 if (0 == nativeWindow)
 {
 ThrowException(env, "java/io/RuntimeException",
 "Unable to get native window from surface.");
 goto exit;
 }

 // Set the buffers geometry to AVI movie frame dimensions
 // If these are different than the window's physical size
 // then the buffer will be scaled to match that size.
 if (0 > ANativeWindow_setBuffersGeometry(nativeWindow,
 AVI_video_width((avi_t*) avi),
 AVI_video_height((avi_t*) avi),
 WINDOW_FORMAT_RGB_565))
 {
 ThrowException(env, "java/io/RuntimeException",
 "Unable to set buffers geometry.");
 }

http://freepdf-books.com

330 CHAPTER 12: Native Graphics API

 // Release the native window
 ANativeWindow_release(nativeWindow);
 nativeWindow = 0;

exit:
 return;
}

jboolean Java_com_apress_aviplayer_NativeWindowPlayerActivity_render(
 JNIEnv* env,
 jclass clazz,
 jlong avi,
 jobject surface)
{
 jboolean isFrameRead = JNI_FALSE;

 long frameSize = 0;
 int keyFrame = 0;

 // Get the native window from the surface
 ANativeWindow* nativeWindow = ANativeWindow_fromSurface(
 env, surface);
 if (0 == nativeWindow)
 {
 ThrowException(env, "java/io/RuntimeException",
 "Unable to get native window from surface.");
 goto exit;
 }

 // Lock the native window and get access to raw buffer
 ANativeWindow_Buffer windowBuffer;
 if (0 > ANativeWindow_lock(nativeWindow, &windowBuffer, 0))
 {
 ThrowException(env, "java/io/RuntimeException",
 "Unable to lock native window.");
 goto release;
 }

 // Read AVI frame bytes to raw buffer
 frameSize = AVI_read_frame((avi_t*) avi,
 (char*) windowBuffer.bits,
 &keyFrame);

 // Check if frame is successfully read
 if (0 < frameSize)
 {
 isFrameRead = JNI_TRUE;
 }

http://freepdf-books.com

331CHAPTER 12: Native Graphics API

 // Unlock and post the buffer for displaying
 if (0 > ANativeWindow_unlockAndPost(nativeWindow))
 {
 ThrowException(env, "java/io/RuntimeException",
 "Unable to unlock and post to native window.");
 goto release;
 }

release:
 // Release the native window
 ANativeWindow_release(nativeWindow);
 nativeWindow = 0;

exit:
 return isFrameRead;
}

20. The build file Android.mk needs to be modified, as shown in Listing 12-37, to

compile the new source file, as well as to dynamically link with the android

shared library in order to use the native window API.

Listing 12-37. Build File Modified for Native Window Player

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := AVIPlayer
LOCAL_SRC_FILES := \
 Common.cpp \
 com_apress_aviplayer_AbstractPlayerActivity.cpp \
 com_apress_aviplayer_BitmapPlayerActivity.cpp \
 com_apress_aviplayer_OpenGLPlayerActivity.cpp \
 com_apress_aviplayer_NativeWindowPlayerActivity.cpp

...

Link with Android library
LOCAL_LDLIBS += −landroid

include $(BUILD_SHARED_LIBRARY)

...

21. The Bitmap Player activity is now ready. In order to be able to use it, it needs

to be added as a radio button to the activity_main.xml layout file, as shown

in Listing 12-38.

http://freepdf-books.com

332 CHAPTER 12: Native Graphics API

Listing 12-38. Native Window Player Radio Button Added to the Main Layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 ...

 <RadioGroup
 android:id="@+id/player_radio_group"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" >

 ...

 <RadioButton
 android:id="@+id/open_gl_player_radio"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/open_gl_player_radio" />

 <RadioButton
 android:id="@+id/native_window_player_radio"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/native_window_player_radio" />

 </RadioGroup>

 ...

</LinearLayout>

22. The main activity source code should also be modified, as shown in Listing

12-39, to dispatch the playback request to Bitmap Player activity when it is

selected by the user.

Listing 12-39. Native Window Player Radio Button Added to Main Activity

/**
 * On play button click event handler.
 */
private void onPlayButtonClick() {

 ...

 // Choose the activity based on id
 switch (radioId) {

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

333CHAPTER 12: Native Graphics API

 case R.id.bitmap_player_radio:
 intent = new Intent(this, BitmapPlayerActivity.class);
 break;

 case R.id.open_gl_player_radio:
 intent = new Intent(this, OpenGLPlayerActivity.class);
 break;

 case R.id.native_window_player_radio:
 intent = new Intent(this, NativeWindowPlayerActivity.class);
 break;

 default:
 throw new UnsupportedOperationException("radioId=" + radioId);
 }

 ...
}

23. The AVI player application is now ready with the native window renderer.

Follow the same steps given in “JNI Graphics API” section of this chapter to

run the example application on the Android emulator.

EGL Graphics Library
Starting from API Level 9, the Android NDK also comes with support from EGL graphics library,

enabling the native applications to manage OpenGL ES surfaces. More information on EGL can be

found at Khronos Group’s web site at www.khronos.org/egl.

In order to enable EGL graphics library, follow these steps.

1. Include the EGL header files.

#include <EGL/egl.h>
#include <EGL/eglext.h>

2. Update the Android.mk build file to dynamically link with EGL library.

LOCAL_LDLIBS += −lEGL

Upon making these changes, the EGL graphics library will now be available to your native

application. You can use the EGL graphics library API functions to list supported EGL configurations,

allocate and release OpenGL ES surfaces, and swap/flip surfaces for display.

Summary
This chapter explored the different native graphics APIs that are available to native applications. In

order to help you better understand these graphics native APIs, an AVI video player application was

built throughout this chapter.

http://freepdf-books.com

http://www.khronos.org/egl

335

Chapter 13
Native Sound API

In the previous chapter, you explored the multiple flavors of the native graphics APIs that are

provided by the Android platform. Starting from Android OS version 2.3, API Level 9, the Android

platform also provides a native sound API, enabling the native code to play and record audio

without invoking any method at Java layer. Android native sound support is based on the OpenSL

ES 1.0.1 standard from Khronos Group. OpenSL ES is the short form of the Open Sound Library

for Embedded Systems. This chapter will briefly demonstrate the OpenSL ES native sound API

pertaining to Android platform.

Using the OpenSL ES API
As the OpenSL ES specification is large, this chapter will only cover the pieces that pertain

to the Android platform. More information on OpenSL ES can be found at

$ANDROID_NDK_HOME/docs/opensles/OpenSL_ES_Specification_1.0.1.pdf.

1. The OpenSL ES API is exposed through a set of header files. The main

header file that needs to be included is the SLES/OpenSLES.h.

#include <SLES/OpenSLES.h>

2. In order to use the Android extensions, the SLES/OpenSLES_Android.h header

file should also be included in the source file.

#include <SLES/OpenSLES_Android.h>

3. The OpenSL ES native sound API also requires having a library linked

dynamically with the native module. This is achieved by adding the following

line to the Android.mk build script:

LOCAL_LDLIBS += −lOpenSLES

http://freepdf-books.com

336 CHAPTER 13: Native Sound API

The Android platform is committed to binary compatibility for applications that are using OpenSL ES.

By simply linking with this shared library, the same application is expected to work seamlessly on the

feature versions of the platform.

Compatibility with the OpenSL ES Standard
Although it is based on the OpenSL ES 1.0.1 specification, the Android native sound API is not

a conforming implementation of any OpenSL ES profile. The Android-specific portions of this

implementation are exposed through the Android Extensions API. More information about the

Android Extensions can be found in Android NDK documentation at $ANDROID_NDK_HOME/docs/
opensles/index.html.

uses-
 tag, in its manifest file.

	android.permission.RECORD_AUDIO is needed to create an audio recorder.

	android.permission.MODIFY_AUDIO_SETTINGS is needed to change audio settings

and also to use effects.

Creating the WAVE Audio Player
The WAVE audio player application will act as a test bed to demonstrate the OpenSL ES-based

native audio playback on the Android platform. The example application will provide the following:

The Android application project with native code support.	
A statically linked WAVE library to parse WAVE audio files in native code.	
OpenSL ES-based WAVE audio file playback support.	
A simple GUI to specify the WAVE file from the SD card for playback.	

Playing WAVE audio files requires parsing of WAVE files. Although WAVE format is not very complex,

for the sake of simplicity, a third party WAVE library will be used to handle the WAVE files.

Note Full source code of this example application can be downloaded from the publisher’s web site at

www.apress.com.

http://freepdf-books.com

http://www.apress.com

337CHAPTER 13: Native Sound API

Make WAVELib a NDK Import Module
The AVILib library that you used in Chapter 10 also comes with WAVE audio file support through the

WAVELib. Follow these steps to make WAVELib available as a NDK import module.

1. Open up a Terminal window if you are using Mac OS or Linux; otherwise

Cygwin if you are using Windows.

2. Change the current directory to Android NDK import module directory for

AVILib (that you installed in Chapter 10) by issuing the following command:

cd $ANDROID_NDK_HOME/sources/transcode-1.1.5/avilib

3. Open up the Android.mk build script in Eclipse. Append the import module

description for both static and shared WAVELib library as shown in

Listing 13-1.

Listing 13-1. Android.mk Build File with WAVELib Import Module Changes

LOCAL_PATH := $(call my-dir)

...

#
Transcode WAVLib
#

Source files
MY_WAVLIB_SRC_FILES := wavlib.c platform_posix.c

Include path to export
MY_WAVLIB_C_INCLUDES := $(LOCAL_PATH)

#
WAVLib static
#
include $(CLEAR_VARS)

Module name
LOCAL_MODULE := wavlib_static

Source files
LOCAL_SRC_FILES := $(MY_WAVLIB_SRC_FILES)

Include path to export
LOCAL_EXPORT_C_INCLUDES := $(MY_WAVLIB_C_INCLUDES)

Build a static library
include $(BUILD_STATIC_LIBRARY)

http://freepdf-books.com

338 CHAPTER 13: Native Sound API

#
WAVLib shared
#
include $(CLEAR_VARS)

Module name
LOCAL_MODULE := wavlib_shared

Source files
LOCAL_SRC_FILES := $(MY_WAVLIB_SRC_FILES)

Include path to export
LOCAL_EXPORT_C_INCLUDES := $(MY_WAVLIB_C_INCLUDES)

Build a shared library
include $(BUILD_SHARED_LIBRARY)

1. Set Application Name to WAV Player.

2. Set Project Name to WAV Player.

3. Set Package Name to com.apress.wavplayer.

4. Click the Next button to accept the default values on the current and

following wizard pages.

5. Once the Android application project is created, using the Project Explorer,

launch the Add Android Native Support wizard through the Android Tools

context menu.

6. Set Library Name to WAVPlayer.

7. Click the Finish button to add native support to the new project.

Creating the WAVE Player Main Activity
The main activity will provide a simple GUI to specify the WAVE audio file to play from the SD card.

Follow these steps to implement the main activity.

1. Using the Project Explorer, expand the res directory for the resources.

Populate the string resources by opening the string.xml file from the values

sub-directory, and replace its content as shown in Listing 13-2.

http://freepdf-books.com

339CHAPTER 13: Native Sound API

Listing 13-2. Content of res/values/string.xml String Resources File

<resources>
 <string name="app_name">WAV Player</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_main">MainActivity</string>
 <string name="file_name_hint">WAV file</string>
 <string name="play_button">Play</string>
 <string name="error_alert_title">Error Occurred</string>
 <string name="file_name">8k16bitpcm.wav</string>
</resources>

2. The main activity provides a simple GUI with a text field to specify the WAVE

audio file name, and a Play button to start the playback using OpenSL ES

with native code. Using the Project Explorer, expand the layout sub-directory

from res resource directory. Open the activity_main.xml layout file, and

replace its content as shown in Listing 13-3.

Listing 13-3. Content of res/layout/activity_main.xml Layout File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/LinearLayout1"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <EditText
 android:id="@+id/fileNameEdit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:ems="10"
 android:hint="@string/file_name_hint"
 android:text="@string/file_name" >

 <requestFocus />
 </EditText>

 <Button
 android:id="@+id/playButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/play_button" />

</LinearLayout>

http://freepdf-books.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

340 CHAPTER 13: Native Sound API

3. Now you will implement the main activity. The main activity starts an

asynchronous play task to start the playback of the specified WAVE audio

file through the play native method that you will be implementing later in

this chapter using the OpenSL ES. Using the Project Explorer, open up the

MainActivity.java source file, and replace its content as shown in Listing 13-4.

Listing 13-4. Content of MainActivity.java Source File

package com.apress.wavplayer;

import java.io.File;
import java.io.IOException;

import android.app.Activity;
import android.app.AlertDialog;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.Environment;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

/**
 * WAVE player main activity.
 *
 * @author Onur Cinar
 */
public class MainActivity extends Activity implements OnClickListener {
 /** File name edit text. */
 private EditText fileNameEdit;

 /**
 * On create.
 *
 * @param savedInstanceState
 * saved state.
 */
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 fileNameEdit = (EditText) findViewById(R.id.fileNameEdit);
 Button playButton = (Button) findViewById(R.id.playButton);
 playButton.setOnClickListener(this);
 }

http://freepdf-books.com

341CHAPTER 13: Native Sound API

 /**
 * On click.
 *
 * @param view
 * view instance.
 */
 public void onClick(View view) {
 switch (view.getId()) {
 case R.id.playButton:
 onPlayButtonClick();
 }
 }

 /**
 * On play button click.
 */
 private void onPlayButtonClick() {
 // Under the external storage
 File file = new File(Environment.getExternalStorageDirectory(),
 fileNameEdit.getText().toString());

 // Start player
 PlayTask playTask = new PlayTask();
 playTask.execute(file.getAbsolutePath());
 }

 /**
 * Play task.
 */
 private class PlayTask extends AsyncTask<String, Void, Exception> {
 /**
 * Background task.
 *
 * @param file
 * WAVE file.
 */
 protected Exception doInBackground(String... file) {
 Exception result = null;

 try {
 // Play the WAVE file
 play(file[0]);
 } catch (IOException ex) {
 result = ex;
 }

 return result;
 }

http://freepdf-books.com

342 CHAPTER 13: Native Sound API

 /**
 * Post execute.
 *
 * @param ex
 * exception instance.
 */
 protected void onPostExecute(Exception ex) {
 // Show error message if playing failed
 if (ex != null) {
 new AlertDialog.Builder(MainActivity.this)
 .setTitle(R.string.error_alert_title)
 .setMessage(ex.getMessage()).show();
 }
 }
 }

 /**
 * Plays the given WAVE file using native sound API.
 *
 * @param fileName
 * file name.
 * @throws IOException
 */
 private native void play(String fileName) throws IOException;

 static {
 System.loadLibrary("WAVPlayer");
 }
}

The Java portion of the WAVE player application is now ready. You will now start implementing the

native Play button to play the specified WAVE audio file using the OpenSL ES library.

Implementing WAVE Audio Playback
Prior starting to implement the native portion of the WAVE audio player application, build the Java

portion of the application and make sure that it compiles. Follow these steps to implement the

playback functionality.

1. Using the Project Explorer, select the MainActivity.java source file and

Choose Run ➤ External Tools ➤ Generate C and C++ header file from the

top menu bar to generate the com_apress_wavplayer_MainActivity.h header

file declaring the native method.

2. The Android.mk build script for the project needs to be modified to statically

link with the wavelib_static library for WAVE file format support and

dynamically link with the OpenSLES library to use OpenSL ES native sound

API. Open up the build script in Eclipse, and replace its content as shown in

Listing 13-5.

http://freepdf-books.com

343CHAPTER 13: Native Sound API

Listing 13-5. Content of jni/Android.mk Build Script

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := WAVPlayer
LOCAL_SRC_FILES := WAVPlayer.cpp

Use WAVLib static library
LOCAL_STATIC_LIBRARIES += wavlib_static

Link with OpenSL ES
LOCAL_LDLIBS += −lOpenSLES

include $(BUILD_SHARED_LIBRARY)

Import WAVLib library module
$(call import-module, transcode-1.1.5/avilib)

3. Open up the WAVPlayer.cpp native source file in Eclipse. Start by including

the necessary header files to use both OpenSL ES API and also the WAVLib

API, as shown in Listing 13-6.

Listing 13-6. Headers Files Included in jni/WAVPlayer.cpp Source File

#include "com_apress_wavplayer_MainActivity.h"

#include <SLES/OpenSLES.h>
#include <SLES/OpenSLES_Android.h>

extern "C" {
#include <wavlib.h>
}

static const char* JAVA_LANG_IOEXCEPTION = "java/lang/IOException";
static const char* JAVA_LANG_OUTOFMEMORYERROR =
 "java/lang/OutOfMemoryError";

#define ARRAY_LEN(a) (sizeof(a) / sizeof(a[0]))

4. The OpenSL ES native sound API is designed to operate in asynchronous

way. Throughout the playback, a specified callback function will get invoked

by the OpenSL ES engine to provide the audio data. This function will

need access to the player context in order to render its functionality. The

PlayerContext structure will be used to feed the player context into that

callback function when it gets registered. The PlayerContext structure holds

OpenSL ES and WAVLib constructs, and also the audio buffer. Append the

PlayerContext to WAVPlayer.cpp source file as shown in Listing 13-7.

http://freepdf-books.com

344 CHAPTER 13: Native Sound API

Listing 13-7. PlayerContext Structure to Hold the Native Context

/**
 * Player context.
 */
struct PlayerContext
{
 SLObjectItf engineObject;
 SLEngineItf engineEngine;
 SLObjectItf outputMixObject;
 SLObjectItf audioPlayerObject;
 SLAndroidSimpleBufferQueueItf audioPlayerBufferQueue;
 SLPlayItf audioPlayerPlay;
 WAV wav;

 unsigned char* buffer;
 size_t bufferSize;

 PlayerContext()
 : engineObject(0)
 , engineEngine(0)
 , outputMixObject(0)
 , audioPlayerBufferQueue(0)
 , audioPlayerPlay(0)
 , wav(0)
 , bufferSize(0)
 {}
};

5. The ThrowException is a helper function to easily throw exceptions to Java

layer when an error occurs in the native code. Append this function to the

source file as shown in Listing 13-8.

Listing 13-8. ThrowException Helper Function

/**
 * Throw exception with given class and message.
 *
 * @param env JNIEnv interface.
 * @param className class name.
 * @param message exception message.
 */
static void ThrowException(
 JNIEnv* env,
 const char* className,
 const char* message)
{
 // Get the exception class
 jclass clazz = env->FindClass(className);

http://freepdf-books.com

345CHAPTER 13: Native Sound API

 // If exception class is found
 if (0 != clazz)
 {
 // Throw exception
 env->ThrowNew(clazz, message);

 // Release local class reference
 env->DeleteLocalRef(clazz);
 }
}

6. The OpenWaveFile function opens the given WAVE audio file, and

CloseWaveFile releases the file once it is no longer needed. If an error occurs,

both of these functions throws an IOException to inform the Java application,

and the error gets displayed in an alert dialog to inform the user. Append

these functions to the source file as shown in Listing 13-9.

Listing 13-9. The WAVLib Helper Functions to Open and Close WAVE Files

/**
 * Open the given WAVE file.
 *
 * @param env JNIEnv interface.
 * @param fileName file name.
 * @return WAV file.
 * @throws IOException
 */
static WAV OpenWaveFile(
 JNIEnv* env,
 jstring fileName)
{
 WAVError error = WAV_SUCCESS;
 WAV wav = 0;

 // Get the file name as a C string
 const char* cFileName = env->GetStringUTFChars(fileName, 0);
 if (0 == cFileName)
 goto exit;

 // Open the WAVE file
 wav = wav_open(cFileName, WAV_READ, &error);

 // Release the file name
 env->ReleaseStringUTFChars(fileName, cFileName);

 // Check error
 if (0 == wav)

http://freepdf-books.com

346 CHAPTER 13: Native Sound API

 {
 ThrowException(env,
 JAVA_LANG_IOEXCEPTION,
 wav_strerror(error));
 }

exit:
 return wav;
}

/**
 * Close the given WAVE file.
 *
 * @param wav WAV file.
 * @throws IOException
 */
static void CloseWaveFile(
 WAV wav)
{
 if (0 != wav)
 {
 wav_close(wav);
 }
}

7. The OpenSL ES function calls can fail due to many different issues. Each

OpenSL ES function call returns a result code in SLresult type. OpenSL

ES does not provide any function to translate these result codes to human

readable messages. The ResultToString helper function fills this gap. It takes

a result code and returns the corresponding error message. Append the

ResultToString function as shown in Listing 13-10.

Listing 13-10. ResultToString Helper Function to Translate Result Code

/**
 * Convert OpenSL ES result to string.
 *
 * @param result result code.
 * @return result string.
 */
static const char* ResultToString(SLresult result)
{
 const char* str = 0;

 switch (result)
 {
 case SL_RESULT_SUCCESS:
 str = "Success";
 break;

http://freepdf-books.com

347CHAPTER 13: Native Sound API

 case SL_RESULT_PRECONDITIONS_VIOLATED:
 str = "Preconditions violated";
 break;

 case SL_RESULT_PARAMETER_INVALID:
 str = "Parameter invalid";
 break;

 case SL_RESULT_MEMORY_FAILURE:
 str = "Memory failure";
 break;

 case SL_RESULT_RESOURCE_ERROR:
 str = "Resource error";
 break;

 case SL_RESULT_RESOURCE_LOST:
 str = "Resource lost";
 break;

 case SL_RESULT_IO_ERROR:
 str = "IO error";
 break;

 case SL_RESULT_BUFFER_INSUFFICIENT:
 str = "Buffer insufficient";
 break;

 case SL_RESULT_CONTENT_CORRUPTED:
 str = "Success";
 break;

 case SL_RESULT_CONTENT_UNSUPPORTED:
 str = "Content unsupported";
 break;

 case SL_RESULT_CONTENT_NOT_FOUND:
 str = "Content not found";
 break;

 case SL_RESULT_PERMISSION_DENIED:
 str = "Permission denied";
 break;

 case SL_RESULT_FEATURE_UNSUPPORTED:
 str = "Feature unsupported";
 break;

 case SL_RESULT_INTERNAL_ERROR:
 str = "Internal error";
 break;

http://freepdf-books.com

348 CHAPTER 13: Native Sound API

 case SL_RESULT_UNKNOWN_ERROR:
 str = "Unknown error";
 break;

 case SL_RESULT_OPERATION_ABORTED:
 str = "Operation aborted";
 break;

 case SL_RESULT_CONTROL_LOST:
 str = "Control lost";
 break;

 default:
 str = "Unknown code";
 }

 return str;
}

8. The CheckError helper function throws an IOException if the result code

indicates an error. It relies on ResultToString function to translate the result

code to a message. Append the CheckError function as shown in Listing 13-11.

Listing 13-11. CheckError Function to Throw an Exception in Case of Error

/**
 * Checks if the result is an error, and throws
 * and IOException with the error message.
 *
 * @param env JNIEnv interface.
 * @param result result code.
 * @return error occurred.
 * @throws IOException
 */
static bool CheckError(
 JNIEnv* env,
 SLresult result)
{
 bool isError = false;

 // If an error occurred
 if (SL_RESULT_SUCCESS != result)
 {
 // Throw IOException
 ThrowException(env,
 JAVA_LANG_IOEXCEPTION,
 ResultToString(result));

http://freepdf-books.com

349CHAPTER 13: Native Sound API

 isError = true;
 }

 return isError;
}

9. Although the OpenSL ES API is C based, it adopts an object-oriented

approach. Every construct of OpenSL ES is built on the top of two main

constructs: object and interface. An object is an abstract set of resources

assigned for well-defined tasks. An interface is an abstract set of related

features that an object can provide. An object may expose one or more

interfaces. Objects can be created through either the engine object or

through the object interface. Every OpenSL ES application starts by first

creating an engine object in order to access the rest of the API. The engine

is created through the slCreateEngine API. The CreateEngine helper function

relies on that function to create an engine object and throws an IOException

if it fails. Append the CreateEngine function to the source code as shown in

Listing 13-12.

Listing 13-12. CreateEngine Function to Create the Engine Object

/**
 * Creates an OpenGL ES engine.
 *
 * @param env JNIEnv interface.
 * @param engineObject object to hold engine. [OUT]
 * @throws IOException
 */
static void CreateEngine(
 JNIEnv* env,
 SLObjectItf& engineObject)
{
 // OpenSL ES for Android is designed to be thread-safe,
 // so this option request will be ignored, but it will
 // make the source code portable to other platforms.
 SLEngineOption engineOptions[] = {
 { (SLuint32) SL_ENGINEOPTION_THREADSAFE,
 (SLuint32) SL_BOOLEAN_TRUE }
 };

 // Create the OpenSL ES engine object
 SLresult result = slCreateEngine(
 &engineObject,
 ARRAY_LEN(engineOptions),
 engineOptions,
 0, // no interfaces
 0, // no interfaces
 0); // no required

http://freepdf-books.com

350 CHAPTER 13: Native Sound API

 // Check error
 CheckError(env, result);
}

10. Once the object is created, it is in unrealized state where the object is alive

but has not allocated any resources. It needs to be realized first to become

usable. This is achieved through the Realize method that is exposed by the

Object Interface. The RealizeObject helper function realizes the objects and

throws an IOException if it fails. Append the function to the source file as

shown in Listing 13-13.

Listing 13-13. RealizeObject Function to Realize Object Instances

/**
 * Realize the given object. Objects needs to be
 * realized before using them.
 *
 * @param env JNIEnv interface.
 * @param object object instance.
 * @throws IOException
 */
static void RealizeObject(
 JNIEnv* env,
 SLObjectItf object)
{
 // Realize the engine object
 SLresult result = (*object)->Realize(
 object,
 SL_BOOLEAN_FALSE); // No async, blocking call

 // Check error
 CheckError(env, result);
}

11. Once the object is no longer needed, it needs to be destroyed in order to

release the allocated resources. This is achieved through the Destroy method

that is exposed by the Object Interface. Append the DestroyObject function

to the source code as shown in Listing 13-14.

Listing 13-14. DestroyObject Function to Destroy Unused Objects

/**
 * Destroys the given object instance.
 *
 * @param object object instance. [IN/OUT]
 */

http://freepdf-books.com

351CHAPTER 13: Native Sound API

static void DestroyObject(SLObjectItf& object)
{
 if (0 != object)
 (*object)->Destroy(object);

 object = 0;
}

12. Each object can expose one or more interfaces. These interfaces can be

obtained through the GetInterface method that is exposed by the Object

Interface. The GetEngineInterface helper function gets the Engine Interface

from the given Engine Object. Append the function to the source file as

shown in Listing 13-15.

Listing 13-15. GetEngineInterface Function to Obtain Engine Interface

/**
 * Gets the engine interface from the given engine object
 * in order to create other objects from the engine.
 *
 * @param env JNIEnv interface.
 * @param engineObject engine object.
 * @param engineEngine engine interface. [OUT]
 * @throws IOException
 */
static void GetEngineInterface(
 JNIEnv* env,
 SLObjectItf& engineObject,
 SLEngineItf& engineEngine)
{
 // Get the engine interface
 SLresult result = (*engineObject)->GetInterface(
 engineObject,
 SL_IID_ENGINE,
 &engineEngine);

 // Check error
 CheckError(env, result);
}

13. The CreateOutputMix function creates an Output Mixer object by invoking the

CreateOutputMix method of the Engine Interface with a set of parameters.

Append the CreateOutputMix function to the source file as shown in Listing 13-16.

Listing 13-16. CreateOutputMix Function to Create an Output Mixer

/**
 * Creates and output mix object.
 *
 * @param env JNIEnv interface.

http://freepdf-books.com

352 CHAPTER 13: Native Sound API

 * @param engineEngine engine engine.
 * @param outputMixObject object to hold the output mix. [OUT]
 * @throws IOException
 */
static void CreateOutputMix(
 JNIEnv* env,
 SLEngineItf engineEngine,
 SLObjectItf& outputMixObject)
{
 // Create output mix object
 SLresult result = (*engineEngine)->CreateOutputMix(
 engineEngine,
 &outputMixObject,
 0, // no interfaces
 0, // no interfaces
 0); // no required

 // Check error
 CheckError(env, result);
}

14. The InitPlayerBuffer helper function creates a byte buffer to hold the audio

data chunks, and the FreePlayerBuffers handles releasing of this buffer once

it is no longer needed. The InitPlayerBuffer function consults to WAVE audio

file header to come up with the appropriate buffer size based on the input file.

Append these functions to the source code as shown in Listing 13-17.

Listing 13-17. InitPlayerBuffer and FreePlayerBuffer Helper Functions

/**
 * Free the player buffer.
 *
 * @param buffers buffer instance. [OUT]
 */
static void FreePlayerBuffer(unsigned char*& buffers)
{
 if (0 != buffers)
 {
 delete buffers;
 buffers = 0;
 }
}

/**
 * Initializes the player buffer.
 *
 * @param env JNIEnv interface.
 * @param wav WAVE file.
 * @param buffers buffer instance. [OUT]
 * @param bufferSize buffer size. [OUT]
 */

http://freepdf-books.com

353CHAPTER 13: Native Sound API

static void InitPlayerBuffer(
 JNIEnv* env,
 WAV wav,
 unsigned char*& buffer,
 size_t& bufferSize)
{
 // Calculate the buffer size
 bufferSize = wav_get_channels(wav) * wav_get_rate(wav)
 * wav_get_bits(wav);

 // Initialize buffer
 buffer = new unsigned char[bufferSize];
 if (0 == buffer)
 {
 ThrowException(env,
 JAVA_LANG_OUTOFMEMORYERROR,
 "buffer");
 }
}

15. In order to play the WAVE audio file through OpenSL ES, an audio player with

a buffer queue will be used. The CreateBufferQueueAudioPlayer function

creates an Android simple buffer queue with a single buffer slot as the audio

source. For better quality, you may choose to have more buffers slots as

appropriate. The function consults the WAVE audio file header to define the

parameters for the PCM playback. The output of the audio player gets set to

the Output Mixer. Append the function as shown in Listing 13-18.

Listing 13-18. CreateBufferQueueAudioPlayer Function

/**
 * Creates buffer queue audio player.
 *
 * @param wav WAVE file.
 * @param engineEngine engine interface.
 * @param outputMixObject output mix.
 * @param audioPlayerObject audio player. [OUT]
 * @throws IOException
 */
static void CreateBufferQueueAudioPlayer(
 WAV wav,
 SLEngineItf engineEngine,
 SLObjectItf outputMixObject,
 SLObjectItf& audioPlayerObject)
{
 // Android simple buffer queue locator for the data source
 SLDataLocator_AndroidSimpleBufferQueue dataSourceLocator = {
 SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE, // locator type
 1 // buffer count
 };

http://freepdf-books.com

354 CHAPTER 13: Native Sound API

 // PCM data source format
 SLDataFormat_PCM dataSourceFormat = {
 SL_DATAFORMAT_PCM, // format type
 wav_get_channels(wav), // channel count
 wav_get_rate(wav) * 1000, // samples per second in millihertz
 wav_get_bits(wav), // bits per sample
 wav_get_bits(wav), // container size
 SL_SPEAKER_FRONT_CENTER, // channel mask
 SL_BYTEORDER_LITTLEENDIAN // endianness
 };

 // Data source is a simple buffer queue with PCM format
 SLDataSource dataSource = {
 &dataSourceLocator, // data locator
 &dataSourceFormat // data format
 };

 // Output mix locator for data sink
 SLDataLocator_OutputMix dataSinkLocator = {
 SL_DATALOCATOR_OUTPUTMIX, // locator type
 outputMixObject // output mix
 };

 // Data sink is an output mix
 SLDataSink dataSink = {
 &dataSinkLocator, // locator
 0 // format
 };

 // Interfaces that are requested
 SLInterfaceID interfaceIds[] = {
 SL_IID_BUFFERQUEUE
 };

 // Required interfaces. If the required interfaces
 // are not available the request will fail
 SLboolean requiredInterfaces[] = {
 SL_BOOLEAN_TRUE // for SL_IID_BUFFERQUEUE
 };

 // Create audio player object
 SLresult result = (*engineEngine)->CreateAudioPlayer(
 engineEngine,
 &audioPlayerObject,
 &dataSource,
 &dataSink,
 ARRAY_LEN(interfaceIds),
 interfaceIds,
 requiredInterfaces);
}

http://freepdf-books.com

355CHAPTER 13: Native Sound API

16. The buffer is managed through the Buffer Queue Interface. Through this

interface, buffers can be queued for playback, and a callback can be

registered to receive a notification once the queued buffer is fully consumed

by the audio player. Append the function to the source file as shown in

Listing 13-19.

Listing 13-19. GetAudioPlayerBufferQueueInterface Function

/**
 * Gets the audio player buffer queue interface.
 *
 * @param env JNIEnv interface.
 * @param audioPlayerObject audio player object instance.
 * @param audioPlayerBufferQueue audio player buffer queue. [OUT]
 * @throws IOException
 */
static void GetAudioPlayerBufferQueueInterface(
 JNIEnv* env,
 SLObjectItf audioPlayerObject,
 SLAndroidSimpleBufferQueueItf& audioPlayerBufferQueue)
{
 // Get the buffer queue interface
 SLresult result = (*audioPlayerObject)->GetInterface(
 audioPlayerObject,
 SL_IID_BUFFERQUEUE,
 &audioPlayerBufferQueue);

 // Check error
 CheckError(env, result);
}

17. The DestroyContext function will be used to release the OpenSL ES

resources and the buffer once the player is terminated. Append the function

as shown in Listing 13-20.

Listing 13-20. DestroyContext Function to Release Player Context

/**
 * Destroy the player context.
 *
 * @param ctx player context.
 */
static void DestroyContext(PlayerContext*& ctx)
{
 // Destroy audio player object
 DestroyObject(ctx->audioPlayerObject);

 // Free the player buffer
 FreePlayerBuffer(ctx->buffer);

http://freepdf-books.com

356 CHAPTER 13: Native Sound API

 // Destroy output mix object
 DestroyObject(ctx->outputMixObject);

 // Destroy the engine instance
 DestroyObject(ctx->engineObject);

 // Close the WAVE file
 CloseWaveFile(ctx->wav);

 // Free context
 delete ctx;
 ctx = 0;
}

18. The PlayerCallback gets invoked by the OpenSL ES audio player object

once the player finished playing the previously queued buffer. In this callback,

the application simply reads and queues the next audio data chunk for

playback. The DestroyContext function gets invoked to release the resources

if the end of the WAVE audio file is reached. Append the function to the

source code as shown in Listing 13-21.

Listing 13-21. PlayerCallback Function

/**
 * Gets called when a buffer finishes playing.
 *
 * @param audioPlayerBufferQueue audio player buffer queue.
 * @param context player context.
 */
static void PlayerCallback(
 SLAndroidSimpleBufferQueueItf audioPlayerBufferQueue,
 void* context)
{
 // Get the player context
 PlayerContext* ctx = (PlayerContext*) context;

 // Read data
 ssize_t readSize = wav_read_data(
 ctx->wav,
 ctx->buffer,
 ctx->bufferSize);

 // If data is read
 if (0 < readSize)
 {
 (*audioPlayerBufferQueue)->Enqueue(
 audioPlayerBufferQueue,
 ctx->buffer,
 readSize);
 }

http://freepdf-books.com

357CHAPTER 13: Native Sound API

 else
 {
 DestroyContext(ctx);
 }
}

19. The PlayerCallback gets registered via the RegisterCallback function that

is exposed through the Buffer Queue Interface. During the registration, a

context pointer can be provided so that the callback function receives this

context pointer once it is invoked by the audio player. Append the source

code as shown in Listing 13-22.

Listing 13-22. RegisterPlayerCallback Function

/**
 * Registers the player callback.
 *
 * @param env JNIEnv interface.
 * @param audioPlayerBufferQueue audio player buffer queue.
 * @param ctx player context.
 * @throws IOException
 */
static void RegisterPlayerCallback(
 JNIEnv* env,
 SLAndroidSimpleBufferQueueItf audioPlayerBufferQueue,
 PlayerContext* ctx)
{
 // Register the player callback
 SLresult result = (*audioPlayerBufferQueue)->RegisterCallback(
 audioPlayerBufferQueue,
 PlayerCallback,
 ctx); // player context

 // Check error
 CheckError(env, result);
}

20. The Play Interface is used to interact with the audio player. The

GetAudioPlayerPlayInterface helper function gets the Play Interface

from the given Audio Player Object, as shown in Listing 13-23.

Listing 13-23. GetAudioPlayerPlayInterface Function

/**
 * Gets the audio player play interface.
 *
 * @param env JNIEnv interface.
 * @param audioPlayerObject audio player object instance.
 * @param audioPlayerPlay play interface. [OUT]
 * @throws IOException
 */

http://freepdf-books.com

358 CHAPTER 13: Native Sound API

static void GetAudioPlayerPlayInterface(
 JNIEnv* env,
 SLObjectItf audioPlayerObject,
 SLPlayItf& audioPlayerPlay)
{
 // Get the play interface
 SLresult result = (*audioPlayerObject)->GetInterface(
 audioPlayerObject,
 SL_IID_PLAY,
 &audioPlayerPlay);

 // Check error
 CheckError(env, result);
}

21. The audio player can be started via the SetPlayState method that is exposed

through the Play Interface. Once it is set to playing state, the audio player

starts waiting for buffers to be queued. The SetAudioPlayerStatePlaying

function sets the audio player state to playing, as shown in Listing 13-24.

Listing 13-24. SetAudioPlayerStatePlaying Function

/**
 * Sets the audio player state playing.
 *
 * @param env JNIEnv interface.
 * @param audioPlayerPlay play interface.
 * @throws IOException
 */
static void SetAudioPlayerStatePlaying(
 JNIEnv* env,
 SLPlayItf audioPlayerPlay)
{
 // Set audio player state to playing
 SLresult result = (*audioPlayerPlay)->SetPlayState(
 audioPlayerPlay,
 SL_PLAYSTATE_PLAYING);

 // Check error
 CheckError(env, result);
}

22. Now all the functions are ready. The play native method implements the

player flow by relying on the helper functions that you have implemented

earlier, as shown in Listing 13-25.

http://freepdf-books.com

359CHAPTER 13: Native Sound API

Listing 13-25. Play Native Method Implementing the Player Logic

void Java_com_apress_wavplayer_MainActivity_play(
 JNIEnv* env,
 jobject obj,
 jstring fileName)
{
 PlayerContext* ctx = new PlayerContext();

 // Open the WAVE file
 ctx->wav = OpenWaveFile(env, fileName);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Create OpenSL ES engine
 CreateEngine(env, ctx->engineObject);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Realize the engine object
 RealizeObject(env, ctx->engineObject);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Get the engine interface
 GetEngineInterface(
 env,
 ctx->engineObject,
 ctx->engineEngine);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Create output mix object
 CreateOutputMix(
 env,
 ctx->engineEngine,
 ctx->outputMixObject);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Realize output mix object
 RealizeObject(env, ctx->outputMixObject);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Initialize buffer
 InitPlayerBuffer(
 env,
 ctx->wav,
 ctx->buffer,

http://freepdf-books.com

360 CHAPTER 13: Native Sound API

 ctx->bufferSize);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Create the buffer queue audio player object
 CreateBufferQueueAudioPlayer(
 ctx->wav,
 ctx->engineEngine,
 ctx->outputMixObject,
 ctx->audioPlayerObject);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Realize audio player object
 RealizeObject(env, ctx->audioPlayerObject);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Get audio player buffer queue interface
 GetAudioPlayerBufferQueueInterface(
 env,
 ctx->audioPlayerObject,
 ctx->audioPlayerBufferQueue);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Registers the player callback
 RegisterPlayerCallback(
 env,
 ctx->audioPlayerBufferQueue,
 ctx);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Get audio player play interface
 GetAudioPlayerPlayInterface(
 env,
 ctx->audioPlayerObject,
 ctx->audioPlayerPlay);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Set the audio player state playing
 SetAudioPlayerStatePlaying(env, ctx->audioPlayerPlay);
 if (0 != env->ExceptionOccurred())
 goto exit;

 // Enqueue the first buffer to start
 PlayerCallback(ctx->audioPlayerBufferQueue, ctx);

http://freepdf-books.com

361CHAPTER 13: Native Sound API

5. Click the Play button to start the player. The WAVE audio file will start

playing.

Summary
In this chapter you explored the OpenSL ES native sound API that is exposed by the Android

platform for native code. By using this API, native code can play and record audio without the need

to communicate with the Java layer. Having such capabilities greatly improves the performance of

multimedia applications.

Figure 13-1. WAVE player simple user interface

exit:
 // Destroy if exception occurred
 if (0 != env->ExceptionOccurred())
 DestroyContext(ctx);
}

Upon building the application again with the native module implemented, you are now ready to

experiment with the example application.

Running the WAVE Audio Player
In order to experiment with the OpenSL ES-based WAVE player, follow these steps to run the

application.

1. Prior running the application, a sample WAVE audio file is needed. Through

your web browser, download the 8000 Hz 16bit PCM sample WAVE audio file

from www.nch.com.au/acm/8k16bitpcm.wav.

2. Using ADB, push the WAVE audio file to the SD card of the target device or

the emulator by invoking the following command:

adb push 8k16bitpcm.wav /sdcard/

3. You can now start the application.

4. Upon starting the application, the simple GUI will be displayed as shown in

Figure 13-1.

http://freepdf-books.com

http://www.nch.com.au/acm/8k16bitpcm.wav

363

Chapter 14
Profiling and NEON Optimization

In the previous chapters, you learned how to develop native applications on the Android platform.

You explored the native APIs that are provided by both the Android platform and the Linux operating

system. The following key topics will be covered on this last chapter:

Profiling the native Android applications to identify performance bottlenecks 	
using the GNU Profiler.

Optimizing native applications using ARM NEON technology through compiler 	
intrinsics.

Enabling automatic vectorization support in the compiler to seamlessly boost 	
the performance of native applications without changing the source code.

GNU Profiler for Measuring Performance
The GNU Profiler, also known as the gprof application, is a UNIX-based profiling tool. Through

instrumentation and sampling, gprof can gather and report the absolute execution time spent in

each function. The instrumentation is done through the GNU C/C++ compiler when the –pg option

is supplied during compile time. Upon executing the application, the sampling data is automatically

stored in the gmon.out data file, which can be processed later with the gprof tool to produce the

profiling reports. Android NDK does come with the gprof tool; however, the GNU C/++ compiler

toolchain that comes with the Android NDK lacks the implementation of __gnu_mcount_nc function

that is necessary for timing the functions. In order to use the gprof tool with the Android NDK native

projects, you will be using an open source project called Android NDK Profiler. More information

about the Android NDK Profiler open source project can be found on its official site at

http://code.google.com/p/android-ndk-profiler/.

http://freepdf-books.com

http://code.google.com/p/android-ndk-profiler/

364 CHAPTER 14: Profiling and NEON Optimization

Installing the Android NDK Profiler
Follow these steps to install the Android NDK Profiler native module.

1. Via your browser, go to https://github.com/cinar/android-ndk-profiler/zipball/

master to download the Android NDK Profiler native module as a ZIP

archive file.

2. Extract the content of the ZIP archive into the NDK native modules

subdirectory ANDROID_NDK_HOME/sources directory. Rename the extracted

directory cinar-android-ndk-profiler-9cdf13 to android-ndk-profiler.

1. The Android.mk build script needs to be updated to statically link with the

andprof library that you installed earlier. Update your Android.mk file as

shown in Listing 14-1.

Listing 14-1. Enabling Android NDK Profiler in Android.mk Build Script

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := module

...

Android NDK Profiler enabled
MY_ANDROID_NDK_PROFILER_ENABLED := true

If Android NDK Profiler is enabled
ifeq ($(MY_ANDROID_NDK_PROFILER_ENABLED),true)

Show message
$(info GNU Profiler is enabled)

Enable the monitor functions
LOCAL_CFLAGS += −DMY_ANDROID_NDK_PROFILER_ENABLED

Use Android NDK Profiler static library
LOCAL_STATIC_LIBRARIES += andprof
endif

http://freepdf-books.com

https://github.com/cinar/android-ndk-profiler/zipball/master
https://github.com/cinar/android-ndk-profiler/zipball/master

365CHAPTER 14: Profiling and NEON Optimization

...

include $(BUILD_SHARED_LIBRARY)

...

If Android NDK Profiler is enabled
ifeq ($(MY_ANDROID_NDK_PROFILER_ENABLED),true)
Import Android NDK Profiler library module
$(call import-module, android-ndk-profiler/jni)
endif

2. Upon making these changes, you can enable and disable profiling by setting

the MY_ANDROID_NDK_PROFILER_ENABLED build system variable to true

or false.

3. As the native code runs within a shared library, the profiling lifecycle should

be manually managed. The Android NDK Profiler provides functions to start

and stop collecting profiling data. These functions are declared in the prof.h
header file, which should be included first to use these functions, as shown

in Listing 14-2.

Listing 14-2. Including the Android NDK Profiler Header File

#ifdef MY_ANDROID_NDK_PROFILER_ENABLED
#include <prof.h>
#endif

4. In order to start collecting profiling data, the monstartup function should be

invoked. The monstartup function takes the name of the shared library and

starts collecting profiling data. Depending on your application’s lifecycle, as

shown in Listing 14-3, invoke the monstartup function at the point you want

to start collecting profiling data.

Listing 14-3. Invoking the monstartup Function to Start Collecting Data

#ifdef MY_ANDROID_NDK_PROFILER_ENABLED
 // Start collecting the samples
 monstartup("libModule.so");
#endif

5. You can stop collecting profiling data by invoking the moncleanup function,

as shown in Listing 14-4. Upon invoking this function, the collected profiling

data gets saved to the SD card under the file name gmon.out.

http://freepdf-books.com

366 CHAPTER 14: Profiling and NEON Optimization

Listing 14-4. Invoking the moncleanup Function to Stop Collecting Data

 #ifdef MY_ANDROID_NDK_PROFILER_ENABLED
 // Store the collected data
 moncleanup();
#endif

Note Make sure that your application has the proper permission to write to the SD card prior profiling

your application.

gmon.out profiling data file that is generated through the Android NDK Profiler can be processed

gprof tool. The tool generates a human-readable report based on provided

gmon.out file.

1. Pull the gmon.out profiling data file from the SD card using adb.

adb pull /sdcard/gmon.out

2. The GNU Profiler requires the debug symbols as well as the profiling data

file in order to generate a report. Invoke the arm-linux-androideabi-gprof.
exe application with the debug version of the shared library and the gmon.out

profiling data file.

%ANDROID_NDK_HOME%\toolchains\arm-linux-androideabi-4.4.3\prebuilt\windows\bin\arm-
linux-androideabi-gprof.exe obj\local\armeabi-v7a\libModule.so gmon.out

3. Substitute the application path with the proper location of the arm-linux-
androideabi-gprof application based on your host platform. Substitute the

armeabi-v7a with the proper architecture that you are profiling on.

4. The GNU Profiler will analyze the profiling data file and produce a report, as

shown in Listing 14-5. The generated report has two sections, a flat profile

and a call graph. Both sections contain a tabulated representation of the

profiling data; a description of each measurement is also provided in the

report.

Listing 14-5. GNU Profiler Report File

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name

http://freepdf-books.com

367CHAPTER 14: Profiling and NEON Optimization

 99.53 2.12 2.12 361 5.87 5.87 func2
 0.47 2.13 0.01 func1

...

 Call graph (explanation follows)

granularity: each sample hit covers 2 byte(s) for 0.47% of 2.13 seconds

index % time self children called name
 <spontaneous>
[1] 99.5 0.00 2.12 func1 [1]
 2.12 0.00 361/361 func2 [2]

You can repeat these steps to monitor the performance of the application while implementing new

functionality or optimizing the application. In the next section, you will be using the GNU Profiler

while optimizing a native function through ARM NEON intrinsics.

Optimization using ARM NEON Intrinsics
In this section, you will be reusing the Bitmap renderer-based AVI Player example application that

you implemented in Chapter 12. You will be expanding the example application by implementing a

brightness filter in pure C code. Later in this section, you will be reimplementing the same brightness

filter function using ARM NEON intrinsics to optimize its performance. You will be comparing both

implementations using the GNU Profiler, as described earlier in this chapter.

Overview of ARM NEON Technology
The implementation of single instruction, multiple data (SIMD) technology in ARM processors is

called NEON. SIMD enables data level parallelism by performing the same operation on multiple

data points. SIMD technology can accelerate the performance of native applications by enabling

single instruction vector operations. Multimedia applications benefit from the SIMD technology the

most as they perform the same operations on a large set of data, such as video frames or audio

chunks. NEON technology is available on most ARM Cortex-A series processors.

In the NEON technology, the data is organized into 64-bit D registers or 128-bit Q registers. These

registers can hold 8-, 16-, 32-, and 64-bit wide data vectors, as shown in Figure 14-1.

Figure 14-1. NEON registers and data types

http://freepdf-books.com

368 CHAPTER 14: Profiling and NEON Optimization

NEON technology also provides a set of instructions to perform operations on these data vectors.

More information on NEON technology as well as the supported instructions can be found in ARM’s

“Introducing NEON Development Article” at http://infocenter.arm.com/help/index.jsp?topic=/
com.arm.doc.dht0002a/ch01s04s03.html.

Adding a Brightness Filter to AVI Player
Follow these steps to add the brightness filter.

1. Using the Project Explorer, create a new C/C++ header file under the jni

subdirectory.

2. Name the C/C++ header file as BrightnessFilter.h and update its content

with the code in Listing 14-6.

Listing 14-6. Content of BrightnessFilter.h Header File

#pragma once

/**
 * Extract the interleaved components. RGB565 color
 * space has a total of 16-bits with 5-bits red,
 * 6-bits green, and 5-bits blue.
 */
void brightnessFilter(
 unsigned short* pixels,
 long count,
 unsigned char brightness);

3. Create a new C/C++ source file with the name BrightnessFilter.cpp and

update its content as shown in Listing 14-7. The brightnessFilter function

simply dispatches the call to genericBrightnessFilter function, which is

your plain C brightness filter implementation. It takes an array of 16-bit pixels

formatted using RGB656 color space. It decomposes the color components

into three 8-bit values and increments them based on the given brightness

value. It adjusts each value based on its range and combines them together

into a 16-bit pixel in RGB565 color-space.

Listing 14-7. Content of BrightnessFilter.cpp Source File

#include "BrightnessFilter.h"

static void genericBrightnessFilter(
 unsigned short* pixels,
 long count,
 unsigned char brightness)
{
 const unsigned char MAX_RB = 0xF8;
 const unsigned char MAX_G = 0xFC;

http://freepdf-books.com

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0002a/ch01s04s03.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0002a/ch01s04s03.html

369CHAPTER 14: Profiling and NEON Optimization

 unsigned short r, g, b;

 for (long i = 0; i < count; i++)
 {
 // Decompose colors
 r = (pixels[i] >> 8) & MAX_RB;
 g = (pixels[i] >> 3) & MAX_G;
 b = (pixels[i] << 3) & MAX_RB;

 // Brightness increment
 r += brightness;
 g += brightness;
 b += brightness;

 // Make sure that components are in range
 r = (r > MAX_RB) ? MAX_RB : r;
 g = (g > MAX_G) ? MAX_G : g;
 b = (b > MAX_RB) ? MAX_RB : b;

 // Set pixel
 pixels[i] = (r << 8);
 pixels[i] |= (g << 3);
 pixels[i] |= (b >> 3);
 }
}

void brightnessFilter(
 unsigned short* pixels,
 long count,
 unsigned char brightness)
{
 genericBrightnessFilter(pixels, count, brightness);
}

4. The Brightness Filter needs to be invoked for each AVI video frame

prior to rendering. In order to do so, open the com_apress_aviplayer_
BitmapPlayerActivity.cpp source file.

5. Add the BrightnessFilter.h header file to the list of includes, as shown in

Listing 14-8.

Listing 14-8. Adding the BrightnessFilter.h Header File to BitmapRenderer

extern "C" {
#include <avilib.h>
}

#include <android/bitmap.h>

2

http://freepdf-books.com

370 CHAPTER 14: Profiling and NEON Optimization

#include "BrightnessFilter.h"
#include "Common.h"
#include "com_apress_aviplayer_BitmapPlayerActivity.h"

...

6. Update the renderer function to invoke the brightnessFilter function for

every frame, as shown in Listing 14-9.

Listing 14-9. Invoking brightnessFilter Function for Each Frame

jboolean Java_com_apress_aviplayer_BitmapPlayerActivity_render(
 JNIEnv* env,
 jclass clazz,
 jlong avi,
 jobject bitmap)
{
 ...

 // Read AVI frame bytes to bitmap
 frameSize = AVI_read_frame((avi_t*) avi, frameBuffer, &keyFrame);

 // Apply the brigthness filter
 brightnessFilter((unsigned short*) frameBuffer, frameSize/2, 1);

 ...
}

7. Add the BrightnessFilter.cpp source file the Android.mk build script, as

shown in Listing 14-10.

Listing 14-10. Adding BrightnessFilter.cpp Source File to Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := AVIPlayer
LOCAL_SRC_FILES := \
 Common.cpp \
 com_apress_aviplayer_AbstractPlayerActivity.cpp \
 com_apress_aviplayer_BitmapPlayerActivity.cpp

LOCAL_SRC_FILES += BrightnessFilter.cpp

Use AVILib static library
LOCAL_STATIC_LIBRARIES += avilib_static

8. Now the Brightness Filter is integrated into the AVI Player application. Prior

starting the application, you will need to enable the GNU Profiler.

http://freepdf-books.com

371CHAPTER 14: Profiling and NEON Optimization

Enabling the Android NDK Profiler for AVI Player
As explained earlier in this chapter, the GNU Profiler needs to be enabled during compile time in

order to collect profiling data. Follow these steps to enable the GNU Profiler for the Bitmap renderer

AVI Player.

1. Update the Android.mk build script to enable the GNU Profiler.

2. Using the Project Explorer, expand the jni subdirectory, and open the

com_apress_aviplayer_AbstractPlayerActivity.cpp source file.

3. Update the code to invoke the Android NDK Profiler functions, as shown in

Listing 14-11. The profiling will start as soon as the AVI open gets called and

finalizes when the AVI file gets closed. This provides the profiling data during

the AVI processing.

Listing 14-11. Invoking Profiler Functions from AbstractPlayerActivity

extern "C" {
#include <avilib.h>
}

#ifdef MY_ANDROID_NDK_PROFILER_ENABLED
#include <prof.h>
#endif

...

jlong Java_com_apress_aviplayer_AbstractPlayerActivity_open(
 JNIEnv* env,
 jclass clazz,
 jstring fileName)
{
 avi_t* avi = 0;

#ifdef MY_ANDROID_NDK_PROFILER_ENABLED
 // Start collecting the samples
 monstartup("libAVIPlayer.so");
#endif

 ...
}

...

void Java_com_apress_aviplayer_AbstractPlayerActivity_close(
 JNIEnv* env,
 jclass clazz,
 jlong avi)
{
 AVI_close((avi_t*) avi);

http://freepdf-books.com

372 CHAPTER 14: Profiling and NEON Optimization

#ifdef MY_ANDROID_NDK_PROFILER_ENABLED
 // Store the collected data
 moncleanup();
#endif
}

4. For the Android NDK Profiler to store the profiling data file on the SD card,

the proper permission needs to be added to the manifest file. Using Project

Explorer, open up the AndroidManifest.xml and modify it as shown in

Listing 14-12.

Listing 14-12. Adding Writing Permission to External Storage

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.aviplayer"
 android:versionCode="1"
 android:versionName="1.0" >

 ...

 <uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

 ...

</manifest>

The GNU Profiler is now enabled for the AVI Player project. You can now start the application to

collect profiling data.

Profiling the AVI Player
Follow these steps to profile the Bitmap renderer AVI Player application.

1. Start the application an actual Android device.

2. Start AVI file playback using the Bitmap renderer.

3. Wait until the AVI playback ends.

4. Click the hard back key on the device.

5. As explained earlier in this chapter, pull the gmon.out profiling data from the

device.

6. Using the gprof tool, generate a report, as shown in Listing 14-13.

http://freepdf-books.com

http://schemas.android.com/apk/res/android

373CHAPTER 14: Profiling and NEON Optimization

Listing 14-13. Profiling Report for Generic Brightness Filter

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
100.00 2.62 2.62 361 7.26 7.26 brightnessFilter(unsigned short*,
long, unsigned char)

Based on this report, the brightnessFilter function, which is using the genericBrightnessFilter

function, took 7.26 millisecond to process each frame and took 2.62 seconds overall to process all

frames.

Optimizing the Brightness Filter using NEON Intrinsics
You will now optimize the genericBirghtnessFilter function using the ARM NEON intrinsics.

1. Using the Project Explorer, go to the jni subdirectory.

2. Open up the BrightnessFilter.cpp source file and add the NEON-optimized

neonBrightnessFilter function, as shown in Listing 14-14. Compared to the

generic brightness filter implementation, the ARM NEON-optimized brightness

filter operates on 8 pixels at a time, instead of only processing 1 pixel.

Listing 14-14. Content of Updated BrightnessFilter.cpp Source File

#include "BrightnessFilter.h"

#ifdef __ARM_NEON__

#include <cpu-features.h>

#include <arm_neon.h>

static void neonBrightnessFilter(
 unsigned short* pixels,
 long count,
 unsigned char brightness)
{
 const unsigned char MAX_RB = 0xF8;
 const unsigned char MAX_G = 0xFC;

 uint8x8_t maxRb = vmov_n_u8(MAX_RB);
 uint8x8_t maxG = vmov_n_u8(MAX_G);
 uint8x8_t increment = vmov_n_u8(brightness);

 for (long i = 0; i < count; i += 8)
 {
 // Load 8 16-bit pixels
 uint16x8_t rgb = vld1q_u16(&pixels[i]);

http://freepdf-books.com

374 CHAPTER 14: Profiling and NEON Optimization

 // r = (pixels[i] >> 8) & MAX_RB;
 uint8x8_t r = vshrn_n_u16(rgb, 8);
 r = vand_u8(r, maxRb);

 // g = (pixels[i] >> 3) & MAX_G;
 uint8x8_t g = vshrn_n_u16(rgb, 3);
 g = vand_u8(g, maxG);

 // b = (pixels[i] << 3) & MAX_RB;
 uint8x8_t b = vmovn_u16(rgb);
 b = vshl_n_u8(b, 3);
 b = vand_u8(b, maxRb);

 // r += brightness;
 r = vadd_u8(r, increment);

 // g += brightness;
 g = vadd_u8(g, increment);

 // b += brightness;
 b = vadd_u8(b, increment);

 // r = (r > MAX_RB) ? MAX_RB : r;
 r = vmin_u8(r, maxRb);

 // g = (g > MAX_G) ? MAX_G : g;
 g = vmin_u8(g, maxG);

 // b = (b > MAX_RB) ? MAX_RB : b;
 b = vmin_u8(b, maxRb);

 // pixels[i] = (r << 8);
 rgb = vshll_n_u8(r, 8);

 // pixels[i] |= (g << 3);
 uint16x8_t g16 = vshll_n_u8(g, 8);
 rgb = vsriq_n_u16(rgb, g16, 5);

 // pixels[i] |= (b >> 3);
 uint16x8_t b16 = vshll_n_u8(b, 8);
 rgb = vsriq_n_u16(rgb, b16, 11);

 // Store 8 16-bit pixels
 vst1q_u16(&pixels[i], rgb);
 }
}

#endif

http://freepdf-books.com

375CHAPTER 14: Profiling and NEON Optimization

static void genericBrightnessFilter(
 unsigned short* pixels,
 long count,
 unsigned char brightness)

3. The brightnessFilter function needs to be updated as well in order to

invoke the NEON-optimized function when applicable. ARM NEON support is

only available when targeting armeabi-v7a ABI. However, note that not every

ARM-v7 based device supports NEON instructions. The native applications

are expected to detect NEON support during runtime on ARM-v7 based

devices. In order to address this issue, the Android NDK comes with the

CPU Features native import module. This module allows detection of CPU

type as well as the features supported by the CPU at runtime. Update the

brightnessFilter function as shown in Listing 14-15.

Note Not every ARM-v7 based device supports ARM NEON instructions. You should always use the CPU

Features import module to detect the NEON support during runtime prior calling any NEON optimized function.

Listing 14-15. Updated brightnessFilter Function Calling NEON Optimized Function

void brightnessFilter(
 unsigned short* pixels,
 long count,
 unsigned char brightness)
{
#ifdef __ARM_NEON__

 // Get the CPU family
 AndroidCpuFamily cpuFamily = android_getCpuFamily();

 // Get the CPU features
 uint64_t cpuFeatures = android_getCpuFeatures();

 // Use NEON optimized function only on ARM CPUs with NEON support
 if ((ANDROID_CPU_FAMILY_ARM == cpuFamily)
 && ((ANDROID_CPU_ARM_FEATURE_NEON & cpuFeatures) != 0))
 {
 // Invoke the NEON optimized brightness filter
 neonBrightnessFilter(pixels, count, brightness);
 }
 else

http://freepdf-books.com

376 CHAPTER 14: Profiling and NEON Optimization

 {
#endif
 // Invoke the generic brightness filter
 genericBrightnessFilter(pixels, count, brightness);
#ifdef __ARM_NEON__
 }
#endif
}

4. Open the Android.mk build script and update it as shown in Listing 14-16.

This allows compiling the proper flavor of the brightnessFilter function

during compile time. For the ARMv7a target platform, the NEON-enhanced

version of brightnessFilter will be used. For all other platforms, the generic

implementation of the brightnessFilter will be used.

Listing 14-16. The NEON Version of brightnessFilter Added to Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := AVIPlayer
LOCAL_SRC_FILES := \
 Common.cpp \
 com_apress_aviplayer_AbstractPlayerActivity.cpp \
 com_apress_aviplayer_BitmapPlayerActivity.cpp

Add NEON optimized version on armeabi-v7a
ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
 LOCAL_SRC_FILES += BrightnessFilter.cpp.neon
 LOCAL_STATIC_LIBRARIES += cpufeatures
else
 LOCAL_SRC_FILES += BrightnessFilter.cpp
endif

Use AVILib static library
LOCAL_STATIC_LIBRARIES += avilib_static

Android NDK Profiler enabled
MY_ANDROID_NDK_PROFILER_ENABLED := true

If Android NDK Profiler is enabled
ifeq ($(MY_ANDROID_NDK_PROFILER_ENABLED),true)

Show message
$(info GNU Profiler is enabled)

Enable the monitor functions
LOCAL_CFLAGS += −DMY_ANDROID_NDK_PROFILER_ENABLED

http://freepdf-books.com

377CHAPTER 14: Profiling and NEON Optimization

Use Android NDK Profiler static library
LOCAL_STATIC_LIBRARIES += andprof
endif

Link with JNI graphics
LOCAL_LDLIBS += −ljnigraphics

include $(BUILD_SHARED_LIBRARY)

Import AVILib library module
$(call import-module, transcode-1.1.5/avilib)

If Android NDK Profiler is enabled
ifdef MY_ANDROID_NDK_PROFILER_ENABLED
Import Android NDK Profiler library module
$(call import-module, android-ndk-profiler/jni)
endif

Add CPU features on armeabi-v7a
ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
Import Android CPU features
$(call import-module, android/cpufeatures)
endif

Note You may have already noticed the .neon suffix that is appended to the BrightnessFilter.cpp

source file. This suffix tells the Android NDK build system that this source file needs to be compiled with ARM

NEON support.

5. Create a new file with the name of Application.mk and include the following

content:

APP_ABI := armeabi-v7a

6. As you will be profiling the NEON-enhanced brightnessFilter, having

armeabi-v7a ABI as the single target platform is better.

7. Repeat the same profiling steps. The report generated by the GNU Profiler

will be similar to Listing 14-17.

Listing 14-17. Profiling Report for NEON-optimized Brightness Filter

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
100.00 0.50 0.50 361 1.39 1.39 brightnessFilter(unsigned short*,
long, unsigned char)

http://freepdf-books.com

378 CHAPTER 14: Profiling and NEON Optimization

Based on this report, the brightnessFilter function, which is using the neonBrightnessFilter

function, took 1.39 millisecond to process each frame and took 0.50 seconds overall to process all

frames. Compared to the generic implementation, the NEON-optimized function is 5 times faster.

Automatic Vectorization
As you saw in the previous section, using the ARM NEON support can have a great impact on

application performance; however, it requires fluency in either the ARM assembly language or NEON

intrinsics constructs. NEON is an ARM-specific flavor of SIMD; to support platforms other than ARM,

such as Intel or MIPS, you will need to also provide implementations of your optimized functions for

other SIMD flavors such as Intel SSE or MIPS MDMX.

automatic vectorization.

1. Open the Application.mk build script, and make sure that APP_ABI contains

armeabi-v7a.

APP_ABI := armeabi armeabi-v7a

2. Open the Android.mk build script, and add the –ftree-vectorize argument to

LOCAL_CFLAGS build system variable, as shown in Listing 14-18.

Listing 14-18. Enabling GNU C/C++ Compiler Automatic Vectorization

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := module

...

LOCAL_CFLAGS += −ftree-vectorize

...

include $(BUILD_SHARED_LIBRARY)

3. Make sure that the source files are getting compiled with ARM NEON

support, as shown in Listing 14-19.

http://freepdf-books.com

379CHAPTER 14: Profiling and NEON Optimization

Listing 14-19. Enabling ARM NEON Support for All Source Files

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

...

Add ARM NEON support to all source files
ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
LOCAL_ARM_NEON := true
endif

...

include $(BUILD_SHARED_LIBRARY)

Upon making these changes, the GNU C/C++ compiler will try to automatically vectorize the native

application to benefit from the ARM NEON support.

The C/C++ language does not provide any mechanism to specify parallelizing behavior. You may have

to give GNU C/C++ compiler additional hints about where it is safe to have the code automatically

vectorized. For a list of automatically vectorizable loops, please consult the “Auto-vectorization in

GCC” documentation at http://gcc.gnu.org/projects/tree-ssa/vectorization.html.

Troubleshooting Automatic Vectorization
When troubleshooting automatic vectorization issues, you can request more verbose output from the

GNU C/C++ compiler by adding the –ftree-vectorizer-verbose=2 argument to the LOCAL_CFLAGS

build system variable.

LOCAL_CFLAGS += −ftree-vectorizer-verbose=2

Once this argument is specified, the GNU C/C++ compiler will produce a verbose output, as shown

in Listing 14-20, to give you hints on how the compiler is treating each loop in your application.

Listing 14-20. Verbose Output on Automatic Vectorization

Cygwin : Generating dependency file converter script
Compile thumb : Vectorization <= Vectorization.c

jni/Vectorization.c:9: note: not vectorized: complicated access pattern.
jni/Vectorization.c:4: note: vectorized 0 loops in function.

jni/Vectorization.c:28: note: LOOP VECTORIZED.
jni/Vectorization.c:22: note: LOOP VECTORIZED.
jni/Vectorization.c:18: note: vectorized 2 loops in function.
Executable : Vectorization
Install : Vectorization => libs/armeabi-v7a/Vectorization

http://freepdf-books.com

http://gcc.gnu.org/projects/tree-ssa/vectorization.html

380 CHAPTER 14: Profiling and NEON Optimization

Based on the verbose output from the compiler, you can tune the source code to provide proper

hints to the compiler about each loop in your application.

Summary
In this chapter, you learned how to profile your native Android applications using the Android NDK

Profiler library and the GNU Profiler application. You also explored how to optimize the performance

of your native application using the ARM NEON technology.

http://freepdf-books.com

381

■ A
Android C++ development environment

Apple Mac OS X, 17–20, 22–23

Apache ANT, 19

components, 17

eclipse, 23–24

GNU validation, 19

Java Development Kit, 19

Native Development Kit, 22–23

Software Development Kit, 20–21

Xcode, 18

components, 1

Microsoft Windows, 2, 6, 8, 11, 14, 16

Apache ANT, 6–8

components, 2

Cygwin, 11–14

eclipse, 16–17

Java Development Kit, 2–6

Native Development Kit, 14

software Development kit, 8–10

operating systems, 1

Ubuntu Linux, 25–29, 31

Apache ANT, 26–27

32-bit on 64-bit system, 25

components, 25

eclipse, 31–32

GNU C Library version, 25

GNU Make, 27

Java Development Kit, 26

Native Development Kit, 29–30

Software Development Kit, 28–29

Android Development Tools (ADT)

add repositories, 33

emulator, 36–38

AVD Manager, 37

configuration, 38

menu bar, 36

running configuration, 38

installation, 34

platform packages, 35–36

security warning, 34

selection, 34

Software wizard, 32

validation warning, 35

Android.mk

build system variables, 59–62

CLEAR_VARS variable, 53

conditional operations, 63

function macros, 62

hello-jni project, 52

LOCAL_PATH variable, 53

LOCAL_SRC_FILES

variable, 54

modules, 57–58

multiple shared library, 54

prebuilt libraries, 58–59

shared library, 54

source code modular, 56

standalone executable, 59

static libraries, 55

variables, 63

Android Native Development Kit

(NDK), 41

Android Virtual Device (AVD), 36

Apache ANT build system

Apple Mac OS X, 19

download, 6

environment variable, 8

extraction, 7

installation step, 8

PATH variable, 8

Microsoft Windows, 6–8

Ubuntu Linux, 26

Index

http://freepdf-books.com

382 Index

Apple Mac OS X

Apache ANT, 19

binary paths, 21–22

installation, 23

destination location, 20

installation, 21

components, 17

eclipse, 23

GNU validation, 19

Java Development Kit, 19

Native Development Kit, 22–23

download page, 22

installation, 22

Software Development Kit, 20–21

download page, 20

Xcode, 18

63

enable, 378

intrinsics, 378

troubleshooting, 379

 B
Bionic API primer, 155, 157. See Memory

management

C libraries, 156–157

binary-compatible, 156

design, 156

functional domains, 156

missing functions, 157

inter-process communication, 176

process interaction, 172

child process, 172

shell command, 172

Standard File I/O, 162–171

buffer flushing, 166

characters sequences, 164

close-fclose function, 171

constructs and functions, 162

error checking-ferror function, 171

feof function, 169

fgetc function-single character, 168

fgets function-character sequence, 167

fopen function, 163

format string-fprintf function, 165

formatting data-fscanf function, 168

fseek function, 170

reading data blocks-fread function, 167

single character, 165

standard stream, 162

stdio functions, 162

writing data blocks, 164

standard libraries, 155

system configuration, 173–174

name-system properties, 174

value-name properties, 173

user-based permission model, 175–176

advantage, 175

application gets, 175

user name, 176

Build system, 52. See Android.mk

Application.mk, 63–64

ndk-build script, 64

troubleshooting, 65–66

■ C
C++

containers, 279–281

adaptors, 281

hashed associative, 280

sequence, 279

sorted associative, 280

string, 281

debugging facilities, 282–283

enable, 283

GNU STL, 282

steps, 282

exception handler, 278

implementation-native UDP client

method, 255

key points, 275

runtimes, 275–277

APP_STL variable, 277

comparison, 276

features, 275

GAbi++, 276

GNU Standard, 276

static vs. shared, 277

STLport, 276

standard library primer, 279, 281

algorithms, 281

containers, 279

documentation, 279

iterators, 281

http://freepdf-books.com

383Index

STLport debug mode, 283

error messages, 283

system variable, 283

thread safe, 282

Connectionless communication, 247

native UDP server, 248–249,

251, 253

nativeStartUdpServer method,

253–254

recvfrom, 249–251

sendto, 251–252

socket function, 248–249

UDP Sockets, 257

Android Emulator console, 257

Echo UDP client, 257

UDP-based Echo client, 254–255

UDP-based Echo server, 247–248

Connection-oriented communication, 218.

See TCP sockets

Android platform, 209

Echo Socket example application,

210–211, 214–215

abstract activity class, 211

Android Application project, 210

native module, 215

steps, 210

string resources, 214

Cygwin

download page, 11

environment variable, 14

GNU Make package, 13

installation directory, 12

installation step, 14

PATH variable, 14

■ D
Debugging

command line, 143

eclipse, 139–142

breakpoint, 140

configuration, 139

native code, 141

native debug configuration, 140

perspective, 141

toolbar, 142

GDB commands, 144

prerequisites, 136

session setup, 137

set up, 138

Windows platform, 138

■ E, F
Eclipse

Apple Mac OS X, 23

Microsoft Windows, 17

Ubuntu Linux, 31

■ G, H
GNU Debugger (GDB), 136

GNU Make, 27

gprof application, 363

GUI Profiler

Android NDK Profiler, 364

gmon.out profiling data file, 366

gprof tool, 363

installation, 364

■ I
Instance vs. static methods, 74

Inter-process communication

(IPC), 176

■ J, K
Java Class Library (JCL), 155

Java Development Kit (JDK)

Apple Mac OS X, 19

directories, 3

download button, 2

environment variable, 4

installation, 6

installation package, 3

PATH variable, 6

system properties dialog, 4

Microsoft Windows, 2–4, 6

Ubuntu Linux, 26

Java Native Interface (JNI), 67

array operations, 78–79

copies, 79

direct pointer, 79

elements, 79

New array, 78

http://freepdf-books.com

384 Index

calling method, 82–84

CallStatic <Type> Field function, 84

Call <Type> Method function, 84

method IDs, 83

static and instance method, 82

transitions, 84

convertion, Java-C, 77

New string, 77

reference types, 77

release, 78

data types, 75–76

kinds, 75

primitive types, 75

reference types, 76

exception handling, 88–89

catching an exception, 88

catching exceptions, 88

throw exceptions, 89

fields, 81–82

GetStatic <Type> Field

function, 82

Get <Type> Field function, 82

IDs, 81

instance and static fields, 81

global reference, 90

DeleteGlobalRef function, 90

NewGlobalRef function, 90

hello-jni application, 68–69

method declaration, 68

native implementation, 69

shared libraries, 69

stringFromJNI method, 68

javah, 70–71, 73

command line, 70

Eclipse IDE, 71, 86

favorites menu, 73

refresh project, 73

javap, 85–87

command line, 70

console view, 87

Eclipse IDE, 71, 86

key concepts, 67

local references, 90

meaning, 67

method declarations, 74

instance vs. static methods, 74

JNIEnv interface pointer, 74

parameters, 74

method description, 84–85

Java type-signature mapping, 84

javap, 85–87

Native I/O (NIO), 80

direct byte buffer, 80

GetDirectBufferAddress function, 80

reference types, 77

string operations, 77–78

threading, 92–93

components, 92

native threads, 93

synchronization, 92

weak global reference, 91

DeleteWeakGlobalRef function, 91

IsSameObject function, 91

NewWeakGlobalRef function, 91

Java Runtime Edition (JRE), 2, 26

Java threads

execution, 191

MainActivity class, 190

pros and cons, 192

advantages, 192

multithreads, 192

startThreads method, 191

JNI Graphics API

access-native pixel buffer, 301

Bitmap object, 300

enable, 300

release-native pixel buffer, 301

run-AVI player-Bitmap renderer, 309

update-AVI player, 302

■ L
Linux, 25

Local socket communication, 259

Android Manifest file, 270

asynchronous I/O, 272–273

Emulator instance, 271

layout subdirectory, 259–260

LocalSocketActivity.java, 260–265

LocalSocketActivty, 265

native server, 265–266, 268

accept function, 268–269

bind, 266–268

Java Native Interface (JNI) (cont.)

http://freepdf-books.com

385Index

namespaces, 266

socket function, 265–266

nativeStartLocalServer native method, 269

Logging, 127

controlled logging, 131, 133–135

adding logging, 133

Android.mk file, 133

console file, 135

log levels, 134

log tag, 133

log wrapper, 131

system configuration, 134

android/log.h header file, 128

functions, 129

log message, 129

framework, 128

native APIs, 128–129

■ M
Mac OS X, 17, 98

Memory management

allocation, 158

C dynamic memory, 158–159

allocation, 159–160

change, 159

free function, 159

C++ dynamic memory, 160–161

change, 161

freeing array, 161

memory function, 161

single and multiple

elements, 160

Microsoft Windows

Apache ANT, 6

components, 2

Cygwin, 11–14

download page, 11

environment variable, 14

GNU Make package, 13

installation directory, 12

installation step, 14

PATH variable, 14

eclipse, 16

Microsoft Windows, 2

Native Development Kit, 15

Software Development Kit, 8, 10

download page, 8

environment variable, 10

installation, 10

PATH variable, 10

Mutexes, POSIX threads

destroy, 204

initialization, 203

pthread_mutex_lock function, 203

unlock, 204

updates, 204

■ N
Native Development Kit (NDK)

build system, 52, 63–65

Android.mk, 52

Application.mk, 63

fragments, 52

ndk-build script, 64

troubleshooting, 65

Apple Mac OS X, 22–23

download page, 22

installation, 22

binary path, 22

installation, 23

components, 41

files and subdirectories, 42

hello-jni application, 43–44, 47–50

Apache ANT build files, 49

build process, 49–50

build system, 43

console view, 48

emulator running, 48

import menu item, 44–47

location, 43–44

native project, 47–48

project build target, 47

structure, 50

Microsoft Windows, 15

Native Development Kit (NDK), 41

Ubuntu Linux, 29

Native graphics API, 285, 300

abstract player activity, 292, 293, 295,

297–299

AbstractPlayerActivity.java, 293

activity dialog, 289

Android Application Project, 288

http://freepdf-books.com

386 Index

AVILib-NDK import module, 286

com_apress_aviplayer_

AbstractPlayerActivity.cpp, 297

com_apress_aviplayer_

AbstractPlayerActivity.h, 295

example application, 286

steps, 292

Android NDK, 285

availability, 285

AVI video player, 286, 288–289, 292

Common.cpp source file, 299

Common.h header file, 298

native window API, 322–325, 333

ANativeWindow_lock

function, 324

ANativeWindow_unlockAndPost

function, 324

buffer geometry, 323

EGL graphics library, 333

information, 323

references, 323

release, 323

steps, 322

Surface object, 322

update AVI player, 325

OpenGL ES API, 310–311

OpenGL ES 1.x, 311

OpenGL ES 2.0, 311

update AVI player, 311–322

use of, 310

version, 310

Native sound API, 335–336. See WAVE

audio players

OpenSL ES

Android platform, 335

audio permissions, 336

compatibilities, 336

NEON optimization, 363, 378. See Automatic

vectorization

Android NDK Profiler, 371

AVI Player application, 372

brightness filter, 368, 373

intrinsics, 367

technologies overview, 367

■ O
OpenGL ES API

OpenGL ES 1.x, 311

OpenGL ES 2.0, 311

update AVI player, 311–313, 316

AndroidManifest.xml, 311

com_apress_aviplayer_

OpenGLPlayerActivity.h, 316

layout file, 312

OpenGLPlayerActivity.java, 313

string resources, 312

version, 310

OpenSL ES

Android platform, 335

audio permissions, 336

compatibilities, 336

■ P, Q, R
POSIX, 155

POSIX Socket APIs

connectionless communication, 247

connection-oriented

communication, 209

local socket communication, 259

POSIX threads

application updates, 194–195

main activity, 194

native code, 195

posixThreads method, 195

execution, 200

native code, 193, 196–199, 201

global reference, 197

global variables, 196

JNI OnLoad function, 197

nativeFree method, 198

NativeWorkerArgs structure, 196

nativeWorkerThread, 198

pthread.h header file, 195

posixThreads, 199

pthread_join function, 200

priorities, 208

pthread_create function, 193

Pthreads, 193

Native graphics API (cont.)

http://freepdf-books.com

387Index

result returns, 200–201

native code, 196–198

pthread_join function, 200

scheduling strategies, 208

synchronization, 203, 206

features, 203

mutexes, 203

semaphores, 206

posixThreads method, 195

■ S
Semaphores, POSIX threads

destroy, 207

header file, 206

initialization, 207

lock, 207

unlock, 207

Simplified Wrapper and Interface

Generator (SWIG), 95

activity updation, 108

Android build process, 105–106

Android.mk file, 106, 117

Makefile fragment, 105

code generation, 108

command line, 104–105

definition, 95

executing application, 108

files, 104

invoke SWIG, 105

Java package directory, 104

getuid function, 100

interface file, 101–104

comments, 102

content, 102

function prototype, 104

module name, 102

type definitions, 103

Unix.i, 101

user-defined code, 102

Java-native code, 123–125

asynchronous, 123

callback method, 125

enable directors, 124

HelloJni activity, 125

RTTI, 125

installation, 96, 98–99

Mac OS X, 98–99

Ubuntu Linux, 99–100

Windows, 96–97

memory management, 123

wrapping C code, 110–111, 113–115, 117

anonymous enumerations, 113

constants, 110

global variables, 110

Java enumerations, 114–115

pointers, 117

read-only variables, 111–112

structures, 115–116

type-safe, 113

type-unsafe, 114

wrapping C++ code, 117–120

Android.mk file, 106, 117

classes, 120

default arguments, 118–119

overloaded functions, 119–120

pointers, references and

values, 117–118

Software Development Kit (SDK)

Apple Mac OS X, 20–21

download page, 20

binary paths, 21

destination location, 20

installation, 21

download page, 9

environment variable, 10

installation, 10

PATH variable, 10

Microsoft Windows, 9–10

Ubuntu Linux, 28

Standard Template Library (STL), 161

■ T
TCP sockets

android manifest, 241–242

client activity layout, 235–236

configuration, 243

random port number, 243

server user interface, 243

Echo Tcp Client, 244–245

EchoClientActivity.java file, 236

EchoServerActivity.java, 219

emulator interconnection, 243

native implementation, 221, 223, 225–227,

230, 232–233

http://freepdf-books.com

388 Index

accept function, 227–230

bind function, 223–225

byte ordering/endianness, 225–226

connect, 238

EchoClientActivity, 238

EchoServerActivity, 221

listen function, 226–227

nativeStartTcpServer native

method, 233, 240

recv function, 230

send function, 232

socket, 221

server activity layout, 218

179, 193

example project creation, 179–183,

186–187, 189

Android application project, 180–181

Android.mk build script, 189–190

application, 179

C/C++ header file, 186–187

key methods, 186

main activity, 183

native function, 187–189

Native Support dialog, 181

simple user interface, 182

string resources, 181

Java, 190–192

execution, 191–192

MainActivity class, 190

pros and cons, 192–193

startThreads method, 191

key topics, 179

Troubleshooting

check JNI, 147–148

enable, 148

problems, 147

memory issues, 149–150

libc debug mode, 149–150

Valgrind, 150

stack trace analysis, 145–147

strace tool, 152–153

■ U
Ubuntu Linux, 100

Apache ANT, 26

32-bit on 64-bit system, 25

components, 25

eclipse, 31

GNU C Library version, 25

GNU Make, 27

Java Development Kit, 26

Native Development Kit, 29

Software Development Kit, 28

■ V
Valgrind binaries

emulator, 151

Prebuilt, 150

program running, 151–152

source code, 150

Wrapper, 151

■ W, X, Y, Z
WAVE audio player

Android platform, 336

main activity, 338

playback implementation, 343, 345–346,

348, 361

application running, 361

CheckError function, 348

CreateBufferQueueAudioPlayer

function, 353–354

CreateEngine function, 349

CreateOutputMix function,

351–352

DestroyContext function, 355–356

DestroyObject function, 350–351

GetAudioPlayerBufferQueueInterface

function, 355

GetAudioPlayerPlayInterface, 357–358

InitPlayerBuffer and FreePlayerBuffer

functions, 352–355

jni/Android.mk build script, 343

play native method, 340–342

PlayerCallback function, 356–357

PlayerContext-WAVPlayer.cpp, 343

RealizeObject, 350

RegisterPlayerCallback, 357

ResultToString helper function, 346

ThrowException, 344

WAVLib helper functions, 345

WAVPlayer.cpp, 343

TCP sockets (cont.)

http://freepdf-books.com

389Index

steps-Android application, 338

WAVELib-NDK import module, 337

Wrapping code

C, 110–111, 113–115, 117

anonymous enumerations, 113

constants, 110–111

global variables, 110

Java enumerations, 114–115

pointers, 117–118

read-only variables, 111–112

structures, 115–117

type-safe, 113

type-unsafe, 114

C++, 117–120

Android.mk file, 117

classes, 120

default arguments, 118–119

overloaded functions, 119–120

pointers, references and

values, 117–118

http://freepdf-books.com

Pro Android C++

with the NDK

Onur Cinar

http://freepdf-books.com

Pro Android C++ with the NDK

Copyright © 2012 by Onur Cinar

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Technical Reviewer: Grant Allen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Brigid Dufy
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://freepdf-books.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Dedicated to my son Deren, my wife Sema, and my parents, Zekiye and Dogan, for their love,

 continuous support, and always encouraging me to pursue my dreams.

I could not have done this without all of you.

—Onur Cinar

http://freepdf-books.com

vii

Contents

About the Author ... xix

About the Technical Reviewer ... xxi

Preface .. xxiii

Chapter 1: Getting Started with C++ on Android ■ ...1

Microsoft Windows ..2

Downloading and Installing the Java Development Kit on Windows ... 2

Downloading and Installing the Apache ANT on Windows ... 6

Downloading and Installing the Android SDK on Windows .. 8

Downloading and Installing the Cygwin on Windows .. 11

Downloading and Installing the Android NDK on Windows .. 14

Downloading and Installing the Eclipse on Windows .. 16

Apple Mac OS X ...17

Installing Xcode on Mac .. 18

Validating the Java Development Kit on Mac .. 19

Validating the Apache ANT on Mac .. 19

Validating the GNU Make ... 19

Downloading and Installing the Android SDK on Mac .. 20

Downloading and Installing the Android NDK on Mac ... 22

Downloading and Installing the Eclipse on Mac .. 23

http://freepdf-books.com

viii Contents

Ubuntu Linux ...25

Checking the GNU C Library Version .. 25

Enabling the 32-Bit Support on 64-Bit Systems .. 25

Downloading and Installing the Java Development Kit on Linux ... 26

Downloading and Installing the Apache ANT on Linux ... 26

Downloading and Installing the GNU Make on Linux ... 27

Downloading and Installing the Android SDK on Linux .. 28

Downloading and Installing the Android NDK on Linux .. 29

Downloading and Installing the Eclipse on Linux .. 31

Downloading and Installing the ADT ..32

Installing the Android Platform Packages .. 35

Configuring the Emulator ... 36

Summary ...39

Chapter 2: Exploring the Android NDK ...41

Components Provided with the Android NDK ..41

Structure of the Android NDK ..42

Starting with an Example ..43

Specifying the Android NDK Location .. 43

Importing the Sample Project .. 44

Adding Native Support to Project .. 47

Running the Project ... 48

Building from the Command Line .. 49

Examining the Structure of an Android NDK Project .. 50

Build System ...51

Android.mk .. 52

Application.mk ... 63

Using the NDK-Build Script ...64

Troubleshooting Build System Problems ...65

Summary ...66

http://freepdf-books.com

ixContents

■Chapter 3: Communicating with Native Code using JNI67 What is JNI? .

..67

Starting with an Example ..67

Declaration of Native Methods68

Loading the Shared Libraries . ..69

Implementing the Native Methods . ..69

Data Types ...75

Primitive Types75

Reference Types76

Operations on Reference Types ...77

String Operations . ..77

Array Operations78

NIO Operations . ..80

Accessing Fields81

Calling Methods . ..82

Field and Method Descriptors84

Exception Handling ..88

Catching Exceptions88

Throwing Exceptions . ..89

Local and Global References ...89

Local References . ..90

Global References90

Weak Global References91

Threading ..92

Synchronization . ..92

Native Threads . ..93

Summary ...93

■Chapter 4: Auto-Generate JNI Code Using SWIG95What is SWIG? .

..95

Installation ...96

http://freepdf-books.com

x Contents

Installing on Windows .. 96

Installing on Mac OS X ... 98

Installing on Ubuntu Linux ... 99

Experimenting with SWIG Through an Example ..100

Interface File .. 101

Invoking SWIG from Command Line .. 104

Integrating SWIG into Android Build Process ... 105

Updating the Activity .. 107

Executing the Application .. 108

Exploring Generated Code ... 108

Wrapping C Code ...109

Global Variables ... 110

Constants ... 110

Read-Only Variables .. 111

Enumerations... 112

Structures .. 115

Pointers ... 117

Wrapping C++ Code ..117

Pointers, References, and Values .. 117

Default Arguments ... 118

Overloaded Functions .. 119

Classes .. 120

Exception Handling ..122

Memory Management ...123

Calling Java from Native Code ..123

Asynchronous Communication .. 123

Enabling Directors ... 124

Enabling RTTI ... 125

Overriding the Callback Method .. 125

Updating the HelloJni Activity .. 125

Summary ...126

http://freepdf-books.com

xiContents

Chapter 5: Logging, Debugging, and Troubleshooting ■ ...127

Logging..127

Framework .. 128

Native Logging APIs ... 128

Controlled Logging... 130

Console Logging .. 135

Debugging ...136

Prerequisites.. 136

Debug Session Setup... 137

Setting up the Example for Debugging .. 138

Starting the Debugger ... 138

Troubleshooting ...145

Stack Trace Analysis .. 145

Extended Checking of JNI .. 147

Memory Issues .. 149

Strace .. 152

Summary ...154

Chapter 6: Bionic API Primer ■ ...155

Reviewing Standard Libraries ...155

Yet Another C Library? ...156

Binary Compatibility .. 156

What is Provided? .. 156

What is Missing? ... 157

Memory Management ...157

Memory Allocation ... 158

Dynamic Memory Management for C .. 158

Dynamic Memory Management for C++ ... 160

Standard File I/O ..162

Standard Streams .. 162

Using the Stream I/O ... 162

Opening Streams ... 163

http://freepdf-books.com

xii Contents

Writing to Streams ... 164

Reading from Streams ... 167

Seeking Position .. 170

Checking Errors ... 171

Closing Streams .. 171

Interacting with Processes ..171

Executing a Shell Command .. 172

Communicating with the Child Process ... 172

System Configuration ..173

Getting a System Property Value by Name .. 173

Getting a System Property by Name .. 174

Users and Groups ..175

Getting the Application User and Group IDs ... 175

Getting the Application User Name .. 176

Inter-Process Communication ...176

Summary ...177

Chapter 7: Native Threads ■ ...179

Creating the Threads Example Project ..179

Creating the Android Project .. 180

Adding the Native Support ... 181

Declaring the String Resources ... 181

Creating a Simple User Interface ... 182

Implementing the Main Activity ... 183

Generating the C/C++ Header File .. 186

Implementing the Native Functions ... 187

Updating the Android.mk Build Script ... 189

Java Threads ...190

Updating the Example Application to use Java Threads .. 190

Executing the Java Threads Example .. 191

Pros and Cons of using Java Threads for Native Code .. 192

http://freepdf-books.com

xiiiContents

POSIX Threads ...193

Using POSIX Threads in Native Code ... 193

Creating Threads using pthread_create .. 193

Updating the Example Application to use POSIX Threads .. 194

Executing the POSIX Threads Example .. 200

Return Result from POSIX Threads ..200

Updating the Native Code to Use pthread_join .. 201

Synchronizing POSIX Threads ...202

Synchronizing POSIX Threads using Mutexes ... 203

Synchronizing POSIX Threads Using Semaphores ... 206

Priority and Scheduling Strategy for POSIX Threads ...207

POSIX Thread Scheduling Strategy .. 208

POSIX Thread Priority ... 208

Summary ...208

Chapter 8: POSIX Socket API: Connection-Oriented Communication ■ 209

Echo Socket Example Application ...210

Echo Android Application Project ... 210

Abstract Echo Activity .. 211

Echo Application String Resources .. 214

Native Echo Module ... 215

Connection-Oriented Communication through TCP Sockets ...218

Echo Server Activity Layout ... 218

Echo Server Activity ... 219

Implementing the Native TCP Server ... 221

Echo Client Activity Layout .. 235

Echo Client Activity .. 236

Implementing the Native TCP Client .. 238

Updating the Android Manifest .. 241

Running the TCP Sockets Example .. 242

Summary ...245

http://freepdf-books.com

xiv Contents

Chapter 9: POSIX Socket API: Connectionless Communication ■ 247

Adding Native UDP Server Method to Echo Server Activity ...247

Implementing the Native UDP Server ..248

New UDP Socket: socket ... 248

Receive Datagram from Socket: recvfrom ... 249

Send Datagram to Socket: sendto ... 251

Native UDP Server Method .. 253

Adding Native UDP Client Method to Echo Client Activity ..254

Implementing the Native UDP Client ...255

Native UDP Client Method .. 255

Running the UDP Sockets Example ...257

Interconnecting the Emulators for UDP ... 257

Starting the Echo UDP Client ... 257

Summary ...258

Chapter 10: POSIX Socket API: Local Communication ...259

Echo Local Activity Layout ...259

Echo Local Activity ..260

Implementing the Native Local Socket Server ..265

New Local Socket: socket .. 265

Bind Local Socket to Name: bind ... 266

Accept on Local Socket: accept ... 268

Native Local Socket Server .. 269

Adding Local Echo Activity to Manifest ...270

Running the Local Sockets Example ...271

Asynchronous I/O ..272

Summary ...273

http://freepdf-books.com

xvContents

Chapter 11: C++ Support ■ ...275

Supported C++ Runtimes ...275

GAbi++ C++ Runtime .. 276

STLport C++ Runtime .. 276

GNU STL C++ Runtime .. 276

Specifying the C++ Runtime ...277

Static vs. Shared Runtimes ...277

C++ Exception Support ...278

C++ RTTI Support ..278

C++ Standard Library Primer ..279

Containers ... 279

Iterators ... 281

Algorithms ... 281

Thread Safety of C++ Runtime ...282

C++ Runtime Debug Mode ..282

GNU STL Debug Mode .. 282

STLport Debug Mode ... 283

Summary ...284

Chapter 12: Native Graphics API ■ ...285

Availability of Native Graphics API ...285

Creating an AVI Video Player..286

Make AVILib a NDK Import Module .. 286

Create the AVI Player Android Application ... 288

Create the AVI Player Main Activity .. 289

Creating the Abstract Player Activity ... 292

Rendering using JNI Graphics API ...300

Enabling the JNI Graphics API ... 300

Using the JNI Graphics API .. 300

Updating AVI Player with Bitmap Renderer .. 302

Running the AVI Player with Bitmap Renderer ... 309

http://freepdf-books.com

xvi Contents

Rendering Using OpenGL ES ...310

Using the OpenGL ES API ... 310

Enabling OpenGL ES 1.x API .. 311

Enabling OpenGL ES 2.0 API .. 311

Updating AVI Player with OpenGL ES Renderer ... 311

Rendering Using Native Window API ...322

Enabling the Native Window API .. 322

Using the Native Window API ... 322

Updating AVI Player with Native Window Renderer ... 325

EGL Graphics Library ... 333

Summary ...333

Chapter 13: Native Sound API ...335

Using the OpenSL ES API ...335

Compatibility with the OpenSL ES Standard .. 336

Audio Permissions ... 336

Creating the WAVE Audio Player ..336

Make WAVELib a NDK Import Module .. 337

Create the WAVE Player Android Application ... 338

Creating the WAVE Player Main Activity ... 338

Implementing WAVE Audio Playback ... 342

Running the WAVE Audio Player ..361

Summary ...361

Chapter 14: Profiling and NEON Optimization ■ ...363

GNU Profiler for Measuring Performance ..363

Installing the Android NDK Profiler .. 364

Enabling the Android NDK Profiler ... 364

Analyzing gmon.out using GNU Profiler ... 366

http://freepdf-books.com

xviiContents

Optimization using ARM NEON Intrinsics ..367

Overview of ARM NEON Technology .. 367

Adding a Brightness Filter to AVI Player .. 368

Enabling the Android NDK Profiler for AVI Player ... 371

Profiling the AVI Player .. 372

Optimizing the Brightness Filter using NEON Intrinsics ... 373

Automatic Vectorization...378

Enabling Automatic Vectorization .. 378

Troubleshooting Automatic Vectorization... 379

Summary ...380

Index ...381

http://freepdf-books.com

xix

About the Author

Onur Cinar has over 17 years of experience in design, development,

and management of large scale complex software projects, primarily

in mobile and telecommunication space. His expertise spans VoIP,

video communication, mobile applications, grid computing, and

networking technologies on diverse platforms. He has been actively

working with Android platform since its beginning. He is the author of

the book Android Apps with Eclipse from Apress. He has a Bachelor

of Science degree in Computer Science from Drexel University in

Philadelphia, PA, United States. He is currently working at Skype

division of Microsoft as the Sr. Product Engineering Manager for

the Skype client on Android platform.

http://freepdf-books.com

xxi

About the Technical

Reviewer

Grant Allen has worked in the IT field for over 20 years as a CTO,

enterprise architect, and database architect. Grant’s roles have

covered private enterprise, academia, and the government sector

around the world, specializing in globalscale systems design,

development, and performance. He is a frequent speaker at industry

and academic conferences, on topics ranging from data mining to

compliance, and technologies such as databases (DB2, Oracle, SQL

Server, and MySQL), content management, collaboration, disruptive

innovation, and mobile ecosystems like Android.

His first Android application was a task list to remind him to finish all his

other unfinished Android projects.

Grant works for Google, and in his spare time is completing a PhD on

building innovative high-technology environments.

Grant is the author of Beginning DB2: From Novice to Professional

(Apress, 2008), and lead author of Oracle SQL Recipes: A Problem-Solution Approach (Apress, 2010)

and The Definitive Guide to SQLite, 2nd Edition (Apress, 2010).

http://freepdf-books.com

xxiii

Preface

Android is one of the major players in mobile phone market, and continuously growing its market

share. It is the first complete, open, and free mobile platform that is enabling endless opportunities

for mobile application developers.

Althrough the official programming language for the Android platform is Java, the application

developers are not limited to using only the Java techonology.

Android allows application developers to implement parts of their application using native-code

languages such as C and C++ through the Android Native Development Kit (NDK). In this book, you

will learn how to use the Android NDK to implement performance-critical portions of your Android

applications using native-code languages.

Android C++ with the NDK provides a detailed overview of native application development, available

native APIs, the troubleshooting techniques, including the step by step instructions and screenshots

to help Android developers to quickly get up to speed on developing native application.

What You Will Learn
This book includes the following:

Installing the Android native development environment on major operating nn

systems.

Using the Eclipse IDE to develop native code.nn

Connecting native code to Java world using Java Native Interface (JNI).nn

Auto-generating the JNI code using SWIG.nn

Developing multithreaded native apps using the POSIX and Java threads.nn

Developing networking native apps using POSIX sockets.nn

Debug native code through logging, GDB, and Eclipse Debugger.nn

http://freepdf-books.com

xxiv Preface

Analyzing memory issues through Valgrind.nn

Measuring application performance through GProf.nn

Optimizing native code through SIMD/NEON.nn

Downloading the Code
The source code for this book is available to readers at www.apress.com.

Contacting the Author

 to ask questions.

http://freepdf-books.com

www.apress.com
http://www.zdo.com/android-c%2b%2b-with-the-ndk%20to%20ask%20questions

	Pro Android C++ with the NDK
	Contents at a Glance
	Contents
	About the Author
	About the TechnicalReviewer
	Preface

