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Abstract

As the density of VLSI circuits increases it becomes attractive to integrate dedicated test logic on a chip. This built-in
self-test (BIST) approach not only offers economic benefits but also interesting technical opportunities with respect to
hierarchical testing and the reuse of test logic during the application of the circuit.

Starting with an overview of test problems, test applications and terminology this survey reviews common test
methods and analyzes the basic test procedure. The concept of BIST is introduced and discussed, BIST strategies for
random logic as well as for structured logic are shown. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The increasing functional complexity of elec-
tronic components and systems makes testing a
challenging task, particularly under the constraints
of high quality and low price. Considering that
testing represents a key cost factor in the produc-
tion process (a proportion of up to 70% of total
product cost is reported in [1-3]), an optimal test
strategy can be a substantial competitive advan-
tage in a market comprising billions of electronic
components and systems. It is therefore not sur-
prising that the “National Technology Roadmap
for Semiconductors” [4] of the United States views
testing as a one of the six “Grand Challenges” for
the semiconductor industry within the next 15
years.

" Tel.: +43-1-58801-18250.
E-mail address: steininger@vlsivie.tuwien.ac.at (A. Steinin-
ger).

This survey reviews common test methods and
introduces the concept of built-in self-test (BIST)
as a promising approach to overcome the limita-
tions of the traditional test technology that be-
come more and more conspicuous. Section 2 starts
with the motivation for testing. Section 3 sum-
marizes the fault models that are applied for test-
ing, while test quality ratings are introduced in
Section 4. Section 5 discusses the different phases
during which a test is applied to a product. Basic
test methods are presented in Section 6 and the
procedure of a test is analyzed in Section 7. Con-
cept and advantages of BIST are discussed in
general in Section 8, while Section 9 presents the
specific techniques for BIST of structured logic.
The survey concludes with Section 10.

2. Motivation for testing

Testing has become an important issue in the
production process of each electronic system,

1383-7621/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PII: S1383-7621(99)00041-7



722 A. Steininger | Journal of Systems Architecture 46 (2000) 721-747

board or VLSI chip. Design for test is increasingly
being preferred over tricky ad hoc design solu-
tions, and all major electronic companies spend a
considerable proportion of production cost and
engineering resources for testing. The motivation
for this becomes obvious from a more global point
of view: Although testing incurs a lot of efforts it is
finally an important means to reduce overall cost
significantly. This is illustrated by the following
examples:

e While the actual material cost is only a negligi-
ble proportion of the product value, the cost
of repair increases by a factor of 10 with each
production stage [5]. It is much cheaper to reject
several dies than to locate and exchange a defec-
tive chip in a complete system. As a consequence
no customer is willing to bear the risk of using
defective components and therefore (a) only ac-
cepts suppliers that guarantee low defect rate
and (b) often performs an incoming test for sup-
plied parts. Low defect rate of the product can
be guaranteed by extensive outgoing product
tests only.

e VLSI chips have reached an enormous complex-
ity and still their density doubles every two years
[6]. This makes it impossible to rule out faults
during design and production, even with the
best design tools and fabrication processes avail-
able. However, short time-to-market is critical
to profitability. If testing facilitates rapid diag-
nosis and thus provides a means to avoid fatal
production delays resulting from excessive de-
bug time or shipping defective products, it is
worth the additional cost.

The so-called factory testing is the classic ap-
plication area of testing. Another equally impor-
tant motivation for testing comes from the area of
dependable computing. The increasing level of
integration results in small feature size, small
charges in the storage elements and high proximity
of functional units. This not only requires extreme
care in the chip layout and manufacturing process,
but also makes the circuits highly susceptible to
external faults. The trend towards high clock fre-
quency and low power consumption further ag-
gravates the situation.

At the same time computers are increasingly
used for safety-critical applications (e.g. in power

plants, transportation systems and medicine),
where a system failure may have disastrous conse-
quences. Testing has been recognized as a valuable
means to (a) check system installation and config-
uration after maintenance activities, (b) ensure
correct system functionality at start-up, and (c)
avoid masking and accumulation of errors during
operation. Availability of a system (or of redun-
dant system components) can be significantly
increased, if testing is employed to allow rapid
diagnosis after a failure. These facts clearly show
the economic potential of an efficient test strategy
in the rapidly growing area of dependable systems.
Although the above two fields of test applica-
tion appear quite disjoint, it is technically and
economically attractive to merge them. It will be
shown that the concept of BIST provides an ideal
starting point for a unified test approach for the
complete life cycle of an electronic system.

3. Fault models for testing
3.1. Physical models

According to Amerasekara and Najm [7] fail-
ures in electronic components can be classified into
three groups with respect to their origin (Table 1):
electrical stress failures, intrinsic failure mecha-
nisms and extrinsic failure mechanisms. Table 1
gives typical examples for each of these groups, for
a detailed discussion see [7].

3.1.1. Electrical stress failures

Being an event dependent failure mechanism
electrical stress is a continuous source of device
defects over product lifetime. It is most often
caused by improper handling.

Table 1
Global classification of component failures

Failure group Relevant Time distribution of
parameter failures

Electr. stress Handling Continuous

Intrinsic Technology Predominantly infant

but also wear-out

Extrinsic Process Yield loss
Packaging Wear-out, rarely infant
Radiation Continuous
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3.1.2. Intrinsic failures

The group of intrinsic failures subsumes all
crystal related defects. Since such defects depend
very much on the maturity of the manufacturing
process, they most often lead to yield loss or infant
mortality, rarely to wear-out effects (gate-oxide
wear-out and wear-out due to surface charge ef-
fects or ionic contamination have been observed).
Type and manifestation of intrinsic failures are
determined by technology: Gate-oxide defects are
MOS-specific, while current gain shifts are a typi-
cal bipolar defect manifestation.

Performance degradation is a long-term effect
of intrinsic failures.

3.1.3. Extrinsic failures

Extrinsic failures comprise all defects related to
interconnection, passivation and packaging. They
can be classified into three categories with respect
to the time of defect manifestation:

e severe process deficiencies resulting in easy-to-
detect errors (e.g. open bonding);
o wear-out effects affecting long term reliability

(e.g. moisture-related failures);

e radiation-related errors continuously occurring
over product life-time.

The probability of wear-out defects is strongly
influenced by the package type. A considerable
percentage of field failures due to packaging can be
traced to moisture in the package. The widely used
plastic package exhibits the worst quality.

Corrosion is affected by the relative humidity
inside the package. For constant ambient humidity
the package-internal relative humidity decreases
with rising power dissipation of the device. That is
why devices with low power dissipation such as
CMOS devices operated at low frequencies are
more susceptible to corrosion than other devices.

The order of importance of the failure mecha-
nisms further depends on parameters like device
size, maturity of the technology, and extent and
effectiveness of the screening applied after pro-
duction. With a proportion of 58% [7] electrical
stress induced defects play an outstanding role in
the field failures. Terrestrial cosmic rays have been
reported to be a significant source of errors in both
DRAMs and SRAMs. Alpha particles from ma-
terials on the chip have also been identified as

cause for soft errors in DRAMs, with low supply
voltage, “1”’ pattern and short access time leading
to the highest sensitivity [8].

The vast majority of failure mechanisms is ex-
tremely temperature dependent: High temperature
or temperature cycling leads to a significant in-
crease in failure rate, the same applies for high
supply voltage.

3.2. Logic models

Table 2 gives relations between the major
physical defect mechanisms like migration, diffu-
sion or gate oxide breakdown and their electrical
manifestations. These manifestations are summa-
rized in Table 3.

If these low-level electrical effects could be di-
rectly mapped to functional failures of the logic
blocks of the device (AND, OR etc.), their impact
on system operation could be easily determined.
There are, however, no reasonable models that
clearly establish such a relation [9]. An open cir-
cuit, e.g., may have various consequences de-
pending on which specific role the affected part
plays in the circuit. Solutions for specific problems
can be found by simulation, of course.

The traditional stuck-at logic fault model
therefore largely ignores the underlying physical
effects and assumes two types of manifestation:
One node (input or output) of a functional logic
block is permanently fixed to a logic value by the
defect. This value may either be logic 1 for the
stuck-at-1 fault or logic 0 for the stuck-at-0 fault.

Stuck-at faults are a poor descriptor of actual
defects, notably in CMOS [10], since many defects
tend to cause open faults, i.e. faults causing one
node of a functional logic block to be at an un-
defined logic value (e.g. as a result of an open
circuit). It is therefore desirable to include open
faults in the fault model. Open faults, however,
tend to induce sequential behavior into a combi-
national circuit, which substantially complicates
the testing strategy [11] (see Section 7.2.1). That is
why the stuck-at model is still the most popular
fault model for testing. Fortunately, it could be
shown that tests generated for single stuck-at
faults are also effective at detecting other types of
faults.
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Classification of failure mechanisms in semiconductor devices

A. Steininger | Journal of Systems Architecture 46 (2000) 721-747

Failure group Failure type

Failure mechanism

Typical reasons

Electr. effects

Electrical over-stress
(EOS)

Electrical stress

Electrostatic
discharge (ESD)

Latch-up

Intrinsic Gate oxide wear-out

Tonic contamination

Surface charge
effects on isolation
Charge effects
and I-V instability

Dislocations and crys-
talline defects

Piping

Extrinsic
(metallization)

Electromigration

Contact migration
Via migration

Step coverage

Over-voltage or over-
current with duration

>1 ps (typ. 1 ms) melts
silicon, metallization or
bonding

Sudden (0.1 ns to 1 ps)
discharge of electrostatic
potentials of 100 V to 20
kV causes gate oxide
breakdown

Parasitic pnpn device
forms low resistance path
between VCC and ground,
melting effects like EOS

Time-dependent dielectric
gate oxide breakdown due
to weakness in the oxide
film

Mobile ions collect at the
gate oxide boundary and
induce extra charge
Charge movement through
isolation regions

Slow trapping of electrons
in gate oxide

Hot carriers create
electron—hole pairs by
impact ionization

Oxide damage by plasma
related production steps

Structural defects in the
silicon lattice cause
leakage across reverse
biased pn-junctions
Shorts through current
paths along dislocations

High current densities
force movement of metal
atoms

Interdiffusion of contact
metal and silicon
Migration of metal in
multilevel metal systems
metallization at
topographic steps in the
surface of the wafer tends
to be thinner, which leads
to high current

Power supply transients,

lightning surges, bad design

Improper handling,
missing ESD protection

Voltage transient or
current transient on power
supply or 1/O

Processing deficiency
(degraded gate oxide
integrity), high electric
fields (e.g. erasing of
programmable memories)
Processing deficiency
(contaminated equipment,
environment or package)
Processing deficiency
(oxide growth)

High electric fields (e.g.
erasing of programmable
memories)

High electric fields (e.g.
erasing of programmable
memories)

Processing deficiency
(etching, resist strip, vapor
deposition)

Processing deficiency
(silicon lattice defects,
impurities)

Processing deficiency
(dislocations)

Processing deficiency
(inhomogeneities in the
metal line), (DC) current
stress conditions

(DC) current stress
conditions

(DC) current stress
conditions

Processing deficiency
(aspect ratio, step size),
(DC) current stress
conditions

Short circuit, open circuit

Short circuit, open circuit,
+ leakage current

Short circuit, open circuit

+ power dissip., speed
decrease, + leakage current

Threshold modif., — drive
current, + leakage current

Threshold modif., + leakage
current, + current gain
Threshold modif., + leakage
current

Parametric shifts

Threshold modif., + leakage
current, — current gain

Threshold modif., + leakage
current, — current gain

+ leakage current

Short-circuit, open circuit,
+ line resistance

Open circuit, + contact
resist. + leakage current
Open circuit, + contact
resist.

Short-circuit, open circuit,
+ line resistance
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Microcracks

Stress induced
migration

Extrinsic (package Die attach failures

and assembly)

Bonding failures

densities, electromigration
and mechanic cracks
Mechanical (tensile) stress
induces transfer of metal
atoms

Degraded heat dissipation
or hot spots due to voids
and cracks, corrosion due
to introduction of
contamination and
moisture

Bond looping (tension
creating fracturing of the
bond wire) bond lagging
(shorts between adjacent
bond wires) interdiffusion
of metals, bond lifts,
whisker growth, dendrite

Processing deficiency
(aspect ratio, step size)
Processing deficiency
(thermal mismatch
between metal and
passivating film)

Packaging deficiency
(temperature, materials,
velocity)

Packaging deficiency

(wire length,
contamination, moisture,
bonding pressure, materials,
molding pressure, surface
cleaning)

Open circuit

Short-circuit, open circuit
+ line resistance

Parametric shifts

Short-circuit, open circuit,
unstable contact + contact
resist.

growth
expansion of moisture
in the chip leads to

Delamination,
popcorn effect

delamination of lead frame
and cracking of the die

(popcorn)

Corrosion Degradation of metal

properties due to chemical

effects

Extrinsic (radiation)  Soft errors

radiation

Bit flips due to intrinsic

radiation

Bit flips due to external

packaging deficiency
(moisture, thermal
mismatch); temperature
cycling, soldering

Open circuit unstable
contact, + leakage current

Packaging deficiency
(moisture, ionic catalysts)

Open circuit, + line
resistance + contact
resist., + leakage current
(terrestrial) cosmic rays Bit flips
Trace impurities of
radioactive materials
present in packaging

Bit flips

Table 3
Typical electrical fault manifestations

Contact problems Open circuit
High resistance of contact/line

Unstable contact

Short-circuit
Low-resistance path

Isolation problem

Parametric faults Increased leakage currents
Threshold shifts
Change in current gain

Increased power dissipation
Dynamic faults Speed decrease

Storage faults Bit flips

Further fault models on the logic level are
conceivable (e.g. coupling of two logic values due
to shorted signal lines) but not generally applied.

3.3. Functional models

On the next level of abstraction it can be in-
vestigated in which way the faulty functional block
degrades the intended functionality of the device.
While no model with general validity exists, spe-
cific solutions can be found based on the knowl-
edge of the functionality of a given device. An
example are RAMs that have a commonly agreed
functionality, which facilitates the definition of
generic functional RAM models (one such model
is discussed in Section 9.1.1).
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Table 4
Overview of functional defects in memories

Fault category Fault type

Fault description

Cell-stuck-at-0/1
Driver-stuck-at-0/1

Stuck-at fault

Read/write line stuck-at-0/1
Chip-select line stuck-at-0/1

Data line stuck-at-0/1
Open in data line

Coupling fault Inversion coupling fault

Idempotent coupling fault
AND bridging fault
OR bridging fault

State coupling fault

Neighborhood pattern
sensitive fault (NPSF)

Active/dynamic NPSF

Passive NPSF

k-coupling fault (general)

Transition fault

Address decoder fault Address line stuck

Open in address line

Shorts between address lines

Open decoder

Wrong access
Multiple access

Arbitrary address mapping

Data retention fault

Transition in cell A forces inversion of cell B
Transition in cell A forces value (0 or 1) in cell B
Value of bridge AB is logic AND of shorted cells
or lines A and B

Value of bridge AB is logic OR of shorted cells
or lines A and B

A certain state of cell A forces a value (0 or 1)
in cell B

Change in cell N also changes cell B; N is in physical
proximity of B

Pattern in N inhibits changes in B; N is in physical
proximity of B

Transition in cell A changes the value of cell B
if another k - 2 cells are in a certain state

Cell B fails to transit from 1 to 0 or from 0 to 1

For a detailed description of address decoder faults
see [12,13]

Due to a broken SRAM pull-up cell B enters state X
(floating) instead of 1. Leakage finally causes a transition
to 0 after e.g. 100 ms

Based on these RAM models a quite general
fault model has been established for memories and
is widely used (though with different level of detail
and extent). Table 4 gives an overview of this
model, (see for a detailed discussion [12]).

The stuck-at faults introduced in context with
logic faults also appear in Table 4, however with a
different meaning: On the logic level these faults
are related to logic primitives irrespective of their
contribution for device function, while on the
functional level the fault is viewed from the point
of device functionality. Hence only a subset of the
logic stuck-at faults propagates as such to the
functional level. As an example, the transition

fault may be the result of a stuck-at-0 fault at the
set or reset input of the cell flip—flop.

It has been found that the effects of faults in the
address decoder are very exceptional, therefore
they are treated separately [12,13], although some
of them could as well be expressed as stuck-at
faults, open faults or coupling faults. Faults in the
read/write logic can be mapped into address de-
coder faults.

3.4. Parametric faults

Not every defect has direct consequences on the
logic functionality of the device. The group termed
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“parametric faults” in Table 3 is an example for
this: A shift in the threshold of an input may or
may not cause a malfunction depending on the
analog input signal level actually applied. An even
more subtle problem is increased power con-
sumption which has no immediate negative effect
on circuit functionality, but may be the cause of a
failure in battery supplied applications.

Parametric faults are quite expensive to test for,
since a parametric test unit with analog inputs and
outputs is required. Moreover, the go/no go deci-
sion is not easy, if the parameter varies with
temperature, humidity, power supply voltage,
input currents or output loads. Unless the test is
performed under worst-case conditions, the faulty
parameter may be within limits. Parametric faults
are often the consequence of bad design, but they
may as well be an indication of a defect. Aging
plays an important role in this context, since
parametric faults tend to get worse over time.

In addition to the DC parameter faults listed in
Table 3 there is an important class of faults con-
cerning AC parameters like setup/hold-time,
propagation delay, rise/fall-time or access time.
These faults are often referred to as dynamic faults
[14], although [12] defines dynamic faults as an
extra class of time dependent chip internal faults
“that can be detected by functional tests but not be
directly measured at the component pin with spe-
cial measuring equipment for delay”. Dynamic
faults are typically caused by global defects (too-
thin polysilicon, too-thick gate-oxide etc.), while
local defects tend to cause functional faults [12].
Many companies commonly test their chips for
delay faults.

IDDQ-Testing, i.e. testing by monitoring the
quiescent current of a device (see Section 6.3), is
another prominent example of a parametric test.

4. Test quality ratings

The purpose of a test is to distinguish a circuit
that will be performing as specified during opera-
tion from a defective one. In practice, part of the
circuit functionality is not tested under the given
conditions, which results in limitations on the
completeness of a test. These limitations are indi-

cated by the fault coverage of a test, which is de-
fined as the percentage of faults covered by the test
related to the total number of assumed faults.
Central to this definition is a model of the faults to
be detected, which means that fault coverage var-
ies with the fault assumption. Consequently, a
100% fault coverage for the traditional stuck-at
fault model may still be insufficient, since other
types of fault (open faults, sequential faults) are
not covered. Quality level defined as the percent-
age of defective circuits that pass the test, is
therefore a function of total fault coverage, of
which the common stuck-at model is simply an
estimator [10].

A test is said to have high diagnostic resolution if
it is not only capable of detecting but also of
precisely locating and identifying a fault. While
this is not a necessary property for a simple go/no
go decision, it may be of vital importance for the
identification of deficiencies in the manufacturing
process.

The quality measures of a test must be balanced
with cost factors like test duration, silicon area
overhead for test circuitry (which, in turn, impacts
chip yield), additional pins required for testing,
efforts for test pattern generation, or a possible
performance penalty of the circuit under test
(CUT) due to the inserted test logic. Table 5 gives a
summary of important test quality attributes [15].

Test cost depends very much on the desired
quality level: A step from 97% to 99% fault cov-
erage or the consideration of an additional fault
type may increase test cost by an order of magni-
tude.

The qualitative relationship between test quality
and test cost is given by the testability [16]: A
circuit is highly testable if high test quality can be
reached with low cost. Testability describes the
suitability of a circuit’s internal structure with re-
spect to testing and is determined by two param-
eters [5]:

Controllability indicates how easily the system
state can be controlled by the primary inputs (pins)
of a circuit. Quantitative controllability ratings
can be determined for each node in the circuit;
most often an average over all nodes is given. In
the example in Fig. 1 the controllability of node y
is a measure of how easy it is to set the output of
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Table 5
Important test quality attributes

Fault characteristics Fault coverage

Test scope

Fault types

Cost characteristics Area overhead

Pin overhead
Performance penalty
Yield decrease
Reliability reduction
Other characteristics Generality of solution
Test time

Diagnostic resolution

With respect to fault model
Chip internal circuitry
Interchip wiring and /O
Board or system

Combinational faults
Sequential faults
Parametric faults
Delay faults

Silicon overhead

Interconnect overhead

Additional pins required for testing

Added path delays

Reduced production level (# of dies per wafer)
Due to increased functionality and area

Required circuit modifications

block A to a logical 1 or 0 by assigning values to
the primary inputs of the circuit. It is a function of
the controllability of nodes w, v and u.

Observability indicates how easily the system
state can be observed at the primary outputs
(pins) of a circuit. Again, the average of the ob-
servability ratings for each node is usually given.
In Fig. 1 the observability of node y is a measure
of how easy it is to propagate the value of node y
to a primary output by assigning values to the
unassigned primary inputs, and is a function of
the controllability of node x and the observability
of node z.

Numerous tools have been described in litera-
ture [16-19] that allow a quantitative computation

primary inputs
primary outputs

potential test point

Fig. 1. Test point insertion to improve controllability and
observability.

of testability. They use, however, different defini-
tions and algorithms, so that the testability ratings
cannot be compared.

Testability ratings are used to identify circuit
areas where testing will become difficult. In such
areas a redesign according to the rules of design for
testability (DFT [5,20-24]) is mandatory. Redun-
dant logic, for instance, cannot be tested, as it does
not contribute to the device functionality. It must
therefore be removed [25], if a fault coverage of
100% is aimed at.

It follows from the definitions of controllability
and observability that testability can be substan-
tially improved, if more nodes are made available
directly at primary inputs and outputs. As a con-
sequence test points are inserted in areas of low
testability to allow direct observation or control of
an otherwise internal node. Although heuristic
approaches exist, optimal placement of test points
is still an open issue [26,27].

In a conventional test approach each test point
is connected to a dedicated pin, which results in a
substantial increase of cost. In more recent designs
test points are arranged as registers within a scan
chain, so the number of required pins can be
traded for an increase of test duration. Both
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approaches ultimately sacrifice testability to re-
duce the number of test points.

It will be shown later that in a BIST environ-
ment the complete tester logic is located on the
chip, therefore availability of internal nodes is by
far less critical.

5. Tests applied during product life

Numerous tests with different purposes are ap-
plied to a circuit during its life, each having to
meet specific requirements. In the following some
typical examples will be discussed.

5.1. Factory test

During the production of a VLSI chip tests are
applied at different packaging levels, e.g. wafer
level, die level (rarely) or package level. This en-
sures early detection of defects and keeps the cost
of a defective product low. Probing is one of the
most difficult problems for these tests in conven-
tional approaches. If a feedback to the fabrication
process is desired, diagnostic capabilities of the test
are necessary. Diagnosis is also required if yield
shall be improved by replacing defective parts of
the circuit with redundant ones provided on-chip
(e.g. in large memories [28]).

On the next packaging level an assembly test is
performed to detect defective parts on a PCB or
defective PCB traces. These tests are often based
on a boundary scan (see Section 8.2), in special
cases flying probes (probes that move from one
contact to another with the sequence of contact
coordinates being controlled by an external tester
[29,30]) are employed. Again, diagnostic capabili-
ties are desirable to allow fast defect location.

The test of complete subsystems and systems
consisting of numerous PCBs is a challenging task
that becomes more important as system complex-
ity grows. IEEE has defined the so-called MTM
bus for this purpose (IEEE 1149.5 Module Test
and Maintenance Bus [31-33]).

Within the economic limits high fault coverage
is the crucial requirement for all the above tests,
while test duration must be reasonable but is not
particularly critical. Many of these tests are also

performed for incoming and outgoing products in
context with quality management.

5.2. Start-up test

Testing is an essential means to ensure that the
system begins operation in a fault-free condition.
This is particularly important in a dependable
system, since, e.g., a TMR (triple modular redun-
dant) system starting operation with one faulty
component is less reliable than its simplex version
[5]-

Two types of start-up can be distinguished in
the following:

5.2.1. Cold start
A cold start is performed when the system is put

into operation after a shutdown and possibly some

period of inactivity. The following requirements
must be balanced for the cold start test:

e High fault coverage is essential, though with a
relaxed fault model, since production-specific
faults need not be accounted for at this stage.

e Diagnosis is highly desirable to locate defective
components for replacement.

e Usually test duration is not particularly critical.

5.2.2. Warm start

A warm start is performed to initialize the sys-
tem or part of it. Initialization may be necessary to
reintegrate a computing node that has been halted
after error detection. A test of such a node is es-
sential since the detected error may be of perma-
nent nature.

The most stringent requirement on the warm
start test concerns duration. If a component in a
duplicated high availability system [34] fails, sys-
tem operation is continued without redundancy
until reintegration of the failed component. The
risk of spare exhaustion resulting from excessive
test duration must be balanced with the risk of
reintegrating an erroneous component because of
insufficient fault coverage.

If only a part of the system performs a warm
start, it is crucial that the test does not interfere
with the rest of the system that might continue
operation. This requirement considerably compli-
cates the test of interfaces.
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5.3. On-line test

The tests discussed so far are applied off-line.
As opposed to that on-line tests are applied while
the system is performing its assigned task [35].
Two types of on-line test are distinguished, but
may be effectively combined [6,36]:

5.3.1. Periodic test

Normal system operation is interrupted regu-
larly for short periods during which a test is per-
formed. These test periods may be aligned with
phases of system inactivity or the test may be ex-
ecuted as regular system task. In any case the pe-
riodic test is performed only virtually in parallel to
system operation. For this reason periodic testing
is sometimes classified as off-line technique in lit-
erature [0].

5.3.2. Concurrent test
Concurrent testing is based on additional in-

formation on the system operation that is checked

by additional hardware actually in parallel to
normal system operation. Examples are:

e additional bits used for coding data such that
the result of an arithmetic operation can be
checked (arithmetic codes [37]);

e information on program structure stored in a
circuit that monitors instruction flow (e.g. [38]);

e read-back of outputs to check the signal path
(wrap-around-system).

A concurrent test is capable of directly detecting
transient errors, which indicates how indetermi-
nate the borderline between concurrent testing and
error detection is.

On-line testing appears quite risky, since the
following effects lead to higher error probability:
1. Every hardware addition made for testing is a

new potential target of a fault.

2. Testing causes additional system activity, which
may activate transient faults that would have
remained ineffective otherwise.

3. By exercising rarely used or completely unused
resources, testing may activate errors that may
have remained latent otherwise.

4. An on-line test interferes with system opera-
tion. This interference complicates the execu-
tion of the assigned system task.

In spite of all these problems substantial im-
provements in overall system dependability can be
achieved with on-line testing:

(a) On-line testing reduces the probability of
multiple faults. Although the activation (and
detection) of latent errors stated in (3) appears
like a drawback at the first glance, it is a vital
requirement for avoiding error accumulation.
The majority of fault tolerant systems is de-
signed to tolerate single errors, while multiple
errors may lead to a failure. For this reason a
periodic on-line test is mandatory in safety re-
lated applications [35,39]. The period between
the tests is (roughly) determined by the mean
time to failure (MTTF, the reciprocal value of
the failure rate 4 as defined in the MIL hand-
book [40]) of the circuit and the desired level
of reliability.
(b) On-line testing complements error detection.
Permanent faults can be reliably detected by a
test, however, this type of fault is easily covered
by standard error detection mechanisms, too.
Concurrent tests also cover transient faults,
while periodic tests do not: A transient fault oc-
curring during a periodic test may be taken as
an indication for adverse environmental condi-
tions [13], but, since it may have affected the test
procedure only, it cannot directly be correlated
with erroneous execution of the assigned system
task.

5.4. Maintenance test and diagnosis

Maintenance tests are performed to check
proper system functionality either regularly or af-
ter upgrades of hardware/software/firmware com-
ponents. Such tests often require the interruption
of normal system operation.

In case of a permanent system failure efficient
diagnosis is required to locate and repair the defect
quickly, since system downtime may be very ex-
pensive.

6. Test methods

Based on the variety of models that exist for the
description of a circuit on different levels of ab-
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straction different test approaches have been de-
veloped. The most important ones are functional
testing, scan test (also known as structural testing)
and, for conventional CMOS devices, IDDQ test.

All of these tests have their particular strengths
and limitations. Studies in [10,41] have demon-
strated that no method had 100% coverage for the
physical defects in practical examples, but that all
were complementary to a large extent.

6.1. Functional testing

A very intuitive test approach is to directly
demonstrate that the specified function of the circuit
(as a black box) is performed. Examples are mem-
ory test by writing and reading or communication
interface test by loopback. An exhaustive func-
tional test is only viable for blocks with very lim-
ited functionality, therefore it is usually applied to
regular structures like memories or Programmable
Logic Arrays (PLAs) [9,12]. Since functional test-
ing becomes prohibitively difficult and does not
achieve sufficient coverage for circuits with com-
plex functionality (with many inputs and/or many
states like a processor [42] or state machine [43])
other test methods must be employed.

The functional test is based on the circuit
specification alone, no information on the internal
structure is required. While this is an advantage
for testing off-the-shelf components or cores, it
makes fault isolation and diagnosis difficult. If
performed at-speed, functional tests are also ca-
pable of covering dynamic faults (e.g. hazards).

6.2. Structural testing, scan test

The structural test is a formal approach in
which the circuit is modeled as a collective of logic
primitives (gates, flip—flops) which are tested. The
test itself is implementation dependent, but the test
patterns required for each of the logic primitives
are easy to determine. In a VLSI circuit the logic
primitives cannot be accessed from outside,
therefore provisions for testing must be made
during the design. By far the most common ap-
proach is the scan test: All register cells of the
circuit are combined to a shift register chain (scan-
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Fig. 2. Principle of the scan test.

chain) in a special test mode. This partitions the
circuit into a set of combinational subcircuits
whose inputs and outputs are connected to the
scan chain (see Fig. 2). All registers in the scan
chain are scan controllable and scan observable,
which turns them into pseudo-primary inputs and
pseudo-primary outputs, respectively. This allows a
complete test of the combinational logic and of the
register cells in the scan chain as such. The con-
nections of the register cells, however, cannot be
completely tested, since they are changed during
the test.

Test duration can be reduced if several short
register chains are formed instead of one long
chain. However, the efforts for test pattern gener-
ation and response analysis are higher. The de-
termination and generation of the test patterns is
the most difficult part of the scan test. The re-
spective methods are discussed in Section 7.2.

Scan design rules impose restrictions on the
design, increase cost and sometimes tend to create
long critical paths, therefore it may be advanta-
geous not to use the full scan method described
above, but a partial scan: The shift register chain
does not comprise all register cells. Consequently
the remaining logic is not purely combinational
but contains sequential blocks (though with re-
duced complexity). Partial scan may therefore in-
volve the application of several vectors and thus
take several clock cycles for each targeted fault
(see Section 7.3). Partial scan saves silicon area
(non-scan latches require less space than scan
latches) and routing resources (shorter scan path).
The non-scan elements, however, must be pre-
dictably brought to any required state through
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sequential operation to keep the circuit sufficiently
controllable.

Today’s CAD-tools can automatically convert
an existing design into a scan design and generate
the test patterns.

6.3. IDDQ-testing

Primary sources of failures in CMOS devices
are short circuit defects (bridging defects) and
open circuit defects. Since short circuit defects
cause abnormal current flow, they can be detected
by monitoring the quiescent power supply current of
the device, which is normally caused by leakage
currents and is in the order of 10~ A. The ab-
normal currents introduced by defects are typically
one or more magnitudes larger. During this IDDQ
test different test vectors must be applied to acti-
vate state-dependent faults.

The IDDQ test is very attractive for CMOS
RAMs since it

(a) is the single most sensitive test method [44]
detecting all stuck-at faults with fewer test vectors
than the functional test;

(b) complements the functional tests very ef-
fectively [10,45-47] by uniquely detecting gate-
oxide shorts, defective p-n junctions, parasitic
transistor leakage and even those stuck-at faults
termed as undetectable in the context of functional
stuck-at testing [48]; and

(c) can be used for the on-line detection of soft
errors induced by so-called single event upsets
(SEUs) such as heavy ions hitting a register cell
[49].

However, measurement of the extremely low
currents requires large settling times, which results
in a slow measurement process. The choice of the
IDDQ test limit and the test vectors is extremely
critical [44,47]: Depending on these parameters the
proportion of devices failing the test may vary in
an interval as large as [1-100%)]. IDDQ testing
should be performed with the highest permissible
supply voltage, since some effects may escape
IDDQ detection for lower voltages. It has been
shown that devices that fail IDDQ test but pass all
other tests may still be functional but (a) tend to
have reduced reliability (in terms of noise margins,

failure rate etc. [44,48]) and (b) obviously have
increased quiescent current.

IDDQ testing is losing its popularity since it will
not work for advanced technologies, for which
there is not a large difference in current levels be-
tween good and faulty devices. Instead, delay fault
testing has gained high importance.

7. Basic test procedure
7.1. Test architecture

As shown in Fig. 3 the test of an electronic
circuit is a stimulus/response measurement: In the
first step a test pattern is applied to the circuit to
bring it to a defined initial state or exercise some
functionality. In the second step the test pattern is
processed by the circuit, and in the third step the
circuit’s response is checked. This test procedure
is repeated for different test patterns by a test
controller.

7.2. Test pattern generation

One problem central to testing is the determi-
nation of an optimal sequence of test patterns
under the following essential requirements:

e detection of (ideally) all defects assumed in the
fault model,

e case of generation/storage (low overhead),

e compactness (short test duration).

Extensive discussions on test pattern generation
and the associated problems can be found in the
literature [9,15,50-54]. The rest of this section
gives a brief overview of the principles.

Test

Pattern Response

Test Pattern iﬁzz;t Response

Analysis

Generator Test y:
execute
next pattern Test pass/fail
Controller
start IestT l accept/reject

Fig. 3. Architecture of a typical test setup.
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7.2.1. Combinational versus sequential logic

The function of a combinational circuit, i.e. a
circuit without storage elements, is completely
described by its truth table. A combinational fault
(a fault in a time-invariant logic truth table) can be
detected with a single test stimulus. A straight-
forward check of the truth table requires 2" test
patterns for a combinational circuit with n inputs.
With a more sophisticated strategy the number of
patterns can often be substantially reduced.

For the test of a combinational circuit an al-
gorithmic solution exists (D-algorithm [55]) that
finds all detectable faults. While the runtime of this
exhaustive algorithm may be prohibitive in com-
plex applications, more recent techniques attempt
to reduce test generation time or test set size
[50,56-58]. The Path Oriented Decision Making
(PODEM) [59] algorithm is the basis for most of
these modern test generation programs.

If the circuit under test, however, contains se-
quential logic (flip—flops and other digital storage
elements), the test becomes much more compli-
cated. Test patterns must be applied in different
states; however, changing from one state into an-
other may require a number of intermediate steps
and test patterns. If a global reset of the circuit is
not available, an initialization sequence or state
identification is necessary, which makes the situa-
tion even worse [43].

Testing of sequential circuits is still a largely
unsolved problem. This is particularly displeasing,
since faults are more often found in sequential
blocks than in combinational ones [60]. A smart
approach is the scan test described in Section 6.2:
The system state can be directly set by shifting the
input pattern into the scan chain, while the re-
maining logic is of combinational nature. This
converts the problem of testing a sequential circuit
into that of testing a combinational one.

It has been shown [13] that open faults in
CMOS circuits tend to behave sequential. This has
the following reason: Due to the parasitic input
capacitance the faulty input retains one logic state
for an undetermined period. A state change is only
caused by parasitic effects like cross coupling (i.e.
electromagnetic interference from a neighboring
signal) or leakage currents. This is a very severe
effect, since such types of faults turn a combina-

tional circuit into a sequential one and may,
therefore, escape detection if a combinational test
is applied only.

7.2.2. Divide and conquer

The above discussion has indicated that the
number of required test patterns rises (roughly)
exponential with the number of inputs even for a
combinational circuit. Partitioning is therefore a
vital means of reducing test pattern length [61,62].
If a combinational circuit with 20 inputs can be
partitioned into two sub-circuits with 10 inputs for
testing, an upper limit of only 2048 test patterns can
be achieved instead of 1048 576. For CUTs with
multiple outputs one simple means of partitioning
is testing each output function separately, which
usually involves only a subset of circuit inputs [15].

Partitioning is automatically achieved by the
scan test to some extent and can be enhanced by
the introduction of test points (as outlined in
Section 4). For a very complex, unstructured cir-
cuit, however, the efforts for partitioning may be
prohibitive. For this reason structuring is one im-
portant rule of design for testability.

7.2.3. Type of test sequence: Deterministic versus
pseudo-random testing

The determination of a test pattern usually in-
volves feedback from a fault model: In a first step
a list of all faults considered by the fault model is
made. In the second step a test pattern is assumed
and all faults detected by it are removed from the
fault list. Repeating this step for new test patterns
progressively reduces the fault list. Towards the
end of the iteration process the contribution of a
new pattern decreases, since the fault list becomes
small. One new pattern may be needed to remove
one single fault from the list, while other new
patterns do not make any contribution at all. Al-
though an exhaustive application of this deter-
ministic algorithm (D-algorithm [55]) promises the
detection of all detectable faults, the duration of
the search process and the length of the resulting
test pattern may be excessive. A balance between
coverage and cost must be found at this point.

A special case of the deterministic test is the
exhaustive test, for which all possible test patterns
are applied. While this test produces the best
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possible coverage, it is impracticable for a com-
plete VLSI chip. Considering the partitioning
method described above a sum of exhaustive tests
can be applied progressively to all parts of the
circuit. This method is called pseudo-exhaustive
test [5,15,56]. Test pattern generation for the ex-
haustive and pseudo-exhaustive test is trivial and
does not involve fault simulation.

In a completely different approach a fixed
number of test patterns is generated without
feedback from the fault model. The sequence of
test patterns is called pseudo-random, because it
has some important properties of a random se-
quence, while being totally predictable and re-
peatable [5]. The coverage of the test sequence is
checked by fault simulation (e.g. the fault list de-
scribed above). This process of analyzing coverage
via a fault simulation is called fault grading [63]. If
a sufficient coverage level has been reached, the set
is accepted, otherwise a new one is generated. One
drawback of this pseudo-random algorithm is that
the required length of the test sequence is often
hard to determine a priori. Statistic frameworks
have been derived for this purpose [5,56]; more-
over the testability ratings discussed in Section 4
can be used as an indication. Although a sequence
found by this approach does not necessarily have
the best fault coverage possible, it has advantages
over the deterministic search:

e For a reasonable coverage limit the determina-
tion of a sequence is extremely fast.

e The random patterns can easily be generated on-
chip by a hardware random generator (Section
7.2.4).

e Random patterns have been shown to have
much better coverage for nontarget defects, i.e.
faults that are not considered by the fault model
[26,64].

e Since cost is an extremely critical issue in every
design, the deterministic approach may have to
be terminated at a quite early iteration stage.
In this case the results of the random approach
with comparable cost may be superior.

It is quite usual to mix both algorithms in one
of the following ways:

= The deterministic algorithm is started on top

of a number of random patterns. The addition

of few deterministic test patterns guarantees de-

tection of dedicated critical faults and improves
coverage in general.

= In an approach called pseudo-deterministic
testing [65] a random sequence is selected such
that it includes a number of dedicated test pat-
terns that have been determined a priori by
the deterministic algorithm (for hard-to-detect
faults). There are also analytic methods of con-
structing a random generator such that its out-
put sequence will include the required patterns
[66]. In some cases it will be advantageous to
draw patterns only from certain intervals of
the complete sequence of patterns producible
by an LFSR. This can be accomplished by
reseeding the LFSR [67,68].

= Alternatively, weights for the 1/0 probabili-
ties can be defined for every bit position of spe-
cial pseudo-random generator circuits [9]. These
weights can be used to tune the test sequence
such that the detection probability of hard-to-
detect faults is increased. As an example, testing
an AND gate requires more logic 1’s to activate
a fault, while testing an OR gate requires a high
proportion of 0’s at the inputs.

7.2.4. Test pattern generator circuits
The methods for test pattern generation are

highly correlated with the types of test pattern

discussed above. In the following some common
approaches are discussed:

o ROM (stored pattern test): Since no restrictions
on the sequence of patterns apply, this method
can provide excellent fault coverage and is used
in combination with the conventional determin-
istic algorithm. However, sequence length is di-
rectly proportional to ROM size, which is not
so much a problem for external testers, but usu-
ally results in a prohibitive area overhead for
built-in test.

o Processor (test pattern calculation): If the CUT
includes a processor and memory, a test pro-
gram can be employed to calculate an appropri-
ate sequence of test patterns.

o Counter (exhaustive test): This simple way of test
pattern generation is used for exhaustive and
pseudo-exhaustive testing. It may also be ap-
plied as address generator for some memory test
strategies (see Section 9.1)
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o Pseudo-random generator (random test): These
methods of recursive generation of test patterns
provide reasonable coverage with low hardware-
overhead. For this reason random testing is
most often found in built-in test designs. Hard-
ware circuits suitable as random generators are
register chains like linear feedback shift registers
(LFSRs [5,9,56]), cellular automata [69,70] or
built-in logic block observers (BILBOs
[5,56,71]). An LFSR modified such that it cycles
through all possible states can be used as cheap-
er replacement of a counter for exhaustive test-
ing, if the sequence of pattern is irrelevant
(combinational testing). As mentioned above,
pseudo-random pattern generators may be de-
signed under the constraint that their output se-
quence includes a set of deterministically
generated test vectors.

The stored pattern test method is classified as
off-line test pattern generation, while processor,
counter and pseudo-random generator are concur-
rent test pattern generation methods (test patterns
are calculated while they are being applied) [15].

7.3. Test pattern application

In a scan design the clock is required for (a)
scanning the test pattern in and out and (b) test
pattern application. In a full scan architecture one
clock cycle is required to apply the single test
pattern while for partial scan the sequential logic
remaining in the (original) CUT may have to be
clocked several times: A specific sequence of test
patterns must be applied to bring it to the desired
state and test for the target fault [72]. With respect
to the scanning method two approaches can be
distinguished that will be described in the follow-
ing: test-per-scan and test-per-clock.

7.3.1. Test-per-scan

Once the test pattern has been generated it is
applied to the CUT input. For the usual syn-
chronous circuits this means the test pattern is
shifted in through the scan chain and the CUT is
clocked. Finally the CUT output pattern is latched
and shifted out via the scan chain for further
analysis. The duration of this test-per-scan strate-
gy (Fig. 4) is quite high: scanning out the previous
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Fig. 4. Basic test-per-scan architecture.
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Fig. 5. Basic test-per-clock architecture.

(and simultaneously scanning in the next) test
pattern requires n clock cycles for an n-stage scan
path, which adds to the duration of the test pattern
processing by the CUT.

7.3.2. Test-per-clock

Test duration can be significantly reduced, if
one test pattern can be applied and processed with
each clock cycle. In this test-per-clock strategy
(Fig. 5) the test pattern generator produces an n-
bit output word that is directly applied to the CUT
(without scan). Similarly, the response analyzer is
provided with an n-bit parallel input. This method
requires direct access to every register in the chain
therefore it is applicable only for BIST.

The drawback of test-per-scan is the additional
hardware for the n-bit test pattern generator and
the n-bit response analyzer that costs more than
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the scan register in the test-per-scan architecture
[9].

A special variation of the test-per-clock archi-
tecture is the circular BIST [73,74]: The response
of the current test cycle is used to derive the next
test pattern, either by a one-to-one correspondence
or e.g. by shifting the whole word by one bit po-
sition. The response is shifted out for analysis only
after a number of test cycles. In this approach
hardware can be saved, because the combinational
CUT itself is used as a feedback. However, since
this feedback is nonlinear, coverage prediction and
optimization are extremely difficult.

7.3.3. Scan path implementation

It is a basic requirement of the scan approach
that it must be possible to clock data into system
flip—flops from two different sources (see Fig. 6):
One source is given by the normal signal flow
during system operation (path “n”), the other is
required to form the scan chain during test (path
“s””). Multiplexers or two-port flip—flops are most
often used for this purpose.

Several standard techniques for the implemen-
tation of the scan path are suggested in the liter-
ature [5,15,24,56,75]. Some of them are based on
flip—flops, others assume latches in the scan path.
The main issue in all approaches is to avoid race
conditions that might be induced by clock skew in
test mode. The flip—flop based approaches must
employ two-edge clocking schemes, while the latch
based approaches require a non-overlapping
master/slave clock [5,56]. A widely used latch

combinational logic
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Fig. 6. Principle of the scan path implementation.

based design method is the Level Sensitive Scan
Design, LSSD, first introduced in [76]. Other latch
based examples are Random Access Scan [77] and
Scan/Set Logic [78].

In some BIST implementations a multiplexer is
inserted in the clock path to (a) allow a selection
from different clock sources like e.g. system clock
or a specific test clock (unless it is possible to use
one single clock source for both test and applica-
tion [79]) and (b) compensate for potential delays
caused by multiplexers inserted for testing pur-
poses in the data path. Such interference with
system timing is extremely critical and therefore
avoided whenever possible. It is a main source
of performance degradation caused by test logic
insertion.

7.4. Response analysis

To come to a decision whether the CUT is
functioning properly the response bitstream (re-
sponse vectors) must be compared with a known
correct one. Such a reference response is usually
derived by simulation, but may also be based on
the observation of a known good device. Obvi-
ously, the most satisfactory solution is a direct
comparison of the complete response data with a
reference. This, however, implies knowledge of a
substantial amount of reference data, which is
possible only in specific cases:

e The complete reference data set can be stored in
a ROM. Similar to the stored pattern approach
for test pattern generation described in Section
7.2.4 this is a viable solution for external testing,
but results in a huge hardware overhead, if ap-
plied for on-chip testers.

o A reference unit can be employed as a reference
response generator. This approach, however, re-
quires complete duplication of the CUT. In cir-
cuits for safety related applications redundant
functional units might be available that can be
employed as reference response generator. (As-
suming a fault-free design we may neglect the
probability of a common failure of reference
generator and CUT.)

e A response generator circuit (state machine) can
be constructed that is cheaper than the duplicat-
ed CUT but produces exactly the required data
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sequence. This technique of analytically generat-

ing the complete response data set is called re-

sponse data compression. It is not generally
possible to find such a compression circuit.

Since the above methods are rarely applicable
for BIST, other, cheaper solutions are com-
monly used in spite of their inferior perfor-
mance. Their common principle is response data
compaction: The original response data stream is
reduced to a significant property (signature) by
methods like
o Transition counting: The number of transitions

contained in the data stream is counted.

e Cyclic coding (signature analysis): The data
stream is fed through an LFSR whose final con-
tents are used as a signature. A special case of
this polynomial division method is parity (1 bit
LFSR) which has been found to be the fastest
method but also the most expensive and poorest
in fault coverage [15]. The use of cellular auto-
mata instead of LFSRs is suggested in literature
[9], but their usefulness is not yet fully estab-
lished.

o Ones counting: The number of 1s in the data set
is counted.

e n-bit binary sum: all words (width ») in the data
stream are added, the sum is regarded as signa-
ture. This method is advantageous, if an accu-
mulator is already present in the circuit [80].

o Syndrome counting [81]: If an exhaustive test
pattern is applied to a combinational circuit,
the output bitstream represents the output col-
umn of the circuit’s truth table. The number of
ones (syndromes) in this bitstream is used as sig-
nature. It has been shown that this technique is
capable of detecting any single fault in the cir-
cuit, some modifications in the CUT may
though be required.

o Walsh spectra: The Walsh spectrum of a circuit
[82] can be used as a signature.

The signature (typically one single word) is then
compared to a reference. Obviously storage of the
reference signature is possible with significantly
lower hardware overhead. However, at the same
time the risk of error masking (aliasing) is intro-
duced: Since the signature contains less informa-
tion than the original data set, certain erroneous
response data sets that have the same significant

property as the correct one will also match the
reference (one in 2” for an » bit signature). Aliasing
probability in general increases with the reduction
gain, defined as the number of bits of the signature
related to the size of the complete data set. Nu-
merous attempts have been made to reduce alias-
ing probability by methods like multiple signatures
[83,84], output data modification [85,86], or rear-
ranging test vectors [87].

Compaction is commonly used to transform the
sequence of response vectors into a single vector
(time compaction). In some cases it is also applied
to reduce vector width (space compaction, e.g.
parity bit). A typical space compaction circuit is
the multiple input shift register (MISR [5]).

8. The concept of BIST
8.1. Principle

According to a definition given in [9] “BIST is a
design-for-test technique in which testing is ac-
complished through built-in hardware features”.
For chips with 1 million transistors and more the
hardware required for testing can be integrated on
the chip by dedicating a negligible percentage of
the silicon (a very optimistic estimation of 3% is
given in [5]) for the BIST logic. Such test hardware
is implemented in concurrence with the “‘actual”
design. In this way BIST represents an important
step towards regarding the test as one of the sys-
tem functions.

The principle of BIST is shown in Fig. 7: A
BIST Controller generates the test patterns, con-
trols the CUT clock and collects and analyzes the
responses. This makes the external test interface

BIST on test clock
M BIST test pattern Circuit

————p
Controller response Under

diagnostic data
< ] Test

BISTed Module

Fig. 7. Principle of built-in self-test.
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much more compact than in the conventional test
approach: The self test can be initiated over a
single pin, the result (“accept” or “reject”) can be
signaled via a second pin. Optionally, a serial bit
stream with diagnostic data may be provided at a
third pin.

8.2. Test access port as BIST interface

It has become popular to provide VLSI chips
with a JTAG boundary-scan [88-90]. In a test mode
this feature enables indirect access to each pin of
the chip via a scan chain formed of dedicated
boundary-scan registers. The virtual probe points
that boundary scan adds to the I/O structures
make it possible to exercise the internal logic
without involving the I/Os (internal test) and the I/
Os without involving the internal logic (external
interconnection test). The Test Access Port (TAP,
Fig. 8) controls scan operation and forms the
standardized interface to the scan chain. This in-
terface comprises only five signals:

— test clock input TCK;

— test mode select TMS;

— test data input TDI;

— test data output TDO;

— test reset input TRST (optional).

The TAP is a quite slow interface, but its
specification supports many powerful instructions,
including the optional RUNBIST command. Since
only minimal data traffic is involved, this instruc-
tion establishes a sufficient communication be-
tween TAP and BIST controller, eliminating the
need to reserve extra pins for a BIST interface
[91,92].

: Lt
I+

| I |
S B S
| I
D1 |
TvS Test BIST |

TCK Access { "RUNBIST"

TRST Port Controller |
DO <& . LOr |
J

_¥X
inh R R A A b

-

YYVY |

Fig. 8. Test Access Port for boundary scan.

8.3. Advantages of BIST over conventional testing

The automated test equipment (ATE) required
for the conventional factory test of VLSI circuits
usually includes expensive test hardware and
probing solutions. This makes every second a de-
vice spends on the tester extremely costly. Most
often the highly sophisticated test equipment
cannot be reused for higher level tests or during
other test phases than factory test. As opposed to
that, BIST-logic designed for a specific VLSI cir-
cuit can be extremely helpful for other test pur-
poses like maintenance and diagnosis or start-up
test. The combined utilization of hardware re-
sources for concurrent checking and for off-line
BIST is suggested in [6,36]. Moreover, BIST is
ideally suited for hierarchical test structures (see
Section 8.4).

In the face of continuously shrinking package
size and pitch external probing becomes a virtually
insoluble mechanical problem. At the same time
system clock rates continue to rise and timing
margins become narrower, therefore a test should
also cover the dynamic properties of a circuit.
Ideally, the test is performed at the nominal system
clock rate (at-speed testing [93,94]), which also
helps to keep test duration low. With a conven-
tional external test approach, however, non-ide-
alities in contacts and wiring deteriorate signal
quality substantially, which prohibits at-speed
testing. Moreover, the technology of the test
equipment (clock rate, propagation delays) may be
inferior to that of the CUT. These problems do not
apply for BIST, since technology of CUT and
tester are identical, probing is reduced to a mini-
mum and timing of the interface signals is not
critical. In some cases, however, the inclusion of
the BIST logic exhibits a negative effect on system
timing, resulting in the need for a minor reduction
of the nominal system clock. It should further be
noted, that at-speed testing alone does not ade-
quately address delay faults. Accepted BIST
methods for delay faults have not been proposed.

BIST significantly improves testability of a de-
sign: For the chip-internal tester all nodes in the
circuit are directly accessible and test points can be
freely chosen as suggested by the test strategy
without having to connect them to external pins.
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BIST facilitates a test-per-clock strategy, while
conventional testing is often restricted to test-per-
scan (see Section 7.3).

Another crucial cost factor is the degree of au-
tomation: VLSI design tools automatically gener-
ate the set of test vectors, but the adaptation or
design process for the tester hardware and probing
remains an expensive requirement for the con-
ventional testing approach. As opposed to that
there are suites of tools available that automati-
cally add a complete and largely optimized BIST
environment to a VHDL or Verilog-design [94].

Table 6 summarizes the above discussion on the
benefits of BIST.

It is interesting to observe that BIST naturally
unifies circuit design and test — two areas that have
traditionally been largely disjoint. At the same
time BIST moves test cost from equipment to de-
sign: The costly test equipment is traded for design
overheads.

8.4. BIST and hierarchical testing

Perhaps the most significant benefit of BIST lies
in its reusability on higher levels. A system level
BIST may activate board level BIST on all system
boards that, in turn, activate chip level BIST. The
individual BIST results are combined and propa-
gated through the hierarchy to finally form the
system BIST result [9].

This approach has numerous advantages over
the common software-implemented system test:

o BIST localizes the testing problem: There is no
need to carry the test stimulus through many
layers and then convey the result back again.

Table 6
Comparison between BIST and conventional testing

e Asa design for testability method BIST is imple-
mented already during circuit/board/system de-
sign by the expert who has the most detailed
knowledge on the functionality of the design.
Triggering the BIST from a higher level does
not require any expertise on the lower level func-
tion.

e BIST naturally supports the hierarchical test ap-
proach that is often applied in conventional tests
to reduce complexity.

e BIST allows for optimal diagnostic resolution.

e The extra cost for system level BIST can be kept
at a minimum, since a reuse of the factory BIST
logic on chip level is possible [95].

8.5. BIST and core design

An integrated circuit core is a pre-designed,
pre-verified silicon circuit block, usually con-
taining at least 5000 gates, that can be used in
building a larger or more complex application on
a semiconductor chip [96]. Popular core types
include CPUs, RAMs and interface modules. The
advantages of core designs become more and
more obvious as the integration levels of ICs
increase and the vision of a system-on-a-chip be-
comes reality: Cores facilitate design reuse and
transfer of intellectual property. They allow the
system integrator to concentrate on the product
specific features, which shortens time to market
significantly.

To protect his intellectual property, the core
designer most often provides the system integrator
with little or no knowledge of the internal struc-
ture of the core module. For this reason the core

Conventional test

BIST

Probing Difficult
Selection of test points Compromises
Cost of test equipment Very high
Technology May be critical
Test speed Problematic
Delay faults Testable

Cost of test time Often very high
Applicability Specific

Automatic generation Stimuli only

Simple BIST interface
Free choice

Chip area overhead
Identical to CUT
“At-speed testing”
Not testable

Low

Reusable

Complete
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design must include testing facilities along with a
clearly specified test interface. A boundary scan
for the core module is one common way to provide
test access. IEEE is currently developing a stan-
dardization framework for core testing (IEEE
P1500). However, access to the chip is a necessary
but not a sufficient condition to achieve good fault
coverage, knowledge of chip-internal details is still
required.

In this context BIST is an extremely attractive
option: If a core is equipped with BIST, the in-
terface is easy to specify while the intellectual
property remains well protected. The core designer
who has most detailed knowledge of the core
function can implement the test and the BISTed
core can be integrated as a black box into a hier-
archical BIST concept below the chip level by the
system integrator.

8.6. BIST and IDDQ-testing

The IDDQ-test has been pointed out as an ef-
fective method in Section 6.3. It is therefore not
surprising that numerous attempts have been
made to integrate IDDQ monitoring circuitry on a
chip (e.g. “built-in current sensing” [49,97]). One
crucial problem with built-in IDDQ testing for
digital VLSI circuits, however, is the need for
specific analog circuitry. For this reason the vast
majority of BIST applications have focused on
scan-techniques and/or functional testing for reg-
ular structures.

9. BIST for structured logic

Regular structures like PLAs, RAMs and
ROMs play a special role in every test concept
because most often the high regularity is paired
with a simple, general functionality that allows (a)
functional testing and (b) the application of ge-
neric test methods. It is therefore common to iso-
late these regular structures from the remaining
random logic by extra collar logic and test them
separately [9]. The respective generic test methods
will be discussed in the following.

9.1. RAM testing

9.1.1. RAM fault model

Memories are commonly considered as the
“most unreliable parts of the system’ [98] and it is
felt that, due to their extreme densities “RAMs
require special test treatment” [9,13].

For the purpose of fault modeling a RAM can
subdivided into the following functional units [12]
(further discussions on RAM models can be found
in [13,56,64,99,100]):

— memory cell array;

— interconnect lines;

— address decoder;

— read/write logic.

Since this is a functional model, no distinction
between SRAMs and DRAMs must be made
(unless data retention capability and refresh logic
shall be explicitly tested). All functional faults
listed in Table 4 can be assumed in the above units.
However, a balance between comprehensiveness of
the fault model on the one hand and test duration
and test generation cost on the other hand must be
found. For this reason embedded RAMs are typ-
ically tested for stuck-at faults only, while tests for
stand-alone RAMs cover more complex fault
models, because of their higher density [9]. Para-
metric faults are hardly ever tested for in a BIST
environment.

In order to defeat overheads memory test is
often reduced to a test of the memory cell array
only. It is claimed that the array test also covers
most faults in the other functional units. This
claim has been partly invalidated by Sachdev [13]
where it is shown that open defects in CMOS ad-
dress decoders are not generally covered by array
tests. However, specific March tests (see next sec-
tion) have recently been proposed to cover these
open faults as well.

9.1.2. Pattern testing

The functional test of a RAM is basically per-
formed by read and write operations. Numerous
algorithms have been proposed in the literature
that are optimized for different fault models and
different test structures. They differ in the algo-
rithmic sequence for writing data to and reading
data from the various address locations in the
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RAM. Two test pattern generators are required:
one for data and one for address. Since the func-
tional mapping between write data and read data
is one-to-one in the fault-free case, both test pat-
tern generators could be employed upon read-back
to automatically provide the reference data.
However, to avoid the danger of a generator error
(that might go undetected in this case), the usual
compaction techniques are preferred for response
checking. Since most test algorithms use very
simple regular write data, compression techniques
are also applicable [94].

Both random and deterministic testing are ap-
plied with a recent trend towards deterministic
testing which facilitates an exact computation of
fault coverage. Table 7 lists the most popular test
algorithms and summarizes their properties as
shown in [12], further discussions can be found in
[99-104].

In the leftmost column of Table 7 all common
test algorithms are listed by their name. For the
sake of brevity functional explanations of the
algorithms are not given here, these can be found
in [12]. The fault coverage of the mechanisms

with respect to different fault models (see Table 4)
is shown in columns 2-6. The last two columns
give an indication for the time required to per-
form the test: The column titled “1M” shows the
time required to perform the respective test al-
gorithm for a 1 Mbit memory assuming an access
time of 100 ns. The column ‘“order” indicates
how this test duration is related to memory size.
Linear dependence between memory size and test
duration is denoted as n, if test time increases
with the square of memory size, an order of n? is
shown.

The class of March-algorithms is exceptionally
advantageous for use with BIST: The complete
address area is passed through sequentially for
several times. This allows a simple counter to be
employed as an address generator. Test data are
also easy to generate: A sequence of “all 1s” or
“all 0s” is written and read alternatively. Note that
all March algorithms have an order of n and are
significantly faster than traditional algorithms
with comparable fault coverage.

A serial version of the March test is described in
[102] that works similar to the circular BIST

Table 7
Comparison of memory test algorithms (Source: [12])
Algorithm Fault coverage Test time

Stuck-at Address Transition Coupling Others Order M
Zero-one Locate all n 0.42s
Checkerboard Locate all Refresh n 0.52's
Walking 1/0 Locate all Locate all Locate all Locate all Sense amplif. n’ 2.5d

recovery

GALPAT Locate all Locate all Locate all Locate all Write recovery n’ S5.1d
GALROW Locate all Locate some Locate all Locate all Write recovery n/n 72 m
GALCOL Locate all Locate some Locate all Locate all Write recovery n+/n 7.2 m
Sliding diagonal Locate all Locate some Locate all n/n 3.6 m
Butterfly Locate all Locate some Locate all nlogy(n) 10 s
MATS Detect all Detect some n 042 s
MATS+ Detect all Detect all n 0.52s
Marching 1/0 Detect all Detect all Detect all n 1.5s
MATS++ Detect all Detect all Detect all n 0.63 s
March X Detect all Detect all Detect all Detect all n 0.63 s
March C— Detect all Detect all Detect all Detect all n 1.0s
March A Detect all Detect all Detect all Detect all n 1.6 s
March Y Detect all Detect all Detect all Detect all n 0.85s
March B Detect all Detect all Detect all Detect all n 1.8s
MOVI Detect all Detect all Detect all Detect all Read access time nlog,(n) 25s
3-coupling Detect all Detect all Detect all Detect all 3-coupling faults nlog,(n) 54's
Paragon Detect all Detect all Detect all Detect all Operational faults n’ 20d
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described in Section 7.3.2: Upon read-back of the
previous memory contents the LSB is fed into a
signature register and the remaining bits of the
data word are shifted to the right by one position,
which leaves room to shift in a new bit from the
test pattern generator to the MSB position. The
data word thus generated is used as a new input
pattern in the next step. In this way the bit se-
quence generated by the test pattern generator is
continuously shifted along the memory cells like in
a shift register, until it is finally fed into the sig-
nature register where the response analysis is per-
formed. This method of using the CUT for test
pattern generation makes the implementation ex-
tremely compact, while the simplicity of the data
transformation (a shift operation) facilitates ana-
lytical treatment.

All standard memory test procedures rely on an
initialization of the whole memory or at least part
of it before the actual test is started. The destruc-
tion of the memory contents implied by this ini-
tialization, however, is inadmissible in the case of
periodic on-line testing. For this purpose trans-
parent testing must be applied: Any of the stan-
dard algorithms can be modified such that an
initialization may be dropped and the memory
contents are preserved by the test [105,106].

The performance of a memory test algorithm is
an important issue in the context of certification of
a fault-tolerant system for safety-critical applica-
tions. In [35,39] a subset of the above mechanisms
is classified with respect to coverage.

9.1.3. IDDQ test

Due to the highly regular structure of CMOS
RAMs the IDDQ test as described in Section 6.3 is
a particularly attractive option for their test;
however, the analog circuitry involved makes a
BIST implementation difficult.

9.1.4. Specific DPM aspects

A Dual-Ported RAM can be tested by per-
forming standard memory tests for both sides. To
additionally test the dual-port functionality, these
tests must be extended by additional reads from
the respective other side.

9.2. ROM testing

9.2.1. ROM fault model
For the purpose of testing ROMs are com-

monly modeled either on the logical level or on the

functional level:

e Logical Model: A ROM is a combinational cir-
cuit that transforms every address word applied
at the input into a data word that can be read at
the output. This mapping can be described by a
function table.

e Functional Model: A ROM is a non-volatile
memory. Reading from one given address must
always produce the same data. These data are
known a priori. This makes the ROM test much
easier than a RAM test and allows checking da-
ta integrity in addition to the proper functional-
ity of the device.

It must be noted here, that the above models
apply for a programmed ROM in its application. If
the ROM is to be tested generally as an electronic
component (factory test), the test must also cover
the write logic of the ROM, which makes ROM
testing an equally complex problem as RAM
testing, aggravated by the fact that access time for
ROMs is traditionally higher than for RAMs
[100].

9.2.2. Structural ROM testing

Like any other combinational logic an embed-
ded ROM can be tested structurally by test pat-
terns via the scan path. Due to its simplicity this
method is very usual. It is, however, not capable of
detecting sequential faults (i.e. faults making
combinational logic behave like a sequential one)
that might be induced by open defects.

9.2.3. Signature computation

An exhaustive functional test of the ROM [86]
can be performed quite easily by reading the ROM
contents and compacting them to a signature by
means of a multiple input shift register (MISR, see
Section 7.4). Multiple bit faults originating from
defects in decoder or output register may escape
detection if aliasing occurs [107]. Several sugges-
tions have been made to reduce the aliasing
probability in this case:
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e a few deterministic test-vectors can be added to
detect typical multiple bit fault scenarios [9], or
e an additional bit can be appended to each data
word that not only reduces aliasing probability
but also allows concurrent checking of the

ROM contents [36].

It is interesting to note that structural testing
and signature computation are very similar in the
sense that the test patterns applied during the
structural test are nothing else than the addresses,
and the response is compacted by a signature
calculation in both cases. With neither method a
guarantee for detecting sequential faults can be
given, although reversing the read order in the
functional test has the potential to cover a high
proportion of them.

9.3. PLA testing

Basically PLAs can be modeled and tested just
like ROMs [5]: They perform a combinational
mapping between input patterns and output pat-
terns. Therefore, exhaustive pattern testing is the
best solution. This is, however, economic only for
PLAs with less than 25 inputs. For larger PLAs
currently no general BIST solutions exist with a
reasonable balance between cost and coverage. If
partitioning of the logic is possible, the pseudo-
exhaustive technique can be applied as described in
Section 7.2.3.

It has been found that cross point faults are
most prevalent in PLA structures, therefore special
methods have been devised to facilitate detection
of this type of fault [9,108,109]. Research has
shown that methods detecting cross point faults
also detect most other classical faults (stuck-at
faults and bridging faults are of special interest in
PLAs).

10. Conclusion

The important role of testing in today’s VLSI
designs has been pointed out in this survey, and
numerous indications have been given that this
role will become even more dominant in the future.

At the same time conventional test technology
is reaching its limits, particularly with respect to

probing. BIST advances the state of the art in
testing by integrating the required test logic into
the circuit under test. This keeps the external in-
terface simple, while facilitating the application of
highly efficient test strategies. Many of the highly
advanced concepts of the traditional test can di-
rectly be applied for BIST. As an additional ad-
vantage the integration of the test logic on the chip
allows its reuse in different phases of product
testing. In this way BIST provides not only an
economic solution for start-up and on-line testing
but also an ideal foundation for hierarchic system
test.
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