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Introduction

«  Verification is perhaps the most difficult
aspect of any design

Effort Spent On Verification

Trend in the percentage of total project time spent in verification

— That’s not an excuse for omitting it or
leaving to others...

— Multiple levels: single component,
module with multiple sub-components,
and system-level

«  Multiple abstraction levels
* In synchronous design, we verify the
functionality at cycle-level accuracy

— Not detailed timing, which will be
checked with static timing analysis
(STA) tools

Responses

%

[http://blogs.mentor.com/verificationhorizons/blog/2011/04/03/part-4-

the-2010-wilson-research-group-functional-verification-
study/slide13-2-2/}
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Introductory Question

Q: What's the difference between
theory and practice?

Al: In theory there’s no difference...

A2: In theory everything works. In
practice nothing works.



Validation versus Verification versus Testing

« Validation: Does the product meet customers’ wishes?
— Am | building the right product?

« Verification: Does the product meet the specification?
— Am | building the product right?
— Debugging begins when error is detected

« Testing: Is chip fabricated as meant to?
— No short-circuits, open connects, slow transistors etc.
— Post-manufacturing tests at the silicon fab
— Accept/Reject

 However, sometimes these are used interchangeably
— Most people talk about test benches
— E.g., both terms are used: DUT (design under test) and DUV (design under verification)
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Make sure that simple
At First things work before even
trying more complex
100x / 6 years Ones

100 x 10 000 =

108/} 1 million times
more simulation load
=3 2002
o <o
RS oM 1996
8 x
cQ 1990
S @
=<
= [P. Magarshack, SoC at the
8‘ a 10)( / 6 yea rs heart of conflicting, Réunion du
-~ O = comité de pilotage (20/02/2002),
3 100k 1M 10M trendshttp://www.comelec.enst.f
= r/rtp_soc/reunion_20020220/ST
100x Gate Count _nb.pdf]

Verification effort growth outpaces design

{_} a.k.a. "state explosion”
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Amount of Test Codes And Support
Material Exceeds Implementation

Artifact Purpose Language Approx. size (Partially)

generated
adapter.vhd The implementation VHDL 500 lines -
adapter_hw_tcl Meta-data for Qsys tel 300 lines *
User guide Instructions how to start Finnish 14 pages -
Additional example Support the user guide Tcl,VHDL, C 350 lines -
codes
Adapter_tb.vhd Test the basics VHDL 300 lines *
Test SoC HW More realistic HW/SW tests ~ VHDL, xml, 12 SoCs  *

tcl, Verilog (a 700-1000 files)

Test programs e C 6 programs -

(a2 ~100 lines)
DMA SoC, HW+SW  Reference for performance VHDL, C, tcl, 2 SoCs  *

measurements verilog (4 800 files)

Table 6.1 Developed artifacts [T. Korpela, Adapter for distributed and shared memory between HIBI
TAMPERE UNIVERSITY OF TECHNOLOGY - -
and Avalon, MSc thesis, TUT, 2014]



Controllability and Observability

 How to provide inputs and see the results

»  Both properties favor the low-level verification
—  Exception: mimicking realistic input patterns might be more difficult than using real neighbour block

Verifying as part of system
separate testbench 1
2 - >
—  Desi I N t
> esign [, ] S
under —— === DUV = SN
verification | ™~ = —+ g’ e
_’ _’
&S oo ot -
L v s used .

H(_J —— “ J

. Small subset of input  All cases doﬁgc propagate
All input sequences can be . )
enerated. Also illegall sequences achievable. to observable outputs, or it
9 ' gar Designer must control DUV’s takes time and goes
TAMPERE UNIVERSITY OF TECHNOLOGY . . . .
inputs via other units through several units




What Is a VHDL Test Bench (TB)?

 VHDL test bench (TB) is a piece of code meant to verify the functional correctness of
HDL model
« The main objectives of TB is to:
1. Instantiate the design under test (DUT)
2. Generate stimulus waveforms for DUT
3. Generate reference outputs and compare them with the outputs of DUT
4. Automatically provide a pass or fail indication
« Test bench is a part of the circuits specification
« Sometimes it's a good idea to design the test bench before the DUT
— Functional specification ambiguities found
— Forces to dig out the relevant information of the environment
— Different designers for DUT and its TB!
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Test Bench Benefits

« Unitis inspected outside its real environment

Of course, TB must resemble the real environment

Making TB realistic is sometimes hard, e.g., interface to 3rd party ASIC which

does not have a simulation model

« Isolating the DUT into TB has many desirable qualities

Less "moving parts”, easier to spot the problem
Easy to control the inputs, also to drive illegal values
Easy to see the outputs

Small test system fast to simulate

Safer than real environment, e.g., better to test emergency shutdown first in
laboratory than in real chemical factory
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Stimulus and Response

« TB may generate the stimulus (input to DUT) in several ways:
a) Read vectors stored as constants in an array
b) Read vectors stored in a separate system file
c) Algorithmically "on-the-fly”
d) Read from C through Foreign Language Interface (FLI, ModelSim)
« Theresponse (output from DUT) must be automatically checked
— Expected response must be known exactly
— Response can be stored into file for further processing
 Example:
— Stimulus can be generated with Matlab and TB feeds it into DUT
— DUT generates the response and TB stores it into file
— Results are compared to Matlab simulations automatically, no manual comparison!

$ TAMPERE UNIVERSITY OF TECHNOLOGY



Philosophical Note
[after Keating]

Verification can find bugs, prove equivalence, and prove mterestlng
properties of a design
« Verification cannot prove correctness
— It can show the existence of bugs, but not their non-existence
— We can show cases when the design works
* Nevertheless, we do achieve high quality through verification
« Quality needs to be designed in (and then verified), not verified In
« Completion condition should be explicitly stated

— E.g., statement/coverage/state coverage > 98%, #new bugs/week <0.5,
all time/money spent, we're bored with it...

$ TAMPERE UNIVERSITY OF TECHNOLOGY




Other Philosophical Note

« TB tests the DUT against the interpretation of specification (which is
interpreted from requirements)
— Specification may have flaws
* Ambiguity
Not meeting the customer’s desires

— Test bench may have mistakes
False interpretation
« Test bench codes may have bugs

« Good to have different persons writing the actual code and test bench
— Less likely that both make the same miss-interpretation
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Test Bench Structures

 TB should be reusable without difficult modifications
» Modular design

« The structure of the TB should be simple enough so that other
people understand its behaviour

* |t has to be easy to run
— Not much dependencies on files or scripts

« Good test bench propagates all the generics and constants into DUT

* Question: How to verify that the function of the test bench is correct?
A: “That is a good question indeed”
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Simple Test Bench

* Only the DUT is instantiated into test bench

«  Stimulus is generated inside the test bench
— Not automatically — handwritten code trying to spot corner cases
— Poor reusability

«  Suitable only for very simple designs, if at all

 However, such "TB” can be used as an usage example to familiarize new user with DUT
— "See, driving input like this makes the DUT do something usefull...”

1B

Better than

S W DUT none, but not
reliable

$ TAMPERE UNIVERSITY OF TECHNOLOGY 16.11.2017
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xample DUT

ENTITY adder IS

PORT (
clk : IN STD_LOGIC;
rst_n : IN STD_LOGIC;
a, b : IN UNSIGNED(2 DOWNTO O0);
Yy : OUT UNSIGNED (2 DOWNTO 0));
END adder;

ARCHITECTURE RTL OF adder IS
BEGIN -- RTL
PROCESS (clk, rst_n)
BEGIN -- process
IF rst_n = '0’ THEN -- asynchronous

y <= (OTHERS => ’0’);

ELSIF clk’EVENT AND clk = ’1’ THEN -- rising clock edge

y <= a + b;
END IF;
END PROCESS;

END RTL;

$ TAMPERE UNIVERSITY OF TECHNOLOGY

DUT: Synchronous adder, entity architecture

reset (active low)

VY

a(2:0)
b(2:0)
rst n
clk

>y (2:0)




Simple TB (3): Entity without Ports

« Test bench

— Simplest possible entity declaration:
ENTITY simple tb IS
END simple tb;
— Architecture:
ARCHITECTURE stimulus OF simple tb IS

— DUT:
COMPONENT adder
PORT (
clk : IN STD LOGIC;
rst n : IN STD LOGIC;
a, b : IN UNSIGNED (2 DOWNTO O0);
vy : OUT UNSIGNED (2 DOWNTO O0)

) ;
END COMPONENT;
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Simple TB (4): Instantiate
DUT And Generate Clock

. Clock period and connection signals:

CONSTANT period : TIME := 50 ns;
SIGNAL clk : STD _LOGIC := '0'; -- init values only in tb
SIGNAL rst n : STD LOGIC;
SIGNAL a, b, y : unsigned(2 downto 0);
. Begin of the architecture and component instantiation:
begin
DUT : adder
PORT MAP (
clk => clk,
rst n => rst n,
a => a,
b => Db,
Y =>vy);

. Clock generation:
generate clock : PROCESS (clk)
BEGIN -- process
clk <= NOT clk AFTER period/2; -- this necessitates init value
END PROCESS;
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Simple TB (5): Stimulus And Config

«  Stimuli generation and the end of the architecture:
rst n <= "'0",
1" AFTER 10 ns;

a <= "OOO",
"001l" AFTER 225 ns, Not very
"010"™ AFTER 375 ns; .
b <= "000", comprehensive

"01l1l" AFTER 225 ns,
“010" AFTER 375 ns;
end stimulus; -- ARCHITECTURE

«  Configuration:
CONFIGURATION cfg simple tb OF simple tb IS
FOR stimulus
FOR DUT : adder
USE ENTITY work.adder (RTL) ;
END FOR;
END FOR;
END cfg _simple tb;
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Simple TB (6): Simulation Results

r

 Simulation: How to check correcteness?
Take a look!

Not too convenient...

oot [ [ T i

Cursar 1 m 0ns)

You notice that is does something but Validity is hard to ensure.

$ TAMPERE UNIVERSITY OF TECHNOLOGY Arto Perttula 16.11.2017 20



VHDL Delay Modeling

« Signal assignments can have delay (as in previous example)

1. Inertial delays
—  Used for modeling propagation delay, or RC delay

1. after
2. reject-inertial :D—A/\/\/\Nv—ﬁr——»Targe” or Target2

— Useful in modeling gate delays e
—  Glitches filtered

2. transport delay =
—  transmission lines

—  test bench stimuli generation
— glitches remain

$ TAMPERE UNIVERSITY OF TECHNOLOGY




VHDL Delay Modeling (2)

- ertial delay
tdrgetl <= waveform AFTER 5 NS;

-— Inertial with reject
targetZ <= REJECT 3 NS INERTIAL waveform AFTER 5 NS:

--= Illustrating transport delay
target3 <= TRANSPORT waveform AFTER 5 NS;

« after 5 ns propagates signal change IF the signal value stays constant
for > 5 ns, and change occurs 5 ns after the transition

* reject inertial propagates signal change if value is constant for > 3 ns
and change occurs 5 ns after transition

* transport propagates the signal as is after 5 ns
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VHDL Delay Modeling (3)

e

-- Inertial delay
targetl <= waveform AFTER 5 NS;

-— Inertial with reject
target2 <= REJECT 3 NS INERTIAL waveform AFTER 5 NS;

-—- Illustrating transport delay
target3 <= TRANSPORT waveform AFTER 5 NS;

[

5ns 4 ns 3ns 2ns 5ns 4 ns 3ns 2ns

L il g ol e P G 03 o I g
itarget1 | [ | T

rtarget2 ¥ T st b g )4 e ey
R (O g O K S 1 e A8 e e [ |

Be careful! Behavior will be strange if the edges of the clk and signal generated this way are aligned.

$ TAMPERE UNIVERSITY OF TECHNOLOGY Arto Perttula 16.11.2017
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Test Bench with a Separate Source

Source and DUT instantiated into TB
For designs with complex input and simple output
Source can be, e.g., another entity or a process

IB

Source |— = DUT
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Test Bench with a Separate Source (2): Structure

« Input stimuli for "adder” is generated in a separate entity "counter”
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Test Bench with a Separate Source (3): Create Counter

« Stimulus source is a clock-triggered up counter
« Entity of the source:

ENTITY counter IS

PORT (
clk : IN STD LOGIC;
rst n : IN STD LOGIC;
Y : OUT STD LOGIC VECTOR (2 DOWNTO O)

) ;

END counter;
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Test Bench with a Separate Source (4): Create Counter

»  Architecture of the source component:
ARCHITECTURE RTL OF counter IS
SIGNAL Y r : unsigned(2 downto 0)
BEGIN -- RTL
PROCESS (clk, rst n)

BEGIN -- process

IF rst n = "0’ THEN -- asynchronous reset (active low)
Y r <= (OTHERS => "0 ;

ELSIF clk’EVENT AND clk = ’1’ THEN -- rising clock edge
Y r <=Y r+l;

END TIF;

END PROCESS;
Y <= std logic vector (Y r);
END RTL;

$ TAMPERE UNIVERSITY OF TECHNOLOGY
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Test Bench with a Separate Source (5): Declare Components

« Test bench:

— Architecture
ARCHITECTURE separate_ source OF source_ tb IS

— Declare the components DUT and source
COMPONENT adder

PORT (
clk : IN STD LOGIC;
rst n : IN STD LOGIC;
a, b : IN UNSIGNED (2 DOWNTO O0);
y : OUT UNSIGNED (2 DOWNTO O0)

) ;
END COMPONENT;
COMPONENT counter

PORT (
clk : IN STD_ LOGIC;
rst n : IN STD LOGIC;
vy : OUT UNSIGNED (2 DOWNTO O0)

) ;
END COMPONENT;
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Test Bench with a Separate Source (6): Instantiate

. Clock period and connection signals

CONSTANT period : TIME := 50 ns;
SIGNAL clk : STD_LOGIC := '0’; -- init value allowed only in simulation!
SIGNAL rst n : STD LOGIC;
SIGNAL response dut tb, a cntr dut, b cntr dut : unsigned(2 downto 0);
. Port mappings of the DUT and the source
begin
DUT : adder
PORT MAP (
clk => clk,
rst n => rst n,
a => a cntr dut,
b => b cntr dut,
y => response dut tb
)
i source : counter
PORT MAP (
clk => clk,
rst n => rst n,
v => a cntr dut

)i
b cntr dut <= a cntr dut;
-- simplification, generally should be different from stim a in
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Test Bench with a Separate Source (7): Clock And Reset

« Clock and reset can be generated also without processes
clk <= NOT clk AFTER period/2; -- this style needs init wvalue
rst n <= 0", ’1" AFTER 10 ns;

END separate_source
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Test Bench with a Separate Source (8): Simulation Results

 Simulation:

fsource_thiclk

|I] ';I '2: |I] |I |I|; .- '| |I] ';I ':i f

-— e

|- S E—

Lrrrrerretrrrrerreebrrerrrreebrrerrererrrrerrrrerbrrrrgrrrbrrerrerrrbrrerrerrebrrerrerrrtrrrrrrrerrrrrrrrrreirrerrrrrrrrnn
300 GO0

Better than previous tb. Overflow in adder,
Easy to scale the stimulus length for three bits = unsigned
wider adders. value range 0..7

Quite straightforward to test all values S
by instantiating two counters. The checking is still

inconvenient.
$ TAMPERE UNIVERSITY OF TECHNOLOGY 16112017 32



RESPONSE HANDLING

$ TAMPERE UNIVERSITY OF TECHNOLOGY



Test Bench with a Separate
Source And Sink

« Both the stimulus source and the sink are separate instances
« Complex source and sink without response-source interaction
» Sink uses assertions of some sort

1B

stimulus response

Source [ o DUT = Sink




Smart Test Bench

« Circuit’'s response affects further stimulus

* In other words, TB is reactive
— E.g., DUT requests to stall, if DUT cannot accept new data at the moment
— E.g., source writes FIFO (=DUT) until it is full, then it does something else...
— Non-reactive TB with fixed delays will break immediately, if DUT’s timing changes

TR B

DUT

Sink

Y

Y

Source = DUT Source

— 5
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Presence of Expected Results +
Non-Existence of Bad Side-Effects

» Itis evident to check that the main result happens
— E.g., having inputs a=5, b=6 yields an output sum=11
— For realistic system, even this gets hard
« Itis much more subtle and harder to check that nothing else happens

— E.g., the previous result is not an overflow, not negative, not zero, valid does not remain active too long, all
outputs that should remain constant really do so, unit does not send any extra data...

— E.g., SW function does not corrupt memory (even if it calculates correct result), SW function does not modify
HW unit’s control registers unexpectedly, function does not wipe the GUI screen blank...

— This is tricky if the consequence is seen on primary outputs much later (e.g., later operation fails since
control registers were modified unexpectedly)

« Usually there is one or perhaps few entirely correct results and infinite number of wrong ones
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Check Absence of Side-Effects! (2)

« TB correctly checked the upper outputs of the ALU (those affected with given stimulus)
« Implicit, false assumption was not verified!

« Glitch in lower signals goes undetected in TB but causes problems in real SoC
— E.g., divide-by-zero rises during add operation

TB waves:
0 1 2 3 4 : SoC fails
inpu X x X x ALU foo %F
put1 . ? E 1111l 10000
inputo N LA ) II—> l*'
result1 ﬁr x 4!% x j> ﬁrx ﬁ?x: :)) bar —i UI UH U
result0 |

Goes Component Bar is innocent but
* . undetected! becomes the suspect at first

$ TAMPERE UNIVERSITY OF TECHNOLOGY some other ' / \ Aargh‘ when SoC fails!




Mutation Testing

 Q: How do you know if your TB really catches any bugs?
« A: Create intentional bugs and see what happens

« Examples
— Some output is stuck to '0’ or ’1’
— Condition if (a and b) thenbecomes if (a or b)

— Comparison > becomes >=
— Assignmentb <= a becomes b <= a+1

— Loop iterates 1 round less or more

— State machine starts from different state or omits some state change
«  Automated mutation tools replace manual work
« If mutated code is not detected, the reason could be

a) Poor checking

b) Too few test cases

c) Codes were actually functionally equivalent
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Test Bench with Text-10

« Stimulus for DUT is read from an input file and modified in the
source component

« The response is modified in the sink and written to the output file

[nput - Source || |DUT|—»| Sink 4| Output
file | file
—— e




Test Bench with Text-10 (2): Structure

e Test case:

3 @ o
"‘1-|_._|_'_,_.-r" = = "l-.._|_|_'_._,..-l'
i =0 _:JJ ]
datain xt s g dataout. txt
: | COMV_unsizned | Adder - COTV_inferger || -
imteger mteger
e STy e
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Test Bench with Text-10 (3): Libraries

« Test bench:
— Libraries, remember to declare the textio-library!
library IEEE;
use IEEE.std logic 1lo64.all;
use IEEE.std logic arith.all; -- old skool
use std.textio.all;
use IEEE.std logic textio.all;
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Test Bench with Text-10 (4):

Architecture
ARCHITECTURE text io OF source_tb IS
COMPONENT adder

PORT (
clk : IN STD LOGIC;
rst n : IN STD LOGIC;
a, b : IN UNSIGNED (2 DOWNTO Q) ;
% : OUT UNSIGNED (2 DOWNTO Q)

) ;
END COMPONENT;

CONSTANT period : TIME := 50 ns; -- even value
SIGNAL clk : STD LOGIC := '0';

SIGNAL rst n : STD_LOGIC;

SIGNAL a, b, y : unsigned(2 downto 0);

$ TAMPERE UNIVERSITY OF TECHNOLOGY
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Test Bench with Text-10 (5):
Clock, Reset, Instantiation

In architecture body
begin
DUT : adder
PORT MAP
clk
rst n

(
> clk,
rst n,

\Y%

a,
b,
V)

a
b

y

\Y%

| (|
\Y%

\Y%

clk <= NOT clk AFTER period/2;
rst n <= '0",
1" AFTER 75 ns;



Test Bench with Text-10 (6):
Process for File Handling

« Create process and declare the input and output files (VHDL'87)
process (clk, rst n)
FILE file in : TEXT IS IN ‘"datain.txt';
FILE file out : TEXT IS OUT "dataout.txt';
— File paths are relative to simulation directory (the one with modelsim.ini)
« Variables for one line of the input and output files
VARIABLE line in : LINE;
VARIABLE line_out : LINE;
— Value of variable is updated immediately. Hence, the new value is visible on the same
execution of the process (already on the next line)
« Variables for the value in one line
VARIABLE input tmp : INTEGER;
VARIABLE output tmp : INTEGER;
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Test Bench with Text-10 (7): Main Process

» Beginning of the process and reset
BEGIN -- process
IF rst n = 0’ THEN -- asynchronous reset
a <= (OTHERS => '0");
b <= (OTHERS => ’'07);

ELSIF clk’EVENT AND clk = ’'1’ THEN -- rising clock edge
* Read one line from the input file to the variable “line_in” and read the value in the line
“line_in" to the variable “input_tmp”
IF NOT (ENDFILE(file in)) THEN
READLINE (file in, line 1in);
READ (line in, input tmp);
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Test Bench with Text-10 (8):
Handle 1/O Line by Line

* "input_tmp” is fed to both inputs of the DUT
a <= CONV_UNSIGNED (input tmp, 3); —-- old skool conversion
b <= CONV_UNSIGNED (input tmp, 3);
* The response of the DUT is converted to integer and fed to the variable “output_tmp’
output tmp := CONV_INTEGER(y);
« The variable “output_tmp” is written to the line “line_out” that is written to the file
“file_out”
WRITE (line out, output tmp);
WRITELINE (file out, line out);
« At the end of the input file the note “End of file!” is given
ELSE
ASSERT FALSE
REPORT "End of file!™"
SEVERITY NOTE;
END IF;

$ TAMPERE UNIVERSITY OF TECHNOLOGY



Test Bench with Text-10 (9): Simulation Results

Simulation:

Curzor 1

Now, the designer can prepare multiple test sets for certain corner
cases (positive/negative values, almost max/min values, otherwise
interesting) . However, the VHDL is not modified.

TAMPERE UNIVERSITY OF TECHNOLOGY
|EE| This version does not check the response yet. 16.11.2017 a7



Test Bench with Text-10 (10): Files

. Input file provided to test bench . Output file produced by the test bench

-J
L

Two cyclc latch)':
1 cyclc due to file read
+1 cyclc due to DUT

bt el P bkl 3 =t Ped e Ll
I S = L i L R %L T

# Comments:

# For each stimulus file, the designer also prepares the cxpectcd output trace. It can be automatically

# compared to the response of DUV, either in VHDL or using command line tool diff in Linux/ Unix.
# It is good to allow comments in stimulus file. They can describe the structure:

#e. g There is 1 line per cycle, 1st value is... in hexadecimal for mat, 2nd value is.

$ TAMPERE UNIVERSITY OF TECHNOLOGY Arto Perttula 16.11.2017
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Use Headers in Input And
Output Files

« Fundamental idea is to have many « E.g., DUV output log could provide

input, reference output, and result summary

files . # File: ovl out.txt

— Provide clear links between these * # Input File: ovl in.txt
. # Time: 2014-02-03 14:24:33

« Use headers! . 3 User: xavi
° E.g., input file . # Format:..
. # File: ovl in.txt . 0
. # Purpose: Test overflow.. . 0
. # Designer: Xavier Ollgvist . 4.
. # Date: 2013-12-24 16:55:02 . # Sim ends at: 100 ms
. # Version: 1.1 . # Num of cases: 430
. # Num of cases: 430 . # Errors: 0
. # Line format: hexadecimal.. . # Throughput: 25.4 MB/s
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Text-1/0 Types Supported by Default

« READ and WRITE procedures support
— bit, bit_vector

— boolean

— character

— integer

— real Hint: std_logic_1164, numeric_std etc are
: all available in VHDL, you can always

— string check those for reference.

— time

— Source: textio_vhdI93 library, Altera
* Forother types use txt util.vhd from
http://www.stefanvhdl.com/vhdl/vhdl/txt_util.vhd
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Test Prints

*  Printing a constant text string is easy inside processes, just report what’s going on

process (..)

report (”Thunder!”);

« Some people use

assert false report ”“Bazinga!” severity..

Whereas some prefer

write (line v, string' (”“Halibatsuippa!”));
writeline (output, line v);
-— output is a reserved word for stdout

* On the other hand, signal and variable values are a bit tricky

« Tip: In ModelSim, double-clicking a print message takes the cursor in wave window to the correct
time instant
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Test Print Examples (2)

*  Write function example for 1-bit std_logic

write (line v, string' (“Enable %));
write (line v, to_bit(en r));

writeline (output, line v);

* Integers and enumerations can be converted to string, for example

write (line v, string' (“I= “)& integer'image(5));
or

A\Y

report “Value is
& integer‘image (to integer (unsigned(data vec)));

* Itis recommended to print which value the test bench expected in addition to what is actually got
("Exp: 512, Got: 5117)

— Easier to see, e.g., off-by-one errrors (value differs +1), wrong timing (+1 clock cycle), overflow, tb bugs
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Same Test Bench for Different Designs

»  Architecture of the DUT can be changed
«  Should always be the objective
» Creating a separate test bench for gate-level will likely introduce bugs in TB

DUT DUT

behavioural gate

level
$ TAMPERE UNIVERSITY OF TECHNOLOGY 16.11.2017




Golden Design

« DUT is compared to the specification, i.e., the golden design
— Something that is agreed to be correct
— E.g., non-synthesizable model vs. fully optimized, pipelined, synthesizable DUT

« Special care is needed if DUT and Golden Design have different timing
1B

Golden|

Design\
Source _ / Sink
DUT
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Complex Test Bench

Input
File

dynamic part
of TB

B

Stimulus
generation

Golden
design

DUT

Compare
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The Simulation with a Golden Design

datain txt

B Cad G

Y

Read
Stimulus

Behavioral

Model

RTL
Model

e

Write
Result

e,
e Sy

dataout. txt

0

\H"—|_|_,_l-""‘

Error

-
mMessages

For example, ensure that two models are equivalent. E.g. behavioral

$ model for fast simulation and RTL model for efficient synthesis.
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Example of Golden Design Test Bench

. Often, a system is first modeled with software and then parts are hardware accelerated
— Software implementation serves as a golden reference

. E.g., video encoder implemented with C, motion estimation accelerated C motion

. Tends to be quite slow estimation

(FLI)

\

Y. Foreign language interface

Read,

convert,

C Video DUV result OK?

encoder

Motion Est

interface

VHDL TESTBENCH
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Autonomous Test Bench

. Does not need input file stimulus
. Determines the right result "on-the-fly”
. Very good for checking if simple changes or optimizations broke the design

. Note that some (pseudo-)randomization on the stimuli must be done in order to make sure that the unusual cases
are covered
— Check the code, statement, and branch coverages!

TB
Stimulus
confi guration DUT
} —® Compare >
Stimulus Pass/fail
generation Result indication
calculation

TAMPERE UNIVERSITY OF TECHNOLOGY . g
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VHDL Coding ):j
.
'
D es I g “ F I ow ( Functional (eehavioral level) )

simulation

NO

Behaviour
QK7

Synthesis

¢

Crate level simmlation
static timing analvsis

'

Fesult corresponds the
behavioral simmlation
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EXAMPLE AND
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The Test Scenario

« DUV system-level interconnection network between IP blocks (CPUs, memories, accelerators...

« TB must be expandable to very large configurations

INTERCONNECTION

Q TAMPERE UNIVERSITY OF TECHNOLOGY
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What Is the Interconnection?

. The interconnection topology does not matter since we did not make assumptions about it, only the
functionality of the interconnection
a) Data arrives at correct destination
b) Data does not arrive to wrong destination
c) Data does not change (or duplicate)
d) Data B does not arrive before A, if A was sent before it
e) No IP starves (is blocked for long periods of time)

B o
TTTITTTT
% a)Typical: Single shared bus

b) Hierarchical octagon

B Source

TAMPERE UNIVERSITY OF TECHNOLOGY . DCSUHOUUU C) Meqh
d) Butterfly



Example: Verifying an Interconnection

» Tested interconnections delivers data from a single source to destination
— Same principle, same IP interface, slightly different addressing
* Note that only the transferred data integrity is important, not what it represents — Running
numbers are great!
» The test bench should provide few assertions (features a-d in previous slide)
*  When checking these assertions, you also implicitely verify the correctness of the interface!
— l.e., read-during-write, write to full buffer, write with an erroneous command etc.
«  All of these can be fairly simply accomplished with an automatic test bench requiring no external
files
« TBis pseudo-random numbers (*)
— Longer simulation provides more thoroughness
— The same run can be repeated because it is not really random

— (*) Note that even if pseudo-random sequence is exactly the same, any change in DUV timing might mask
out the bug in later runs
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Hierarchical Interconnection Test Bench

Counter or «  Separate the stimuli and verification

LRNC Protocol merconncce * - Sender configuration per test agent-basis
Configu- logic — Burst length (i.e., sending several data in
ration consecutive clock cycles)
Initial — Idle t_lme.s
el — Destination
* Initial values:
Counter or — Seed for counter / LFSR
PRNG interconnect —  Number of components
— Addresses of components
Compare « Sender and Receiver
— Counter or PRNG needed for each source and/or
Test Agent destination!
\s
error — (PRNG = pseudo-random number generator)
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Autonomous And Complex Test Benches

. Always a preferred choice — Well designed, reusable test bench pays back
. Use modular design
— Input (stimuli) separated from output (check) blocks in code
— Arbitrary number of test agents can be instantiated
— Interconnection-specific addressing separated from rest of the logic
. All test benches should automatically check for errors
— No manual comparison in any stage
. Code coverage must be high
— However, high code coverage does not imply that the TB is all-inclusive, but it is required for that!
— Autonomous test benches must include long runs and random patterns to make sure that corner cases are checked
. Designing the test benches in a synchronous manner makes sure that the delta delays do not mess things up
—  Syncronous test bench also works as the real environment would
— More on the delta delay on next lecture about simulators
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xample VHDL

. Traffic light test bench

. Statement, Branch, Condition and expression coverage 100%
. However, the test bench is not perfect!

. Example VHDL code shown (available at web page)

. General test bench form

begin -- tb

-- component instantiation
DUV : traffic_light ...

input : process (clk, rst_n)
begin -- process input

end process input;

output: process (clk, rst n)
begin -- process output

end process output;

Clock generation
Reset generation

end tb;
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Synthesizable Test Benches

* Synchronous, synthesizable test benches are a good practice if, e.g., the design
includes clock domain crossings

« Can be synthesized to an FPGA and test in a real environment

* Run-time error checking facilities to a real product may be extracted from the test
bench easily
* Then, assertion should be written this way:
if (a > b) then
assert false "error” ..
error out(0) <= "1';
end if;

— Or one can make own assertions for simulation and synthesis, e.g.,
Assert gen(cond, level, error sig);
— In simulation, regular assertion, in synthesis, assigns to error sig
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Choosing Test Method

A. Manual

B.

- Generate test with ModelSim force command
- Check the wave forms

Automated test generation and response
checking

B is the only viable option

This real-life figure shows only
— 1/3 of signals
— 1/50 000 of time line

This check should be repeated few times a day
during development...
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Summary And General Guidelines

« Every entity you design has an own test bench

«  Automatic verification and result checking
— Input generated internally or from a file
—  Output checked automatically

— The less external files we rely on, the easier is the usage

+ Somebody else will also be using your code!
— "vsim my_tb; run 10ms;” =» "tests ok”
— orjust type "make verify”

«  Timeout counters detect if the design does not respond at all!
— You must not rely that the designer checks the waves
« Testinfrastructure is often of similar size and sometimes larger than the actual design
— TB must be easy to run and analyze the results
— TB may have bugs
— TB may be reused and modified. That must be easy.
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SELF-STUDY
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Correct Bugs Early

Earlier the bugs fixed, the cheaper
— Shorter design time
— Smaller personel cost
— Bigger market share
Worst case: already sold devices
must be returned to manufacturer
Similarly, a bug in specification
affects all other phases

May require changes in many
places
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SoC Failures Cause
Production Delays

One in Two Fails * Incresed NRE (new mask, chip redesing)

48% fail on * Lost revenue in the market (due to delay)

first silicon”

61% Of Designs Require Re-Spin!

20% still fail on 35 |
second spin g
.E 25 o
59% still fail on ; 20 A
third spin” s 15
“Source: Collet International - 2000 10 1
5 -
Simplex Solutions, Inc. © Copyright 2001 19 IEEE ISQED; March 27, 2001 o L
1 2 3 4 or More

Hummber of silicon respins
Sagece. Colett nternational Researchlne

Left: [J. Costello, Delivering Quality Delivers
Profits, IEEE ISQED, March 27, 2001]

ﬁ_ Right: [P. Woo, Structured ASICs - A Risk Management Tool, Design&Reuse, Sep. 2005, [online]
TAMPERE UNIVERSITY OF TECHNOLOGY . . . . .
Available: http://www.design-reuse.com/articles/11367/structured-asics-a-risk-management-tool.html]



Time-To-Market (TTM)

« There is no market ... for a 2" to market

Product Revenue

1 4 7 0 13 16 19 22
Product Lifecycle (months)

25 28

First-to-Market & Volume = Business Success

Simplex Solutions, Inc. © Copyright 2001 6

[J. Costello, Delivering Quality Delivers Profits
IEEE ISQED, March 27, 2001]
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IEEE ISQED; March 27, 2001

Table 1. Time-to-market matters

Potential Sales

Time-To-Market Achieved
First-To-Market 100%
3 Months Late 73%
6 Months Late 53%
9 Months Late 32%
12 Months Late 9%

[E. Clarke, FPGAs and Structured ASICs: Low-Risk
SoC for the Masses, Design & Reuse,
http://www.design-reuse.com/articles/13080/fpgas-
and-structured-asics-low-risk-soc-for-the-

masses.html]



Source of Failures S

Logical or Functional | | 143%
Slow Path 114%
Noise EEEEI9% Most logical errors
Yield 7% could be found
Race Condition [mmmm6% before fabrication

Mixed-Signal Interface [T15%

Other Flaws [T15%

IR Drops 4%

Clocking 3%
Power [T13%

0% 10% 20% 30% 40% 50%
Source: Collett International for STMicroelectronics Percent of Flaws

$ TAMPERE UNIVERSITY OF TECHNOLOGY [P. Magarshack, SoC at the heart of conflicting, Réunion du comité de pilotage (20/02/2002),
trendshttp://www.comelec.enst.fr/rtp_soc/reunion_20020220/ST_nb.pdf]



[http://blogs.mentor.com/verificationhorizons/blog/2011/04/01/part-3-the-2010-wilson-research-group-functional-verification-study/slide21-2/]

Median Testbench Composition Trends

Designers are reusing not only logic but also testbenches

60%
0
5 o _ 50% New code decreased by 24%
2 External IP increase by 138%
g %
3
G A%
) /S —_— |
~ 38%
g e 00T
8 30% \ i 2O
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)]
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5 2% "
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1}
a
1% ~ %
“ T 1
NEW TB REUSED FROM OTHER DESIGNS ACCUIRED EXTERNALLY
H Wil [ hG d Menkor Graphi
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Z HF - Compiladon and Analysis pefomedin January 2011

@ 2011 Mentor Graphics Corp, Company © " 16112017

www.mentor.com
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Verification Methods (1)%

1. Reviews come in 2 flavors

1. Specification reviews are especially useful
. Remove ambiguities
. Define how certain aspects of specification are recognized and analyzed in final product
. Be sure to capture customer’s wishes correctly
2. Code review
. Designer explains the code to others
. Surprisingly good results even if others do not fully understand
. Good for creating clear and easy-to-understand code
. Limited to small code sizes
. Define and adopt coding guidelines

- Automated checkers (lint) tools available

— "I've made many many product mistakes over the years. | should at least help make sure we make new
mistakes this time around”

. Eric Hahn on code reviews

$ TAMPERE UNIVERSITY OF TECHNOLOGY Arto Perttula 16.11.2017 76



Verification Methods (2)

2. Simulation-based

Behavior is simulated in simulator program

Relies on test data
. Test bench creation takes time

Cannot prove correctness

Slow, 100 Hz - 100kHz

Many levels of abstraction (algorithm vs. RTL vs. gate-level)
Availability of models might be a problem

Most widely used method

System simulation in lecture 5

$ TAMPERE UNIVERSITY OF TECHNOLOGY
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Verification Methods (3)

3.  HW emulation

— (Part of the) system is executed on
programmable HW (FPGA)

. "FPGA prototype”, no mask costs as in ASIC proto
— Nearly real-time execution (~1 MHz - 100 MHz)

. But no regard of real logic delays!

— Can connect to real external HW, such as radio

- Rough GUI testing possible

— Setup time may be long, e.g., few hours
. Needs synthesis and place-and-route

— Traditionally quite expensive systems

— Reduced visibility compared to simulation
— Relies on test data, cannot prove correctness

$ TAMPERE UNIVERSITY OF TECHNOLOGY
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Verification Methods (4)

4, Formal methods

1.

3.

Correctness proven mathematically
Does not require test data
Equivalence checkers

. Check that two versions (e.g., RTL vs. gate-level) are
functionally identical
. Supported by many synthesis tools
Model checking
. Compare behaviour with formal specification

- Proves that something good eventually happens (e.g.,
every request receives acknowledgement)

- Proves that something bad will never happen (e.g., no
deadlock)

. Practically nobody writes such specifications currently...
Semi-formal is combination of formal and simulation
. Assertions
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Levels of Verfication

* Level 0: Designer / macro, lowest level
— Verification done by the designer (one who wrote the VHDL)
— Ensures that the design will load into simulator and that basic operation work
— Often many changes in specification expected this level
— Small block size, perhaps just a single HDL file, suitable also for formal verification

 Level 1: Unit /core
— Combines few low-level blocks together, DMA, ALU...

— More stable interfaces and functions compared to level O
» Test suite remains mostly unchanged

— Reusable component (a core) necessitates more thorough verification
* Pro: Once verified, work always
* Con: Can be used in arbitrary environment, hard to verify all corner cases
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Levels of Verification (2)

« Level 1: Unit/ core continued
— Most important level for functional verification
— Q: How to gain customer’s confidence when selling core?
— A: Well-defined verification process, regression suite, proper documentation,
coverage reports, good reputation based on previous cores...
« Level 2+: Chip, Board, System
— Multiple units, stable interfaces
* Possibly glue logic

— Some functions cannot be verified a unit level
» For example, reset and start-up sequence

— Interaction rather than particular functions are important at system level

$ TAMPERE UNIVERSITY OF TECHNOLOGY



Choose the Lowest Possible Level

Always choose the lowest level that completely contains the targeted function

— Smallest state space, fast simulation

—  79% of bugs were found at BLOCK LEVEL [S. Switzer, Using Embedded Checkers to Solve
Verification Challenges, Designcon, 2000]

« Each verifiable piece should have its own specification document

« Every VHDL entity must have its own test bench, at least the simple macro-level TB
* New and/or complex functions need extra focus

* Bugs seldom live alone

« Controllability and observability define the correct level

« The lower the level, the more control/visibility
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Visibility of DUT

 Black box
— Contents invisible

— Access only through primary inputs and outputs

— E.g., proto-chip, SW binary
« Gray box

— Some parts visible, perhaps touchable
— E.g., proto-chip with test 10, some FPGAs

 White box, Glass box
— All parts fully visible and touchable
— E.g., RTL

Q TAMPERE UNIVERSITY OF TECHNOLOGY
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Repeating Tests

Same error must be repeated to see if fix works
— Same test data, same timing
» Automated test generation
Must ensure that "fix” does not break any other part of system
» Automated checking
« Manual checking suitable only for TB creation
Preferably same TB during the design refinement
 E.g., RTL and gate-level use same TB
Keep all the test cases that have failed
« Already fixed errors sometimes reappear later
« Partition test cases into smaller sets
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Bug-Free Behaviour Not Guaranteed

. [M. Keating, Toward Zero-Defect Design: Managing Functional Complexity in the Era of Multi-Million-Gate Design Architecture, DCAS '05]
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Random Test Input

« Good for finding corner cases

« Easyto produce, allow large test vector sets
—  Luckily, pseudo-random number generators produce same series if seed is same
— Running numbers are sometimes enough!
— Can generate random input to file =» reproducible (but space-hungry)

. Randomness makes it harder to track error source

—  Output with running numbers: 1,2,3,4,888,6,7...
—  Output with random data: 701,123,-987,2,3,4,5,..
B Should not be . . . F'e-rln:entage of TI-:ltaI E'-!qu: .
Used WIthOUt Pseudo-Random Test
test cases with
) ) Focused Test
known values
Other

TAMPERE UNIVERSITY OF TECHNOLOGY - S . I .
{'} Figure 4. Effectiveness of Test Category ~ [S- Taylor, DAC 1998)
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Test Print Layout

« Default layout for report/assert uses two lines which is somewhat
inconvenient

** Note: Thunder!

# Time: 60 ns Iteration: O Instance: /tb tentti
« Modify modelsim.ini and restart vsim
: AssertionFormat = "** 05S: %R\n Time: %T Iteration: %D%I\n"
AssertionFormat ="** 00S: %R Time: %T %I\n"
« Then

# ** Note: Thunder! Time: 60 ns Instance: /tb_tentti
# ** Note: hojo hojo Time: 88 ns Instance: /tb_tentti
— Me likes! For example, using grep is much much easier now
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File Handling in VHDL’87 and 93

« [HARDI VHDL handbook's page 71]

-- VHDL'87:

FILE fl1 : myFile IS IN "name in file system”;

FILE f2 : mySecondFile IS OUT "name in file system”;

—-— VHDL' 93:

FILE fl1 : myFile OPEN READ MODE IS “name in file system”;

FILE f2 : mySecondFile OPEN WRITE MODE IS “name in file system”;

* Input files may be written compatible with both VHDL'87 and VHDL'93, but for output
files that is not possible:

-— Declaration of an input file both for VHDL’87 and VHDL’ 93

FILE f : myFile IS "name in file system”;

* The predefined subprograms FILE_OPEN and FILE_CLOSE do not exist in VHDL'87
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Visibility on FPGA: Logic
Analyzer (1)

* Provide easily accessible test points to the PCB
— Route interesting signals to FPGA output/PCB test point
— Clock, reset, state register, write enable, error flag

« Still only few (~2%) of signals on PCB are accessible to external logic analyzer
— Number of analyzer inputs also restricted
* Integrated Logic Analyzer (ILA) used
— Synthesized into FPGAs
+ Takes few logic resources just like communication networks
— Monitors selected signals
a) Transmitting signal values to workstation via JTAG is slow (< 56Kb/s)
b) Signal values stored in memory (1MB, 133MHz, 32b) and read after emulation run
— Waveform displayed on workstation (just like in RTL simulation)
— Not emulator-specific — can be used in any FPGA
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Visibility on FPGA: Logic Analyzer (2)

* Only short (e.g., <2048 cycles) traces collected if only on-chip memory utilized
» Hard to define correct trigger condition
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t - 8011 | Memory: 38144 ME12: MdK:
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Device: [@1:EP1S4D/_HAHDCDPY_FPGA_PHEj Scan Chain

. | SOFMansger & 0 [m2itestsol ]
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Tracking Error Source (1)

a) Pass/nopass
— When errors cannot be corrected, source is irrelevant
- E.g., manufacturing test on chips (black box)
. Faulty chips are thrown away
b)  Usually the errors should be corrected
— Locating error is necessary

. SW or HW

. Which component

. Which internal state

. Line of code

. Which test case (input sequence)
. Locating errors is easier if

- smaller the system being verified
- fewer changes have been made to functioning system
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Tracking Error Source (2)

* Inlarge design,
— error is hard to repeat in controlled way
— error at output is hard to find
— error source extremely difficult to find

« Common case: spend 1 month for finding the bug, fix it in 5 minutes

real error source

monitor detects error

({111
Stimulus
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Tracking Error Source (3)

« Sad example of bus testing:
— Transmit 50 times value 0x7 and check that 50 values are received. What if:
a) <50 data received: which were missing?
b) 50 received: is some data duplicated and some missing?
c) >50 received: which one is duplicated?
« Selection of test data may simplify finding error
— Consider transmitting sequential numbers (1, 2, 3...) over bus instead on constant value 7
— Locating duplicated/missing data is trivial
— Of course, sequential numbers are not that useful with, e.g., arithmetic components

— Using unique values in test input helps to track the error from wave format or trace
« Differentiate sources: (1,2, 3...); (101,102,103...); ...(901, 902, 903...)
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Tracking Error Source (4)

e Assertions can be added to modules or interfaces

«  Brings the point detection closer to the point of problem injection
— Close in time (clock cycle)
— Close in place (module, code line)

« Simplifies TB — no longer necessary to propagate all effects to outputs

error source

assertion detects error

Stimulus

‘ﬁ' TAMPERE UNIVERSITY OF TECHNOLOGY assertion OK [B. Bailey, Property Based Verification for SoC, Tampere SoC, 2003]



Assertions (1)

» Express the design intent
— Best captured by the designer
— "Built-in implementation specification”
» Check that certain properties always hold
— FSM won't enter illegal state, one-hot encoding is always legal etc.
* Checked during simulation, not synthesizable
— Synthesizable HDL assertion would be tber-cool
 E.g., signals A and B must NEVER be ’1’ at the same time

— VHDL: assert (A and B = 0) report ”"A and B simultaneously asserted”
severity warning;

» VHDL simulator: Warning: A and B simultaneously asserted, Time: 500 ns,
component : /tb system/tx ctrl/
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Assertion (2): Classification

a) Event detection
—  Simplest form

—  Checks the absence of a specific event, which is a sign of failure
. E.g., FIFO seems empty and full at the same time

—  Static — not related to any other event

b) Temporal event detection
—  Refer to sequence of events

—  VHDL assertions have restricted means for expressing timing (sequences)
. E.g., check that after 2 cycles...

—  Possible to build specific logic that creates simple Boolean check for the assert
—  Addressed by formal methods, such as PSL/Sugar
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Assertions (3)

c) Pre-defined event detection DUV
bulding blocks — —
) ] — —
—  Library for checking often
. assert
occurring events
—  Data structures (stack, buffer, N —_
FIFO) or control structures
(handshake) \ ) \ )
 Figure: Defensive HDL design This logic "cone” is This logic is
. protected by
«  Special tools can process VHDL ooy asserion(s).
. . ill be b Erroroneous
assertions and try to violate them i e e valuos won't pass

the asertion(s).
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Assertions (4)

* In Clanguage:
* Degines in header file assert.h

« Common error outputting is in the form:

— Assertion failed: expression, file filename, line line-number
« Example:

#include<assert.h>

void open record(char *record name)

{

assert (record name!=NULL) ;
/* Rest of code */
}
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Assertions

T

Assertion Checkers

Cache Coherency Checkers 9%

Reference Model Comparison

Register File Trace Compare 8%
Memory State Compare %
End-of-Run State Compare 6%
PC Trace Compare 4%
Self-Checking Test [1%
Manual Inspection of 7%

Simulation Output
Simulation hang 6%
Other 8%

Figure 2: Effectiveness of Bug Detection Mechanisms

[M. Kantrowitz L.M. Noack, I'm Done Simulating; Now What?
Verification Coverage Analysis and Correctness Checking of
the DECchip 21164 Alpha microprocessor, DAC, June 1996,
pp. 325-330.
http://www.sigda.org/Archives/ProceedingArchives/Compen
diums/papers/1996/dac96/pdffiles/23_5.pdf]
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(9)

Percentage of Total Bugs

Assertion Checker
Register Miscompare
Simulation "Mo Progress”
PC Miscompare

Memory State Miscompare
Manual Inspection
Self-Checking Test

Cache Coherancy Check

SAVES Check

Figure 6. Bug Detection Mechanisms

[S. Taylor et al., Functional Verification of a Multiple-issue,
Out-of-Order, Superscalar Alpha Processor—The DEC
Alpha 21264 Microprocessor, DAC 98, pp. 638-644.
http://www.sigda.org/Archives/ProceedingArchives/Compen
diums/papers/1998/dac98/pdffiles/39_1.pdf]



Assertions (6)

« Powerful in finding errors in simulation

« Assertions can be used as a base for generating test cases
automatically
« Naturally, cannot be synthesized

— Synthesizable HW monitors may be developed case-by-case
« Error tracking
« Performance measurement
« Trigger the trace collection for off-line analysis

USE ASSERTIONS
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