
Lecture 8:

VHDL Test Benches

TIE-50206 Logic Synthesis

Arto Perttula

Tampere University of Technology

Fall 2017

Testbench

Design

under test

Contents

• Purpose of test benches

• Structure of simple test bench

– Side note about delay modeling in VHDL

• More elegant test benches

– Separate, more reusable stimulus generation

– Separate sink from the response

– File handling for stimulus and response

• Example and conclusions

• Lots of miscellaneous self-study material

16.11.2017Arto Perttula 2

Introduction

• Verification is perhaps the most difficult

aspect of any design

– That’s not an excuse for omitting it or

leaving to others…

– Multiple levels: single component,

module with multiple sub-components,

and system-level

• Multiple abstraction levels

• In synchronous design, we verify the

functionality at cycle-level accuracy

– Not detailed timing, which will be

checked with static timing analysis

(STA) tools

16.11.2017Arto Perttula 3

[http://blogs.mentor.com/verificationhorizons/blog/2011/04/03/part-4-

the-2010-wilson-research-group-functional-verification-

study/slide13-2-2/}

Introductory Question

Q: What’s the difference between

theory and practice?

A1: In theory there’s no difference…

A2: In theory everything works. In

practice nothing works.

16.11.2017Arto Perttula 4

Validation versus Verification versus Testing

• Validation: Does the product meet customers’ wishes?

– Am I building the right product?

• Verification: Does the product meet the specification?

– Am I building the product right?

– Debugging begins when error is detected

• Testing: Is chip fabricated as meant to?

– No short-circuits, open connects, slow transistors etc.

– Post-manufacturing tests at the silicon fab

– Accept/Reject

• However, sometimes these are used interchangeably

– Most people talk about test benches

– E.g., both terms are used: DUT (design under test) and DUV (design under verification)

16.11.2017Arto Perttula 5

At First

16.11.2017 6

[P. Magarshack, SoC at the

heart of conflicting, Réunion du

comité de pilotage (20/02/2002),

trendshttp://www.comelec.enst.f

r/rtp_soc/reunion_20020220/ST

_nb.pdf]

a.k.a. ”state explosion”

Make sure that simple
things work before even
trying more complex
ones

Amount of Test Codes And Support

Material Exceeds Implementation

16.11.2017Arto Perttula 7

Controllability and Observability

• How to provide inputs and see the results

• Both properties favor the low-level verification

– Exception: mimicking realistic input patterns might be more difficult than using real neighbour block

16.11.2017 8

What Is a VHDL Test Bench (TB)?

• VHDL test bench (TB) is a piece of code meant to verify the functional correctness of

HDL model

• The main objectives of TB is to:

1. Instantiate the design under test (DUT)

2. Generate stimulus waveforms for DUT

3. Generate reference outputs and compare them with the outputs of DUT

4. Automatically provide a pass or fail indication

• Test bench is a part of the circuits specification

• Sometimes it’s a good idea to design the test bench before the DUT

– Functional specification ambiguities found

– Forces to dig out the relevant information of the environment

– Different designers for DUT and its TB!

16.11.2017Arto Perttula 9

Test Bench Benefits

• Unit is inspected outside its real environment

– Of course, TB must resemble the real environment

– Making TB realistic is sometimes hard, e.g., interface to 3rd party ASIC which

does not have a simulation model

• Isolating the DUT into TB has many desirable qualities

– Less ”moving parts”, easier to spot the problem

– Easy to control the inputs, also to drive illegal values

– Easy to see the outputs

– Small test system fast to simulate

– Safer than real environment, e.g., better to test emergency shutdown first in

laboratory than in real chemical factory

16.11.2017Arto Perttula 10

Stimulus and Response

• TB may generate the stimulus (input to DUT) in several ways:

a) Read vectors stored as constants in an array

b) Read vectors stored in a separate system file

c) Algorithmically ”on-the-fly”

d) Read from C through Foreign Language Interface (FLI, ModelSim)

• The response (output from DUT) must be automatically checked

– Expected response must be known exactly

– Response can be stored into file for further processing

• Example:

– Stimulus can be generated with Matlab and TB feeds it into DUT

– DUT generates the response and TB stores it into file

– Results are compared to Matlab simulations automatically, no manual comparison!

16.11.2017Arto Perttula 11

Philosophical Note

[after Keating]

• Verification can find bugs, prove equivalence, and prove interesting

properties of a design

• Verification cannot prove correctness

– It can show the existence of bugs, but not their non-existence

– We can show cases when the design works

• Nevertheless, we do achieve high quality through verification

• Quality needs to be designed in (and then verified), not verified in

• Completion condition should be explicitly stated

– E.g., statement/coverage/state coverage > 98%, #new bugs/week <0.5,

all time/money spent, we’re bored with it…
16.11.2017Arto Perttula 12

Other Philosophical Note

• TB tests the DUT against the interpretation of specification (which is

interpreted from requirements)

– Specification may have flaws

• Ambiguity

• Not meeting the customer’s desires

– Test bench may have mistakes

• False interpretation

• Test bench codes may have bugs

• Good to have different persons writing the actual code and test bench

– Less likely that both make the same miss-interpretation

16.11.2017Arto Perttula 13

Test Bench Structures

• TB should be reusable without difficult modifications

 Modular design

• The structure of the TB should be simple enough so that other

people understand its behaviour

• It has to be easy to run

– Not much dependencies on files or scripts

• Good test bench propagates all the generics and constants into DUT

• Question: How to verify that the function of the test bench is correct?

A: “That is a good question indeed”

16.11.2017Arto Perttula 14

Simple Test Bench

• Only the DUT is instantiated into test bench

• Stimulus is generated inside the test bench

– Not automatically – handwritten code trying to spot corner cases

– Poor reusability

• Suitable only for very simple designs, if at all

• However, such ”TB” can be used as an usage example to familiarize new user with DUT

– ”See, driving input like this makes the DUT do something usefull…”

16.11.2017Arto Perttula 15

Better than

none, but not

reliable

stimulus

Example DUT

• DUT: Synchronous adder, entity architecture
ENTITY adder IS

PORT (

clk : IN STD_LOGIC;

rst_n : IN STD_LOGIC;

a, b : IN UNSIGNED(2 DOWNTO 0);

y : OUT UNSIGNED(2 DOWNTO 0));

END adder;

ARCHITECTURE RTL OF adder IS

BEGIN -- RTL

PROCESS (clk, rst_n)

BEGIN -- process

IF rst_n = ’0’ THEN -- asynchronous reset (active low)

y <= (OTHERS => ’0’);

ELSIF clk’EVENT AND clk = ’1’ THEN -- rising clock edge

y <= a + b;

END IF;

END PROCESS;

END RTL;

16.11.2017Arto Perttula 16

a(2:0)

b(2:0)

rst_n

clk

y(2:0)

Simple TB (3): Entity without Ports

• Test bench

– Simplest possible entity declaration:
ENTITY simple_tb IS

END simple_tb;

– Architecture:
ARCHITECTURE stimulus OF simple_tb IS

– DUT:
COMPONENT adder

PORT (

clk : IN STD_LOGIC;

rst_n : IN STD_LOGIC;

a, b : IN UNSIGNED(2 DOWNTO 0);

y : OUT UNSIGNED(2 DOWNTO 0)

);

END COMPONENT;

16.11.2017Arto Perttula 17

Simple TB (4): Instantiate

DUT And Generate Clock

• Clock period and connection signals:
CONSTANT period : TIME := 50 ns;

SIGNAL clk : STD_LOGIC := ’0’; -- init values only in tb

SIGNAL rst_n : STD_LOGIC;

SIGNAL a, b, y : unsigned(2 downto 0);

• Begin of the architecture and component instantiation:

begin

DUT : adder

PORT MAP (

clk => clk,

rst_n => rst_n,

a => a,

b => b,

y => y);

• Clock generation:
generate_clock : PROCESS (clk)

BEGIN -- process

clk <= NOT clk AFTER period/2; -- this necessitates init value

END PROCESS;

16.11.2017Arto Perttula 18

Simple TB (5): Stimulus And Config

• Stimuli generation and the end of the architecture:
rst_n <= ’0’,

’1’ AFTER 10 ns;

a <= "000",

"001" AFTER 225 ns,

"010" AFTER 375 ns;

b <= "000",

"011" AFTER 225 ns,

“010" AFTER 375 ns;

end stimulus; -- ARCHITECTURE

• Configuration:
CONFIGURATION cfg_simple_tb OF simple_tb IS

FOR stimulus

FOR DUT : adder

USE ENTITY work.adder(RTL);

END FOR;

END FOR;

END cfg_simple_tb;

16.11.2017Arto Perttula 19

Not very

comprehensive

Simple TB (6): Simulation Results

• Simulation:

16.11.2017Arto Perttula 20

You notice that is does something but validity is hard to ensure.

How to check correcteness?

Take a look!

Not too convenient...

VHDL Delay Modeling

• Signal assignments can have delay (as in previous example)

1. Inertial delays

– Used for modeling propagation delay, or RC delay

1. after

2. reject-inertial

– Useful in modeling gate delays

– Glitches filtered

2. transport delay

– transmission lines

– test bench stimuli generation

– glitches remain

16.11.2017Arto Perttula 21

VHDL Delay Modeling (2)

• after 5 ns propagates signal change IF the signal value stays constant

for > 5 ns, and change occurs 5 ns after the transition

• reject inertial propagates signal change if value is constant for > 3 ns

and change occurs 5 ns after transition

• transport propagates the signal as is after 5 ns

16.11.2017Arto Perttula 22

VHDL Delay Modeling (3)

16.11.2017Arto Perttula 23

Be careful! Behavior will be strange if the edges of the clk and signal generated this way are aligned.

MORE ELEGANT TEST

BENCHES

16.11.2017Arto Perttula 24

Test Bench with a Separate Source

• Source and DUT instantiated into TB

• For designs with complex input and simple output

• Source can be, e.g., another entity or a process

Arto Perttula 25

Test Bench with a Separate Source (2): Structure

• Input stimuli for ”adder” is generated in a separate entity ”counter”

16.11.2017Arto Perttula 26

Test Bench with a Separate Source (3): Create Counter

• Stimulus source is a clock-triggered up counter

• Entity of the source:

ENTITY counter IS

PORT (

clk : IN STD_LOGIC;

rst_n : IN STD_LOGIC;

Y : OUT STD_LOGIC_VECTOR(2 DOWNTO 0)

);

END counter;

16.11.2017Arto Perttula 27

Test Bench with a Separate Source (4): Create Counter

• Architecture of the source component:

ARCHITECTURE RTL OF counter IS

SIGNAL Y_r : unsigned(2 downto 0)

BEGIN -- RTL

PROCESS (clk, rst_n)

BEGIN -- process

IF rst_n = ’0’ THEN -- asynchronous reset (active low)

Y_r <= (OTHERS => ’0’);

ELSIF clk’EVENT AND clk = ’1’ THEN -- rising clock edge

Y_r <= Y_r+1;

END IF;

END PROCESS;

Y <= std_logic_vector(Y_r);

END RTL;

16.11.2017Arto Perttula 28

Note: overflow not checked

Test Bench with a Separate Source (5): Declare Components

• Test bench:

– Architecture

ARCHITECTURE separate_source OF source_tb IS

– Declare the components DUT and source
COMPONENT adder

PORT (

clk : IN STD_LOGIC;

rst_n : IN STD_LOGIC;

a, b : IN UNSIGNED(2 DOWNTO 0);

y : OUT UNSIGNED(2 DOWNTO 0)

);

END COMPONENT;

COMPONENT counter

PORT (

clk : IN STD_LOGIC;

rst_n : IN STD_LOGIC;

y : OUT UNSIGNED(2 DOWNTO 0)

);

END COMPONENT;

16.11.2017Arto Perttula 29

Test Bench with a Separate Source (6): Instantiate

• Clock period and connection signals
CONSTANT period : TIME := 50 ns;

SIGNAL clk : STD_LOGIC := ’0’; -- init value allowed only in simulation!

SIGNAL rst_n : STD_LOGIC;

SIGNAL response_dut_tb, a_cntr_dut, b_cntr_dut : unsigned(2 downto 0);

• Port mappings of the DUT and the source
begin

DUT : adder

PORT MAP (

clk => clk,

rst_n => rst_n,

a => a_cntr_dut,

b => b_cntr_dut,

y => response_dut_tb

);

i_source : counter

PORT MAP (

clk => clk,

rst_n => rst_n,

y => a_cntr_dut

);

b_cntr_dut <= a_cntr_dut;

-- simplification, generally should be different from stim_a_in

16.11.2017Arto Perttula 30

Test Bench with a Separate Source (7): Clock And Reset

• Clock and reset can be generated also without processes
clk <= NOT clk AFTER period/2; -- this style needs init value

rst_n <= ’0’, ’1’ AFTER 10 ns;

END separate_source

16.11.2017Arto Perttula 31

Test Bench with a Separate Source (8): Simulation Results

• Simulation:

16.11.2017 32

Overflow in adder,
three bits  unsigned
value range 0..7

Better than previous tb.
Easy to scale the stimulus length for
wider adders.
Quite straightforward to test all values
by instantiating two counters. The checking is still

inconvenient.

_dut_tb

/a_cntr_dut

RESPONSE HANDLING

16.11.2017Arto Perttula 33

Test Bench with a Separate

Source And Sink

• Both the stimulus source and the sink are separate instances

• Complex source and sink without response-source interaction

• Sink uses assertions of some sort

16.11.2017Arto Perttula 34

stimulus response

Smart Test Bench

• Circuit’s response affects further stimulus

• In other words, TB is reactive

– E.g., DUT requests to stall, if DUT cannot accept new data at the moment

– E.g., source writes FIFO (=DUT) until it is full, then it does something else…

– Non-reactive TB with fixed delays will break immediately, if DUT’s timing changes

16.11.2017Arto Perttula 35

Presence of Expected Results +

Non-Existence of Bad Side-Effects

• It is evident to check that the main result happens

– E.g., having inputs a=5, b=6 yields an output sum=11

– For realistic system, even this gets hard

• It is much more subtle and harder to check that nothing else happens

– E.g., the previous result is not an overflow, not negative, not zero, valid does not remain active too long, all

outputs that should remain constant really do so, unit does not send any extra data…

– E.g., SW function does not corrupt memory (even if it calculates correct result), SW function does not modify

HW unit’s control registers unexpectedly, function does not wipe the GUI screen blank…

– This is tricky if the consequence is seen on primary outputs much later (e.g., later operation fails since

control registers were modified unexpectedly)

• Usually there is one or perhaps few entirely correct results and infinite number of wrong ones

16.11.2017Arto Perttula 36

Check Absence of Side-Effects! (2)

• TB correctly checked the upper outputs of the ALU (those affected with given stimulus)

• Implicit, false assumption was not verified!

• Glitch in lower signals goes undetected in TB but causes problems in real SoC

– E.g., divide-by-zero rises during add operation

Arto Perttula 37

Mutation Testing

• Q: How do you know if your TB really catches any bugs?

• A: Create intentional bugs and see what happens

• Examples

– Some output is stuck to ’0’ or ’1’

– Condition if (a and b) then becomes if (a or b)

– Comparison > becomes >=

– Assignment b <= a becomes b <= a+1

– Loop iterates 1 round less or more

– State machine starts from different state or omits some state change

• Automated mutation tools replace manual work

• If mutated code is not detected, the reason could be

a) Poor checking

b) Too few test cases

c) Codes were actually functionally equivalent

16.11.2017Arto Perttula 38

Test Bench with Text-IO

• Stimulus for DUT is read from an input file and modified in the

source component

• The response is modified in the sink and written to the output file

16.11.2017Arto Perttula 39

Test Bench with Text-IO (2): Structure

• Test case:

16.11.2017Arto Perttula 40

Test Bench with Text-IO (3): Libraries

• Test bench:

– Libraries, remember to declare the textio-library!

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all; -- old skool

use std.textio.all;

use IEEE.std_logic_textio.all;

16.11.2017Arto Perttula 41

Test Bench with Text-IO (4): Declarations

• Architecture

ARCHITECTURE text_io OF source_tb IS

COMPONENT adder

PORT (

clk : IN STD_LOGIC;

rst_n : IN STD_LOGIC;

a, b : IN UNSIGNED(2 DOWNTO 0);

y : OUT UNSIGNED(2 DOWNTO 0)

);

END COMPONENT;

CONSTANT period : TIME := 50 ns; -- even value

SIGNAL clk : STD_LOGIC := ’0’;

SIGNAL rst_n : STD_LOGIC;

SIGNAL a, b, y : unsigned(2 downto 0);

16.11.2017Arto Perttula 42

Test Bench with Text-IO (5):

Clock, Reset, Instantiation

• In architecture body
begin

DUT : adder

PORT MAP (

clk => clk,

rst_n => rst_n,

a => a,

b => b,

y => y);

clk <= NOT clk AFTER period/2;

rst_n <= ’0’,

’1’ AFTER 75 ns;

16.11.2017Arto Perttula 43

Test Bench with Text-IO (6):

Process for File Handling

• Create process and declare the input and output files (VHDL’87)

process (clk, rst_n)

FILE file_in : TEXT IS IN "datain.txt";

FILE file_out : TEXT IS OUT "dataout.txt";

– File paths are relative to simulation directory (the one with modelsim.ini)

• Variables for one line of the input and output files

VARIABLE line_in : LINE;

VARIABLE line_out : LINE;

– Value of variable is updated immediately. Hence, the new value is visible on the same

execution of the process (already on the next line)

• Variables for the value in one line

VARIABLE input_tmp : INTEGER;

VARIABLE output_tmp : INTEGER;

16.11.2017Arto Perttula 44

Test Bench with Text-IO (7): Main Process

• Beginning of the process and reset

BEGIN -- process

IF rst_n = ’0’ THEN -- asynchronous reset

a <= (OTHERS => ’0’);

b <= (OTHERS => ’0’);

ELSIF clk’EVENT AND clk = ’1’ THEN -- rising clock edge

• Read one line from the input file to the variable “line_in” and read the value in the line

“line_in” to the variable “input_tmp”

IF NOT (ENDFILE(file_in)) THEN

READLINE(file_in, line_in);

READ (line_in, input_tmp);

16.11.2017Arto Perttula 45

Test Bench with Text-IO (8):

Handle I/O Line by Line

• ”input_tmp” is fed to both inputs of the DUT
a <= CONV_UNSIGNED(input_tmp, 3); -- old skool conversion

b <= CONV_UNSIGNED(input_tmp, 3);

• The response of the DUT is converted to integer and fed to the variable “output_tmp”
output_tmp := CONV_INTEGER(y);

• The variable “output_tmp” is written to the line “line_out” that is written to the file
“file_out”
WRITE (line_out, output_tmp);

WRITELINE(file_out, line_out);

• At the end of the input file the note “End of file!” is given
ELSE

ASSERT FALSE

REPORT "End of file!"

SEVERITY NOTE;

END IF;

16.11.2017Arto Perttula 46

Test Bench with Text-IO (9): Simulation Results

• Simulation:

16.11.2017 47

Now, the designer can prepare multiple test sets for certain corner
cases (positive/negative values, almost max/min values, otherwise
interesting) . However, the VHDL is not modified.

This version does not check the response yet.

Test Bench with Text-IO (10): Files

• Input file provided to test bench • Output file produced by the test bench

16.11.2017Arto Perttula 48

Two cycle latency:

1 cycle due to file read

+1 cycle due to DUT

...

Comments:
For each stimulus file, the designer also prepares the expected output trace. It can be automatically
compared to the response of DUV, either in VHDL or using command line tool diff in Linux/Unix.
It is good to allow comments in stimulus file. They can describe the structure:
e.g. There is 1 line per cycle, 1st value is… in hexadecimal format, 2nd value is…

Use Headers in Input And

Output Files
• Fundamental idea is to have many

input, reference output, and result

files

– Provide clear links between these

• Use headers!

• E.g., input file
• # File: ov1_in.txt

• # Purpose: Test overflow…

• # Designer: Xavier Öllqvist

• # Date: 2013-12-24 16:55:02

• # Version: 1.1

• # Num of cases: 430

• # Line format: hexadecimal…

• E.g., DUV output log could provide

summary
• # File: ov1_out.txt

• # Input File: ov1_in.txt

• # Time: 2014-02-03 14:24:33

• # User: xavi

• # Format:…

• 0

• 0

• 4…

• # Sim ends at: 100 ms

• # Num of cases: 430

• # Errors: 0

• # Throughput: 25.4 MB/s

• . . .

16.11.2017Arto Perttula 49

Text-I/O Types Supported by Default

• READ and WRITE procedures support

– bit, bit_vector

– boolean

– character

– integer

– real

– string

– time

– Source: textio_vhdl93 library, Altera

• For other types use txt_util.vhd from

http://www.stefanvhdl.com/vhdl/vhdl/txt_util.vhd

16.11.2017Arto Perttula 50

Hint: std_logic_1164, numeric_std etc are
all available in VHDL, you can always
check those for reference.

Test Prints

• Printing a constant text string is easy inside processes, just report what’s going on

process (…)

…

report (”Thunder!”);

• Some people use

assert false report ”Bazinga!” severity…

• Whereas some prefer

write (line_v, string'(”Halibatsuippa!”));

writeline(output, line_v);

-- output is a reserved word for stdout

• On the other hand, signal and variable values are a bit tricky

• Tip: In ModelSim, double-clicking a print message takes the cursor in wave window to the correct

time instant

16.11.2017Arto Perttula 51

Test Print Examples (2)

• Write function example for 1-bit std_logic

write (line_v, string'(“Enable “));

write (line_v, to_bit(en_r));

writeline(output, line_v);

• Integers and enumerations can be converted to string, for example

write (line_v, string'(“I= “)& integer'image(5));

or

report “Value is “

& integer‘image(to_integer(unsigned(data_vec)));

• It is recommended to print which value the test bench expected in addition to what is actually got

(”Exp: 512, Got: 511”)

– Easier to see, e.g., off-by-one errrors (value differs ±1), wrong timing (±1 clock cycle), overflow, tb bugs

16.11.2017Arto Perttula 52

Same Test Bench for Different Designs

• Architecture of the DUT can be changed

• Should always be the objective

• Creating a separate test bench for gate-level will likely introduce bugs in TB

16.11.2017Arto Perttula 53

Golden Design

• DUT is compared to the specification, i.e., the golden design

– Something that is agreed to be correct

– E.g., non-synthesizable model vs. fully optimized, pipelined, synthesizable DUT

• Special care is needed if DUT and Golden Design have different timing

16.11.2017Arto Perttula 54

Complex Test Bench

16.11.2017Arto Perttula 55

Golden
design

Compare
Stimulus
generation

Input
File

Results
File

TB

Pass/fail
indication

static part of TB

dynamic part
of TB

DUT

The Simulation with a Golden Design

56

For example, ensure that two models are equivalent. E.g. behavioral
model for fast simulation and RTL model for efficient synthesis.

Example of Golden Design Test Bench

• Often, a system is first modeled with software and then parts are hardware accelerated

– Software implementation serves as a golden reference

• E.g., video encoder implemented with C, motion estimation accelerated

• Tends to be quite slow

16.11.2017 57

VHDL TESTBENCH

C Video

encoder

Read,

convert,

interfacestimuli

DUV

Motion Est

C motion

estimation

Compare
result

Feedback for the video encoder

OK?

Foreign language interface (FLI)

Autonomous Test Bench

• Does not need input file stimulus

• Determines the right result ”on-the-fly”

• Very good for checking if simple changes or optimizations broke the design

• Note that some (pseudo-)randomization on the stimuli must be done in order to make sure that the unusual cases

are covered

– Check the code, statement, and branch coverages!

16.11.2017 58

Design Flow

16.11.2017Arto Perttula 59

EXAMPLE AND

CONCLUSIONS

16.11.2017Arto Perttula 60

The Test Scenario

• DUV system-level interconnection network between IP blocks (CPUs, memories, accelerators…)

• TB must be expandable to very large configurations

61

What Is the Interconnection?

• The interconnection topology does not matter since we did not make assumptions about it, only the

functionality of the interconnection

a) Data arrives at correct destination

b) Data does not arrive to wrong destination

c) Data does not change (or duplicate)

d) Data B does not arrive before A, if A was sent before it

e) No IP starves (is blocked for long periods of time)

Example: Verifying an Interconnection

• Tested interconnections delivers data from a single source to destination

– Same principle, same IP interface, slightly different addressing

• Note that only the transferred data integrity is important, not what it represents – Running

numbers are great!

• The test bench should provide few assertions (features a-d in previous slide)

• When checking these assertions, you also implicitely verify the correctness of the interface!

– I.e., read-during-write, write to full buffer, write with an erroneous command etc.

• All of these can be fairly simply accomplished with an automatic test bench requiring no external

files

• TB is pseudo-random numbers (*)

– Longer simulation provides more thoroughness

– The same run can be repeated because it is not really random

– (*) Note that even if pseudo-random sequence is exactly the same, any change in DUV timing might mask

out the bug in later runs

16.11.2017Arto Perttula 63

Hierarchical Interconnection Test Bench

• Separate the stimuli and verification

• Sender configuration per test agent-basis

– Burst length (i.e., sending several data in

consecutive clock cycles)

– Idle times

– Destination

• Initial values:

– Seed for counter / LFSR

– Number of components

– Addresses of components

• Sender and Receiver

– Counter or PRNG needed for each source and/or

destination!

– (PRNG = pseudo-random number generator)

16.11.2017Arto Perttula 64

Autonomous And Complex Test Benches

• Always a preferred choice – Well designed, reusable test bench pays back

• Use modular design

– Input (stimuli) separated from output (check) blocks in code

– Arbitrary number of test agents can be instantiated

– Interconnection-specific addressing separated from rest of the logic

• All test benches should automatically check for errors

– No manual comparison in any stage

• Code coverage must be high

– However, high code coverage does not imply that the TB is all-inclusive, but it is required for that!

– Autonomous test benches must include long runs and random patterns to make sure that corner cases are checked

• Designing the test benches in a synchronous manner makes sure that the delta delays do not mess things up

– Syncronous test bench also works as the real environment would

– More on the delta delay on next lecture about simulators

16.11.2017Arto Perttula 65

Example VHDL

• Traffic light test bench

• Statement, Branch, Condition and expression coverage 100%

• However, the test bench is not perfect!

• Example VHDL code shown (available at web page)

• General test bench form

begin -- tb

-- component instantiation

DUV : traffic_light ...

input : process (clk, rst_n)

begin -- process input

...

end process input;

output: process (clk, rst_n)

begin -- process output

...

end process output;

Clock generation

Reset generation

end tb;

16.11.2017Arto Perttula 66

Synthesizable Test Benches

• Synchronous, synthesizable test benches are a good practice if, e.g., the design

includes clock domain crossings

• Can be synthesized to an FPGA and test in a real environment

• Run-time error checking facilities to a real product may be extracted from the test

bench easily

• Then, assertion should be written this way:
if (a > b) then

assert false ”error” …

error_out(0) <= ’1’;

end if;

– Or one can make own assertions for simulation and synthesis, e.g.,

Assert_gen(cond, level, error_sig);

– In simulation, regular assertion, in synthesis, assigns to error_sig

16.11.2017Arto Perttula 67

Choosing Test Method

A. Manual

– Generate test with ModelSim force command

– Check the wave forms

B. Automated test generation and response

checking

• B is the only viable option

• This real-life figure shows only

– 1/3 of signals

– 1/50 000 of time line

• This check should be repeated few times a day

during development…

16.11.2017 68

1 000 cycles

clk signal

Summary And General Guidelines

• Every entity you design has an own test bench

• Automatic verification and result checking

– Input generated internally or from a file

– Output checked automatically

– The less external files we rely on, the easier is the usage

• Somebody else will also be using your code!

– ”vsim my_tb; run 10ms;”  ”tests ok”

– or just type ”make verify”

• Timeout counters detect if the design does not respond at all!

– You must not rely that the designer checks the waves

• Test infrastructure is often of similar size and sometimes larger than the actual design

– TB must be easy to run and analyze the results

– TB may have bugs

– TB may be reused and modified. That must be easy.

16.11.2017Arto Perttula 69

SELF-STUDY

16.11.2017Arto Perttula 70

Correct Bugs Early

• Earlier the bugs fixed, the cheaper

– Shorter design time

– Smaller personel cost

– Bigger market share

• Worst case: already sold devices

must be returned to manufacturer

• Similarly, a bug in specification

affects all other phases

• May require changes in many

places

16.11.2017Arto Perttula 71

[B.W. Boehm, Software Engineering,

IEEE Trans. Computers, 1976]

(log scale)

SoC Failures Cause

Production Delays

16.11.2017Arto Perttula 72

Left: [J. Costello, Delivering Quality Delivers

Profits, IEEE ISQED, March 27, 2001]

• Incresed NRE (new mask, chip redesing)

• Lost revenue in the market (due to delay)

Right: [P. Woo, Structured ASICs - A Risk Management Tool, Design&Reuse, Sep. 2005, [online]

Available: http://www.design-reuse.com/articles/11367/structured-asics-a-risk-management-tool.html]

Time-To-Market (TTM)

16.11.2017 73

[J. Costello, Delivering Quality Delivers Profits

IEEE ISQED, March 27, 2001]

Table 1. Time-to-market matters

Potential Sales

Time-To-Market Achieved

First-To-Market 100%

3 Months Late 73%

6 Months Late 53%

9 Months Late 32%

12 Months Late 9%

[E. Clarke, FPGAs and Structured ASICs: Low-Risk

SoC for the Masses, Design & Reuse,

http://www.design-reuse.com/articles/13080/fpgas-

and-structured-asics-low-risk-soc-for-the-

masses.html]

Source of Failures

74[P. Magarshack, SoC at the heart of conflicting, Réunion du comité de pilotage (20/02/2002),

trendshttp://www.comelec.enst.fr/rtp_soc/reunion_20020220/ST_nb.pdf]

Most logical errors

could be found

before fabrication

16.11.2017 75

[http://blogs.mentor.com/verificationhorizons/blog/2011/04/01/part-3-the-2010-wilson-research-group-functional-verification-study/slide21-2/]

Designers are reusing not only logic but also testbenches

TB

Verification Methods (1)

1. Reviews come in 2 flavors

1. Specification reviews are especially useful

• Remove ambiguities

• Define how certain aspects of specification are recognized and analyzed in final product

• Be sure to capture customer’s wishes correctly

2. Code review

• Designer explains the code to others

• Surprisingly good results even if others do not fully understand

• Good for creating clear and easy-to-understand code

• Limited to small code sizes

• Define and adopt coding guidelines

– Automated checkers (lint) tools available

– ”I’ve made many many product mistakes over the years. I should at least help make sure we make new

mistakes this time around”

• Eric Hahn on code reviews

16.11.2017Arto Perttula 76

Verification Methods (2)

2. Simulation-based

– Behavior is simulated in simulator program

– Relies on test data

• Test bench creation takes time

– Cannot prove correctness

– Slow, 100 Hz - 100kHz

– Many levels of abstraction (algorithm vs. RTL vs. gate-level)

– Availability of models might be a problem

– Most widely used method

– System simulation in lecture 5

16.11.2017Arto Perttula 77

Example 1: SystemC TLM + visualization

Example 2: RTL

Example 3:

Transistor-level

Verification Methods (3)

3. HW emulation

– (Part of the) system is executed on

programmable HW (FPGA)

• ”FPGA prototype”, no mask costs as in ASIC proto

– Nearly real-time execution (~1 MHz - 100 MHz)

• But no regard of real logic delays!

– Can connect to real external HW, such as radio

– Rough GUI testing possible

– Setup time may be long, e.g., few hours

• Needs synthesis and place-and-route

– Traditionally quite expensive systems

– Reduced visibility compared to simulation

– Relies on test data, cannot prove correctness

16.11.2017Arto Perttula 78

Example: BEE4 system

contains 4 Xilinx Virtex-6

LX550 FPGAs (20 Million

system gates per FPGA)

Verification Methods (4)

4. Formal methods

– Correctness proven mathematically

– Does not require test data

1. Equivalence checkers

• Check that two versions (e.g., RTL vs. gate-level) are

functionally identical

• Supported by many synthesis tools

2. Model checking

• Compare behaviour with formal specification

– Proves that something good eventually happens (e.g.,

every request receives acknowledgement)

– Proves that something bad will never happen (e.g., no

deadlock)

• Practically nobody writes such specifications currently…

3. Semi-formal is combination of formal and simulation

• Assertions

16.11.2017Arto Perttula 79

Levels of Verfication

• Level 0: Designer / macro, lowest level

– Verification done by the designer (one who wrote the VHDL)

– Ensures that the design will load into simulator and that basic operation work

– Often many changes in specification expected this level

– Small block size, perhaps just a single HDL file, suitable also for formal verification

• Level 1: Unit /core

– Combines few low-level blocks together, DMA, ALU…

– More stable interfaces and functions compared to level 0

• Test suite remains mostly unchanged

– Reusable component (a core) necessitates more thorough verification

• Pro: Once verified, work always

• Con: Can be used in arbitrary environment, hard to verify all corner cases

16.11.2017Arto Perttula 80

Levels of Verification (2)

• Level 1: Unit / core continued

– Most important level for functional verification

– Q: How to gain customer’s confidence when selling core?

– A: Well-defined verification process, regression suite, proper documentation,

coverage reports, good reputation based on previous cores…

• Level 2+: Chip, Board, System

– Multiple units, stable interfaces

• Possibly glue logic

– Some functions cannot be verified a unit level

• For example, reset and start-up sequence

– Interaction rather than particular functions are important at system level

16.11.2017Arto Perttula 81

Choose the Lowest Possible Level

• Always choose the lowest level that completely contains the targeted function

– Smallest state space, fast simulation

– 79% of bugs were found at BLOCK LEVEL [S. Switzer, Using Embedded Checkers to Solve

Verification Challenges, Designcon, 2000]

• Each verifiable piece should have its own specification document

• Every VHDL entity must have its own test bench, at least the simple macro-level TB

• New and/or complex functions need extra focus

• Bugs seldom live alone

• Controllability and observability define the correct level

• The lower the level, the more control/visibility

16.11.2017Arto Perttula 82

Visibility of DUT

• Black box

– Contents invisible

– Access only through primary inputs and outputs

– E.g., proto-chip, SW binary

• Gray box

– Some parts visible, perhaps touchable

– E.g., proto-chip with test IO, some FPGAs

• White box, Glass box

– All parts fully visible and touchable

– E.g., RTL

Arto Perttula 83

outputinput

outputinput

outputinput

dbg_out

dbg_in

Repeating Tests

• Same error must be repeated to see if fix works

– Same test data, same timing

 Automated test generation

• Must ensure that ”fix” does not break any other part of system

 Automated checking

• Manual checking suitable only for TB creation

• Preferably same TB during the design refinement

• E.g., RTL and gate-level use same TB

• Keep all the test cases that have failed

• Already fixed errors sometimes reappear later

• Partition test cases into smaller sets

16.11.2017Arto Perttula 84

Bug-Free Behaviour Not Guaranteed

16.11.2017Arto Perttula 85

• [M. Keating, Toward Zero-Defect Design: Managing Functional Complexity in the Era of Multi-Million-Gate Design Architecture, DCAS '05]

Random Test Input

• Good for finding corner cases

• Easy to produce, allow large test vector sets

– Luckily, pseudo-random number generators produce same series if seed is same

– Running numbers are sometimes enough!

– Can generate random input to file reproducible (but space-hungry)

• Randomness makes it harder to track error source

– Output with running numbers: 1,2,3,4,888,6,7...

– Output with random data: 701,123,-987,2,3,4,5,..

16.11.2017Arto Perttula 86

 Should not be

used without

test cases with

’known values’

[S. Taylor, DAC 1998]

Tracking the Error Source,

Assertions

Test Print Layout

• Default layout for report/assert uses two lines which is somewhat

inconvenient
** Note: Thunder!

Time: 60 ns Iteration: 0 Instance: /tb_tentti

• Modify modelsim.ini and restart vsim
; AssertionFormat = "** %S: %R\n Time: %T Iteration: %D%I\n"

AssertionFormat = "** %S: %R Time: %T %I\n"

• Then
** Note: Thunder! Time: 60 ns Instance: /tb_tentti

** Note: hojo hojo Time: 88 ns Instance: /tb_tentti

– Me likes! For example, using grep is much much easier now

16.11.2017Arto Perttula 88

File Handling in VHDL’87 and ’93

• [HARDI VHDL handbook's page 71]

-- VHDL’87:

FILE f1 : myFile IS IN ”name_in_file_system”;

FILE f2 : mySecondFile IS OUT ”name_in_file_system”;

-- VHDL’93:

FILE f1 : myFile OPEN READ_MODE IS ”name_in_file_system”;

FILE f2 : mySecondFile OPEN WRITE_MODE IS ”name_in_file_system”;

• Input files may be written compatible with both VHDL’87 and VHDL’93, but for output

files that is not possible:

-- Declaration of an input file both for VHDL’87 and VHDL’93

FILE f : myFile IS ”name_in_file_system”;

• The predefined subprograms FILE_OPEN and FILE_CLOSE do not exist in VHDL’87

16.11.2017Arto Perttula 89

Visibility on FPGA: Logic

Analyzer (1)

• Provide easily accessible test points to the PCB

– Route interesting signals to FPGA output/PCB test point

– Clock, reset, state register, write enable, error flag

• Still only few (~2%) of signals on PCB are accessible to external logic analyzer

– Number of analyzer inputs also restricted

• Integrated Logic Analyzer (ILA) used

– Synthesized into FPGAs

• Takes few logic resources just like communication networks

– Monitors selected signals

a) Transmitting signal values to workstation via JTAG is slow (< 56Kb/s)

b) Signal values stored in memory (1MB, 133MHz, 32b) and read after emulation run

– Waveform displayed on workstation (just like in RTL simulation)

– Not emulator-specific – can be used in any FPGA

16.11.2017Arto Perttula 90

Visibility on FPGA: Logic Analyzer (2)

• Only short (e.g., < 2048 cycles) traces collected if only on-chip memory utilized

 Hard to define correct trigger condition

Arto Perttula 91

Tracking Error Source (1)

a) Pass / no pass

– When errors cannot be corrected, source is irrelevant

– E.g., manufacturing test on chips (black box)

• Faulty chips are thrown away

b) Usually the errors should be corrected

– Locating error is necessary

• SW or HW

• Which component

• Which internal state

• Line of code

• Which test case (input sequence)

• Locating errors is easier if

– smaller the system being verified

– fewer changes have been made to functioning system

16.11.2017Arto Perttula 92

Tracking Error Source (2)

• In large design,

– error is hard to repeat in controlled way

– error at output is hard to find

– error source extremely difficult to find

• Common case: spend 1 month for finding the bug, fix it in 5 minutes

93

real error source

[B. Bailey, Property Based Verification for SoC, Tampere SoC, 2003]

monitor detects error

Tracking Error Source (3)

• Sad example of bus testing:

– Transmit 50 times value 0x7 and check that 50 values are received. What if:

a) <50 data received: which were missing?

b) 50 received: is some data duplicated and some missing?

c) >50 received: which one is duplicated?

• Selection of test data may simplify finding error

– Consider transmitting sequential numbers (1,2,3...) over bus instead on constant value 7

– Locating duplicated/missing data is trivial

– Of course, sequential numbers are not that useful with, e.g., arithmetic components

– Using unique values in test input helps to track the error from wave format or trace

• Differentiate sources: (1,2,3...); (101,102,103...); ...(901,902,903...)

16.11.2017Arto Perttula 94

Tracking Error Source (4)

• Assertions can be added to modules or interfaces

• Brings the point detection closer to the point of problem injection

– Close in time (clock cycle)

– Close in place (module, code line)

• Simplifies TB – no longer necessary to propagate all effects to outputs

assertion OK

assertion detects error
error source

[B. Bailey, Property Based Verification for SoC, Tampere SoC, 2003]

Assertions (1)

• Express the design intent

– Best captured by the designer

– ”Built-in implementation specification”

• Check that certain properties always hold

– FSM won’t enter illegal state, one-hot encoding is always legal etc.

• Checked during simulation, not synthesizable

– Synthesizable HDL assertion would be über-cool

• E.g., signals A and B must NEVER be ’1’ at the same time

– VHDL: assert (A and B = 0) report ”A and B simultaneously asserted”

severity warning;

 VHDL simulator: Warning: A and B simultaneously asserted, Time: 500 ns,

component : /tb_system/tx_ctrl/

16.11.2017Arto Perttula 96

Assertion (2): Classification

a) Event detection

– Simplest form

– Checks the absence of a specific event, which is a sign of failure

• E.g., FIFO seems empty and full at the same time

– Static – not related to any other event

b) Temporal event detection

– Refer to sequence of events

– VHDL assertions have restricted means for expressing timing (sequences)

• E.g., check that after 2 cycles…

– Possible to build specific logic that creates simple Boolean check for the assert

– Addressed by formal methods, such as PSL/Sugar

16.11.2017Arto Perttula 97

Assertions (3)

c) Pre-defined event detection

bulding blocks

– Library for checking often

occurring events

– Data structures (stack, buffer,

FIFO) or control structures

(handshake)

• Figure: Defensive HDL design

• Special tools can process VHDL

assertions and try to violate them

16.11.2017Arto Perttula 98

DUV

... ...
assertassertassert

This logic ”cone” is

checked by

assertion(s).

Errors will be be

caught

This logic is

protected by

asserion(s).

Erroroneous

values won’t pass

the asertion(s).

Assertions (4)

• In C language:

• Degines in header file assert.h

• Common error outputting is in the form:

– Assertion failed: expression, file filename, line line-number

• Example:
#include<assert.h>

void open_record(char *record_name)

{

assert(record_name!=NULL);

/* Rest of code */

}

16.11.2017Arto Perttula 99

Assertions (5)

16.11.2017Arto Perttula 100

[M. Kantrowitz L.M. Noack, I'm Done Simulating; Now What?

Verification Coverage Analysis and Correctness Checking of

the DECchip 21164 Alpha microprocessor, DAC, June 1996,

pp. 325-330.

http://www.sigda.org/Archives/ProceedingArchives/Compen

diums/papers/1996/dac96/pdffiles/23_5.pdf]

[S. Taylor et al., Functional Verification of a Multiple-issue,

Out-of-Order, Superscalar Alpha Processor—The DEC

Alpha 21264 Microprocessor, DAC 98, pp. 638-644.

http://www.sigda.org/Archives/ProceedingArchives/Compen

diums/papers/1998/dac98/pdffiles/39_1.pdf]

Assertions (6)

• Powerful in finding errors in simulation

• Assertions can be used as a base for generating test cases

automatically

• Naturally, cannot be synthesized

– Synthesizable HW monitors may be developed case-by-case

• Error tracking

• Performance measurement

• Trigger the trace collection for off-line analysis

• USE ASSERTIONS

16.11.2017Arto Perttula 101

