
A Survey of Customizability in Operating Systems Research

G. DENYS

CoWare

AND

F. PIESSENS AND F. MATTHIJS

Katholieke Universiteit Leuven

An important goal of an operating system is to make computing and communication
resources available in a fair and efficient way to the applications that will run on top of
it. To achieve this result, the operating system implements a number of policies for
allocating resources to, and sharing resources among applications, and it implements
safety mechanisms to guard against misbehaving applications. However, for most of
these allocation and sharing tasks, no single optimal policy exists. Different
applications may prefer different operating system policies to achieve their goals in the
best possible way. A customizable or adaptable operating system is an operating system
that allows for flexible modification of important system policies. Over the past decade,
a wide range of approaches for achieving customizability has been explored in the
operating systems research community. In this survey, an overview of these approaches,
structured around a taxonomy, is presented.

Categories and Subject Descriptors: C.4 Performance of Systems: design studies;
D.4.6 Operating Systems: Security and Protection; D.4.7 Operating Systems:
Organization and Design

General Terms: Design, Performance, Security

Additional Key Words and Phrases: Customizability, microkernels, operating systems,
software protection mechanisms

1. INTRODUCTION

The main purpose of a customizable or
adaptable operating system is to provide

F. Piessens is a Postdoctoral Fellow of the Belgian National Fund for Scientific Research (N.F.W.O.)
Author’s addresses: G. Denys, CoWare, 2121 North First Street, San Jose, CA 95131; email: geert@
coware.com; F. Piessens and F. Matthijs, Department of Computer Science, K. U. Leuven, Celestijnenlaan
200A, 3001 Leuven, Belgium; email: {frank,frankm}@cs.kuleuven.ac.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or
permissions@acm.org.
c©2002 ACM 0360-0300/02/1200-0450 $5.00

flexible mechanisms and policies to its
clients, so that they can achieve their goals
in a better way. The clients of an operat-
ing system are the applications, but also

ACM Computing Surveys, Vol. 34, No. 4, December 2002, pp. 450–468.

A Survey of Customizability in Operating Systems Research 451

application developers and administra-
tors. Depending on the context, different
goals will be driving the need for customiz-
ability. Often, performance is the driver
for customizability in general-purpose op-
erating systems. For embedded systems,
the power consumption or software foot-
print may be the main driver. When an op-
erating system supports multiple clients,
conflicting needs are likely to arise. An im-
portant goal of making the system cus-
tomizable is to adapt gracefully to these
conflicting needs.

Customizability (or adaptability) has al-
ways been a concern for operating system
designers. Even in the very early oper-
ating systems, some form of customiza-
tion was possible, often during the sys-
tem generation phase. However, in recent
years, customizability has become a ma-
jor topic in operating system research,
and a number of different techniques
have been explored to achieve build-time,
installation-time and even run-time cus-
tomizability. While working on a project
that required a run-time customizable
protocol stack, and thus studying the lit-
erature on customizability, the authors
felt that the variety of approaches made
the literature quite inaccessible, and hin-
dered a quick dissemination of results.
This article provides a survey and a
taxonomy of the various approaches to
customizability that have been proposed
and experimented with over the past
decade, and we hope this paper will be
a good entry point into the literature on
customizability.

The article is structured as follows:
we start in Section 2 with a discus-
sion of some typical design issues in de-
signing customizable operating systems.
This discussion forms the motivation for
our taxonomy of customizable operat-
ing systems, presented in Section 3. The
structure of the rest of this article mir-
rors the presented taxonomy: various re-
search projects are discussed according to
their classification in the taxonomy. Of
course, the list of projects we discuss is
not exhaustive, but it includes at least one
representative example of each interest-
ing class in the taxonomy.

2. DESIGN ISSUES IN CUSTOMIZABLE
OPERATING SYSTEMS

Introducing customizability in operating
systems invariably leads to confrontations
with other operating system characteris-
tics. In this section, we describe important
considerations and issues that designers
have to take into account.

2.1. Performance

When designing a customizable operating
system, or any customizable system for
that matter, an important trade-off that
designers have to make is between cus-
tomizability and performance.

Often customizability is introduced to
improve system or application perfor-
mance, as noted in the introduction.
However, the customizability mechanisms
themselves may introduce performance
overheads, which have to be weighed
against the benefits the designers are pur-
suing with the customizable system.

In early, noncustomizable, operating
systems this trade-off has led to mostly
monolithic solutions where functionality
and policies were fixed. The designers de-
termined what functionality to offer and
what policies to use, so that “most” appli-
cations could be supported with reason-
able efficiency. Applications that matched
the operating system’s design decisions
would run well, applications with non-
standard resource usage patterns, such as
databases, were less well supported, re-
sulting in suboptimal performance.

2.2. Spread

The customizable system may support
customization throughout the operating
system so that every important policy can
be adapted (widespread customization).
Alternatively, the system may only sup-
port focused customization, in which only
a certain set of policies can be adapted, for
instance the scheduling policy.

2.3. Granularity

For each customizable policy, the oper-
ating system can set the granularity of
customization.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

452 G. Denys et al.

With fine-grained customization, all as-
pects of the policy can be adapted in a
seemingly unrestricted way. In a coarse-
grained approach, only certain aspects of
the policy can be changed, in a restricted
way; for instance, a choice between prede-
fined scheduling algorithms.

2.4. Integrity

Making an operating system customizable
should not introduce other defects in the
system. Customizability can compromise
the integrity of an operating system,
especially if applications are allowed to
introduce new functionality or policies
in the system. Therefore, an important
requirement for a good design is integrity
protection.

We can define the integrity of an op-
erating system as the set of invariants
which are established and maintained by
the operating system in order to ensure
its correct internal operation and to ful-
fill its contract toward its clients. When
discussing integrity, it is essential to re-
alize that this may cover a lot more than
just memory protection—ensuring that no
application can access data or execute
code in an unauthorized way. There are
various other ways in which applications
can misbehave: resource hoarding (infi-
nite looping, excessive memory allocation,
etc.), denial of service or unauthorized
use of kernel interfaces. The integrity
can be enforced through verification or
protection (see Section 6 for a detailed
discussion).

The level and complexity of measures
that need to be enforced by an operating
system is related to both the granularity
and the spread of customization that is
supported by the operating system. The
finer-grained and the more widespread the
customizability is in an operating system,
the more complex the safety mechanisms
will need to be.

2.5. Purpose

The operating system is either intended
for a well-known set of applications (a

specific or special-purpose operating sys-
tem), or it makes no assumptions about
the expected functionality and variety of
the applications both present and future
(a general-purpose operating system).

A general-purpose operating system
will increase the need for fine-grained
and widespread customization, whereas
a special-purpose system may succeed
by having coarser-grained and less
widespread customization.

2.6. Paradigm

Another important design choice is the
paradigm supported by the operating sys-
tem. The underlying paradigm profoundly
affects the way the operating system is
structured and the way applications must
be built on top.

The main choice is whether to support
a traditional, POSIX-like, paradigm or a
non-traditional paradigm. The traditional
paradigm is supported by the vast major-
ity of the installed base of production oper-
ating systems, such as Linux, Solaris and
Windows. Similarly, the majority of cus-
tomizable operating system projects dis-
cussed in this survey is structured accord-
ing to this traditional paradigm, or at least
supports this paradigm.

A nontraditional paradigm, such as the
reflective operating systems discussed in
Section 5.3, or the data-path oriented sys-
tems discussed in Section 4.1, may better
support the needs of a customizable sys-
tem. On the other hand, it is clear that
the paradigm used by an operating system
has a strong impact on how applications
are to be developed. Special tools may be
required to build applications, which may
seriously complicate matters for applica-
tion developers.

3. TAXONOMY

The design issues mentioned in the previ-
ous section have forced operating system
designers to adopt a large number of dif-
ferent solutions. In order to classify the
various approaches, we introduce a taxon-
omy of customizable operating systems.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

A Survey of Customizability in Operating Systems Research 453

The two main criteria in our taxonomy
are:

(1) The initiator of adaptation.
—A human administrator or operating

system designer.
—An application.
—The operating system itself. We refer

to this as automatic adaptation.
(2) The time of adaptation.

—During design, build or installation
time of the operating system. We re-
fer to this as static adaptation.

—During boot or run time of the op-
erating system. We refer to this as
dynamic adaptation.

These criteria are well suited to classify
the current research projects on customiz-
able operating systems. Because these two
criteria are orthogonal, six categories are
identified by this taxonomy. However, only
five of the six categories make sense:
application-initiated adaptation can not
happen statically. We discuss each cate-
gory in more detail. We use the first crite-
rion as the primary structure for this dis-
cussion and the structure of the rest of this
survey as well.

3.1. Human-Initiated Adaptation

When using static adaptation, the systems
in this category are referred to as operat-
ing system frameworks which the designer
can customize to create an operating
system.

If the application domain is known in
advance, one can make a specific operat-
ing system, which supports the envisioned
functionality but nothing more. This re-
sults in a high-performance, application-
specific operating system. The specific op-
erating system is built from a framework,
which can be customized by the operating
system designer at design time.

To produce an optimal specific operating
system, it must be possible to customize
the framework thoroughly and with fine
granularity. The system designer selects
from a set of predefined parts those parts
that best match the target application(s).
He may introduce new parts or customized
versions of predefined parts. Once the

operating system is built from these parts,
its functionality and policies are fixed.

This form of adaptation can be applied
to embedded operating systems for devices
with a specific functionality. The operating
system requirements of a cellular phone
differ from those of a network router, but
their respective operating systems may be
derived from the same operating system
framework.

For specific operating systems, the ex-
pected functionality is well understood
and more or less stable in time. Hence,
designing a specific operating system to
be very flexible (run-time customizable)
would be of little value for the supported
applications. It is preferable to design the
operating system to optimally fit the need
of the envisioned functionality. Flexibility
in this respect would only result in a per-
formance penalty.

Operating system frameworks may be
sufficiently general that they can even be
used to derive general-purpose operating
systems.

Dynamic adaptation is possible in most
production operating systems: a system
administrator can initiate adaptations at
boot or run time. At boot time, the ker-
nel can be passed parameters and con-
figuration settings to adapts its behavior;
at run time the administrator can install
and deploy new kernel modules, or can ob-
serve performance parameters and conse-
quently tune the operating system.

Human-initiated adaptation is further
discussed in Section 4.

3.2. Application-Initiated Adaptation

Applications are the main clients of an
operating system. Since they only exist
during the operational phase of the oper-
ating system, application-initiated adap-
tation can only be performed dynamically
and not statically. Hence, the second crite-
rion is not relevant here.

Application-initiated adaptation is par-
ticularly useful for more general-purpose
operating systems. Whereas traditional
operating systems had great difficulty
incorporating new needs, like those of
multimedia applications, customizable

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

454 G. Denys et al.

operating systems should do better. The
application often knows its own needs
and usage patterns. With this knowledge,
it can instruct the operating system to
perform customizations on its behalf.

Mechanisms for accomodating appli-
cation-specific customizations at run-time
introduce a performance overhead. How-
ever, the goal of a dynamically customiz-
able operating system is often to achieve
better overall performance by allowing
customizations whose benefits outweigh
this overhead.

Devices such as personal digital as-
sistants (PDA) and set-top boxes, whose
applications change, but not frequently
nor abruptly, can benefit from an op-
erating system supporting this dynamic
adaptation.

The category of application-initiated dy-
namic adaptation is quite broad, and
therefore, we divide it in two subcate-
gories. In Section 5, we discuss operat-
ing systems that allow applications to
customize the operating system services
by introducing code at the user or non-
privileged level. These operating systems
are typically structured around a micro-
kernel. Operating systems that allow the
kernel itself to be extended or adapted by
applications are discussed in Section 6.
These extensible kernels use innovative
mechanisms to ensure the integrity of the
kernel.

3.3. Automatic Adaptation

Automatic adaptation is adaptation initi-
ated by the operating system itself. Here,
no intervention is needed to customize the
operating system.

Portability may be considered to be a
static form of automatic adaptation. By de-
tecting on which platform the operating
system is being built, it can configure itself
by using, for instance, the C preprocessor.

However, the most interesting category
is when the operating system automat-
ically and dynamically adapts itself to
the running applications. To this end, the
operating system must be able to inde-
pendently observe and analyze the ap-
plications and automatically change its

behavior to support the applications in
better and more efficient ways. Ideally,
such operating systems always offer an op-
timal execution environment for the ap-
plications. This strategy could underly
general-purpose systems where a variety
of applications are running and interact-
ing in unforeseen ways.

Production operating systems typically
support a limited form of dynamic au-
tomatic adaptation in specific and well-
understood subsystems, for example in the
file system, that can monitor the behav-
ior of user applications to optimize its
performance.

Automatic dynamic general-purpose
systems might be considered the ultimate
goal of customizable operating systems.
However, it is clear that the problems
involved in building such a system are
very difficult. We are not aware of any
truly automatic systems. Nevertheless,
useful lessons can be learned from the few
projects discussed in Section 7 which ap-
ply automatic adaptation in a limited way.

4. HUMAN-INITIATED ADAPTATION

4.1. Static Designer-Initiated Adaptation

For operating systems in this category,
all system functions and policies are de-
termined at design time and all system
services are typically incorporated in the
kernel. The main use of a build-time
adaptable operating system is as a spe-
cific operating system. A specific oper-
ating system is designed for a specific
function, or even for a single application,
whereas a traditional operating system is
designed to support a much broader set of
applications.

The initiator of adaptation is the system
designer. In a specific operating system,
the functionality and the requirements
are well known and understood at design
time. This enables the creation of a lean
and high-performance system, in which
only the strictly required functionality is
present, and all services have been opti-
mized statically for the given application.

The obvious drawback is that new func-
tionality or other applications cannot be

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

A Survey of Customizability in Operating Systems Research 455

supported by a specific operating sys-
tem. For devices with a single, well-
known, function (for instance, a router
or a video camera) this is not an issue.
It does mean however that a new op-
erating system has to be designed and
implemented for each application, and
that a single device or computer can sup-
port only one (or a limited number of)
application(s) [Kiczales et al. 1993]. To
avoid designing a new operating system
from scratch each time, specific operat-
ing systems should be designed using a
general-purpose framework. This frame-
work must be able to produce optimal op-
erating systems for a wide variety of appli-
cations. We will now discuss four projects
which provide a framework for system
development.

4.1.1. The Flux OSKit. The OSKit [Ford
et al. 1997] is a straightforward approach
to produce specific operating systems. It
consists of a framework and a module li-
brary with clean and documented inter-
faces. Its focus lies in language and kernel
research. It provides a way for the de-
signer to focus on the issue of interest,
while the OSKit fills in the voids via an
extensive library which contains common
system services taken and adapted from
other other operating systems (Linux,
FreeBSD, NetBSD).

The library contains modules for simple
bootstrapping, a minimal POSIX environ-
ment, memory management, debugging
support and a number of high-level com-
ponents, such as protocol stacks and file
systems. Each generic component is eas-
ily replaced by the designer.

The OSKit framework is a collection
of libraries which are linked in to create
an operating system kernel. The different
components are modular and separable,
thanks to the use of glue layers which form
an indirection between a component and
the services it uses.

In general, the components of the li-
brary are rather coarse-grained. The com-
ponents are basically subsystems, such
as the file system, the network protocol
stack or the collection of device drivers.

As a result, the granularity of adapta-
tion of the OSKit framework is rather
coarse.

4.1.2. Scout. The Scout approach
[Montz et al. 1995; Mosberger and
Peterson 1996] is directed toward com-
munication applications. It is meant for
networked devices.

Scout is a communication-oriented op-
erating system framework. An operating
system designed with Scout consists of a
number of modules that implement well-
defined and independent functions. The
module graph captures the connections
between the individual modules. Con-
nected modules must provide a common
interface. The interfaces are typed and en-
forced by Scout. The module graph is fixed
at design time.

A path conceptualizes a data flow from
an I/O source, through the system, to an
I/O sink. It can be viewed as a fixed se-
quence of routing decisions through the
system’s modules. A path consists of two
components:

—The sequence of modules which deter-
mines the semantics (reliability, secu-
rity and timing) of the path.

—The required resources necessary to
process and route the data.

Paths through the module graph are cre-
ated and destroyed in a dynamic fash-
ion. A path is well suited for resource
allocation and performance optimization,
because it provides nonlocal context, not
available within a single module. This
global information is used for optimal re-
source allocation and code specialization
along a path.

Generally, a path is automatically cre-
ated from the module graph. Using
module-specific knowledge, a maximum
length path is created. Through global
transformation rules, this path is trans-
formed (optimized).

In Spatscheck and Peterson [1997], a
safety architecture is defined that allows
the designer to specify the safety policy
for a Scout operating system. This safety
architecture also adds multiple protection

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

456 G. Denys et al.

domains to Scout, which otherwise runs in
a single address space.

4.1.3. Choices. Choices [Campbell et al.
1987, 1993] is an object-oriented operating
system that directly applies the frame-
work idea. Its various subsystems, such
as memory management, process manage-
ment, file storage, exceptions, etc. are di-
rectly built from object-oriented frame-
works. System resources, mechanisms,
and policies are represented as instances
of classes that belong to a class hierar-
chy, where customization is done through
the use of inheritance. Thus, a specific op-
erating system is created by specializing
classes in the various hierarchies, and by
instantiating a specific set of objects which
together form the operating system. The
application interface is a collection of ker-
nel objects exported through the applica-
tion/kernel protection layer.

Choices exhibits a minor form of dy-
namic adaptation. The adaptation is not
directly controlled by the applications,
however. Only when an application needs
a specific service, a class can be dynam-
ically loaded to implement the service.
Every possible behavior is still statically
determined.

4.1.4. Pebble. Pebble [Magoutis et al.
2000] is described as a component-based
operating system by its authors. Pebble
is both a portal-based microkernel (as we
will describe in Section 5.1), and a general-
purpose operating system framework. It
provides a set of operating system abstrac-
tions, implemented by trusted user-level
operating system components. Those com-
ponents can be augmented, replaced or
layered, allowing alternate abstractions to
coexist or override the default set. Pebble
allows the construction of modular operat-
ing systems for appliances out of reusable
components. In contrast to the other sys-
tems discussed in this section, the sys-
tem services are not integrated in the ker-
nel. System services are offered by trusted
server components, which run in user-
level protection domains.

The approaches discussed in this section
can lead to excellent results for devices

or computers whose functionality is well
known in advance.

4.2. Dynamic Administrator-Initiated
Adaptation

This class of operating systems supports
adaptation at boot or run time by an ad-
ministrator, or possibly even a user of the
system. Adaptation can be achieved in at
least two ways.

First, the loadable kernel module tech-
nique allows a trusted person (typically
the administrator or root of the system) to
load modules of new code into the kernel.
This new code can then interface against
a documented set of APIs. In that way, the
functionality of the operating system can
be changed or extended. The advantage of
this technique is its simplicity: it is very
similar to dynamic class loading for ordi-
nary applications. The main disadvantage
is that adding arbitrary code to the kernel
can break the safety mechanisms of the
system, and can cause the system to crash.
A stable system can become unstable after
loading a malicious (or just buggy) kernel
module.

Second, adaptation can be done through
tuning of the system. Typically, the op-
erating system parameterizes its policies,
and these parameters can be changed by
an administrator or user. To allow an
administrator to make an informed de-
cision, the operating system also makes
available performance counters, that is,
counters that indicate how well a par-
ticular policy is performing. The advan-
tage of this technique is that it does not
compromise the protection mechanisms.
The disadvantage is that the spread and
granularity of the customization are more
limited.

The techniques discussed in this section
are not extremely interesting from a re-
search point of view, but they are widely
deployed in all production operating sys-
tems (e.g., Linux, Solaris, Windows NT).
Windows 2000, for example, has hundreds
of performance counters and related sys-
tem variables [Solomon and Russinovich
2000]. The Linux kernel makes extensive
use of loadable modules.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

A Survey of Customizability in Operating Systems Research 457

It is interesting to note that the context
and the motives for extensibility or adapt-
ability in production operating systems
are very often different than in research
operating systems. In the research com-
munity, performance has been the most
important driver, often in an untrusted
context. The initiator of the adaptation
cannot be trusted and hence the operat-
ing system integrity must be protected.
In production operating systems, extensi-
bility has been mainly used to add var-
ious forms of functionality, in a trusted
context, where the initiator of adaptation
is trusted (f.i. the system administrator).
The loadable kernel module technique is
used to extend the kernel with new de-
vice drivers, with support for new filesys-
tems, with new authentication techniques
(e.g., the Pluggable Authentication Mod-
ule approach [Samar and Lai 1996] is sup-
ported by all major operating systems) and
various other kinds of functionality. Per-
formance enhancing modules as well as
integrity protection mechanisms are very
rare in practice. As a consequence, many
of the research results on adaptability and
extensibility have not found their way into
production operating systems.

As long as production operating sys-
tems can assume a trusted context for
extensibility, their extensibility mecha-
nisms will remain less sophisticated than
those addressed in the research commu-
nity. It is our belief that more sophisti-
cated mechanisms will be needed in the
future. The fact that performance has not
been driving extensibility in production
operating systems may be an indication
that the research projects are solving the
“wrong” problem. However, we believe
that most of the extensibility approaches
discussed in this survey can also be used
to achieve other goals than enhancing the
performance.

5. APPLICATION-INITIATED ADAPTATION
AT USER LEVEL

This section and the next section describe
application-initiated adaption. This adap-
tation happens at run time, during the
regular operation of the system. In this

section, we focus on adaptation performed
at the user (nonprivileged) level.

5.1. Microkernel Systems

Microkernel-based systems are character-
ized by a minimal kernel. The system ser-
vices are at user level and, possibly, pro-
vided by the applications. The services are
called from the kernel via upcalls.

It is important to note that the micro-
kernel approach has a principal adapt-
ability. Since a pure microkernel aims to
be minimal, it doesn’t impose any service
or policy. Hence, each application can pro-
vide its own services tuned for its specific
needs.

The microkernel approach is the oldest
discussed in this survey. It is clear that
the early generations of microkernels did
not live up to expectations. Due to inferior
performance and coarse-grained services,
the principal adaptability was not realised
in practise. Substantial operating system
libraries, like a UNIX file system, were rein-
tegrated in the kernel or given privileges.
This enhanced the performance but didn’t
help the customizability at all.

The new generation of microkernels
is a better match for the goals of cus-
tomizability. Inherently, a microkernel has
a large amount of domain crossings—
between user and kernel level and be-
tween address spaces. The cost of these
domain crossings influences the overall
performance and flexibility of the sys-
tem. Hence, the mechanism to switch back
and forth between user and kernel level
and the interprocess communication (IPC)
mechanism, which is used frequently to
call the functions of a user-level system
service, need to have efficient implementa-
tions. Another critical performance aspect
is the memory locality of the microker-
nel. Naive microkernel implementations
may take page faults or TLB flushes on do-
main crossings, resulting in terrible per-
formance, even with efficient mechanisms
[Chen and Bershad 1993; Liedtke 1993].

The chosen set of abstractions inte-
grated in the kernel profoundly affects
both performance and flexibility. There-
fore, the new generation tries to minimize

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

458 G. Denys et al.

the number of abstractions fixed in the
kernel. The fewer abstractions, the more
flexible the operating system remains for
the applications. The designer tries to find
the minimal set of abstractions that are
necessary for proper operation. This set is
then integrated in the kernel and the ap-
plications are free to implement the other
services. This is embodied by L4 [Liedtke
1995, 1996]; the abstractions imposed by
the kernel are address spaces, threads,
IPC, and unique identifiers. With these ab-
stractions, L4 supports the recursive con-
struction of address spaces—the initial ad-
dress space represents the entire memory
and I/O ports and is owned by the initial
subsystem or application; it supports ac-
tivity within and communication between
address spaces. The careful design and im-
plementation of L4 and its predecessors
have established new standards for in-
terprocess communication times [Liedtke
1993].

When pursuing the microkernel philos-
ophy to its logical extreme, the result is
an operating system in which all system
services are in user space, as a library,
and the kernel is merely an abstraction
of the underlying hardware. This extreme
is pursued in the Exokernel [Engler et al.
1995; Engler and Kaashoek 1995]. The Ex-
okernel tries to eliminate all abstractions
from the kernel and lowers the kernel in-
terface to just above the raw hardware.
The only function of the Exokernel is to
allocate, revoke and multiplex the phys-
ical resources (memory pages, processor
time slices, disk blocks, etc.) in a secure
manner. Processes are given direct access
to critical data structures; this comes at
the cost of exposing a rather complex in-
terface to the application. The design of
generally usable interfaces in the Exok-
ernel remains a challenge [Shapiro et al.
1999].

5.1.1. Portal-Based Systems. Portal-
based systems are microkernels and
share the philosophy of running as little
code in privileged mode as possible. A
portal-based system provides protection
domains in which user code can operate
in a safe manner. A protection domain

consists of a set of pages, and a set
of portals. A protection domain may
share both pages and portals with other
protection domains. Portals are used
for communication between protection
domains.

Kea [Veitch and Hutchinson 1996] is a
portal-based microkernel which provides
the low-level concepts needed for con-
structing high-level services. These low-
level concepts are domains (virtual ad-
dress spaces), inter-domain calls (IPC) and
portals. A portal is associated with a spe-
cific service; it is an entry point for an in-
terdomain call. An application that owns
a portal identifier can access the service
portal.

A service must register its interface to
the kernel. The kernel then controls ac-
cess to this interface. The interface de-
fines the allowed interactions between the
application and the service’s implementa-
tion. In contrast to a pure microkernel,
Kea doesn’t allow complete freedom for
the design and implementation of services.
However, this allows Kea to introduce
dynamic reconfiguration.

When a service is called, through its por-
tal, the kernel can decide which implemen-
tation is chosen. For instance, when an
application uses a file service, the admin-
istrator can decide to interpose a compres-
sion service, which first compresses the
data before passing it to the file service.
The compression service must support the
same file service interface, however.

A more complex form of reconfiguration
happens in an indirect manner. An ap-
plication can associate a new portal with
the identifier for a specific service. For in-
stance, when a virtual memory manager
uses a portal identifier for its page evic-
tion service, some applications may choose
their own page eviction service and have
the virtual memory manager use it for
pages belonging to the application.

The implementation of services will de-
termine the granularity of adaptation in
Kea. If the virtual memory manager fixes
the page eviction policy (instead of using a
portal for it, as in the example), nobody can
change it, except by replacing the entire
service.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

A Survey of Customizability in Operating Systems Research 459

In SPACE [Probert et al. 1991; Probert
and Bruno 1996], the only abstractions
present in the kernel are a generaliza-
tion of the exception or interrupt handling
mechanism. This generalized exception
handling mechanism could be imple-
mented in hardware; the result would be a
truly “kernel-less” operating system. Peb-
ble [Gabber et al. 1999] shares with SPACE

the idea of cross-domain communication
as a generalization of interrupt handling.
As Kea, it provides protection domains,
inter-domain calls via portals and portal
reconfiguration. Portals are implemented
as generalized interrupt handlers. Peb-
ble’s kernel includes only code to transfer
threads from one protection domain to an-
other and a small number of support func-
tions that require kernel mode. As with
the Exokernel, Pebble moves the imple-
mentation of resource abstractions to user
level, but unlike the Exokernel, it also pro-
vides a set of higher-level abstractions, im-
plemented by user-level operating system
components, as discussed in Section 4.1.
Each user-level component runs in its own
protection domain, isolated by means of
hardware memory protection.

5.1.2. Capability Systems. Two systems,
Fluke and EROS, are capability systems
structured around a microkernel.

Fluke’s architecture combines a micro-
kernel with virtual machines. The Fluke
kernel [Ford et al. 1996] supports the con-
struction of recursive virtual machines.
The kernel provides basic services and an
interface that describes the high-level ser-
vices. The virtual machines use this in-
terface and re-export it to the next layer.
Each layer completely simulates the envi-
ronment for the layer above: the interface
between each layer is always the same.
Hence, services can be composed by stack-
ing virtual machines. Each layer only af-
fects the performance of the subset of the
operating system interface it implements.

Because of this stacking or layering,
Fluke supports a “vertical” decomposi-
tion of services, whereas a microkernel
supports a “horizontal” decomposition,
by moving traditional kernel functional-
ity into user-level servers, side-by-side.

Fluke’s nested process architecture is the
common interface between each layer
in the system. This interface has three
components:

(1) the basic instruction set, which is im-
plemented by the processor, allows pro-
cesses to directly execute a safe subset
of the machine instructions, without
emulation.

(2) the low-level system services, which
are implemented by the kernel.

(3) the common protocols, which is im-
plemented in each layer, wholly or
partially (for non-implemented func-
tionality, the functionality of the layer
below is reused). The kernel also
implements this interface and offers
this environment to the first process
(virtual machine).

Maintaining the consistency of the in-
terfaces between the virtual machines
limits the addition of new methods or
parameters.

Pebble’s architecture is close in spirit to
the nested process architecture of Fluke.
The Fluke model requires that system
functionality be replaced in groups; a
memory management “nester” must im-
plement all of the funtions in the vir-
tual memory interface specification. Peb-
ble permits finer-grained extensibility
through portal replacement.

Fluke is a capability system, similar to
EROS [Shapiro et al. 1999]. Both systems
also provide persistence. A capability is
an unforgeable pair made up of an object
identifier and a set of authorized opera-
tions (an interface) on that object. UNIX

file descriptors are an example of capabil-
ities. In a capability system, each process
holds capabilities, and can perform only
those operations authorized by its capabil-
ities. In Fluke, all references between low-
level objects are represented as kernel-
mediated capabilities.

The EROS architecture consists of a
kernel that implements a small num-
ber of primitive capability types. It fur-
ther includes a collection of system
services that are implemented by user-
level applications and provide higher-level

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

460 G. Denys et al.

abstractions such as files and memory
objects. The kernel presents a fairly
direct abstraction of the underlying
hardware, as in the Exokernel; storage
allocation, scheduling and fault handling
policies are exported from the kernel
to allow application-customized resource
management.

The set of capabilities accessible to a
subsystem makes up a protection domain.
Applications as well as the operating sys-
tem reside in their own protection domain.
EROS has applied the ideas of L4 for trans-
fer of control between protection domain
boundaries.

EROS provides transparent persistence
using a single level storage model. The
definitive representation for all operating
system objects is the one that resides on
the disk. The objects are cached in soft-
ware at different levels by the kernel, to
enhance performance.

Each resource access is ultimately per-
formed by capability invocation. If au-
thorized by the capability, the invocation
causes the named object to perform some
operation specified by the invoker. The
majority of capability invocations are IPC

operations.

5.1.3. Discussion. While the low-level
kernel concepts are fixed in a microkernel,
each application can build its own high-
level concepts using the kernel concepts.
Although an application can always ignore
the operating system services and imple-
ment them in its own way, in a monolithic
system it will not be able to avoid the ser-
vices and their overhead, whereas in a mi-
crokernel it can completely avoid them.

The actual flexibility of a microkernel
is affected by the low-level concepts fixed
in the kernel. A drawback of the mini-
mal microkernel approach is that appli-
cations are faced with a very low-level
kernel interface. Even the most simple ap-
plication will have a substantial amount
of work implementing the necessary high-
level concepts. It must be assumed that
on most systems, simple applications will
use a library which provides common high-
level services. In that case, it is the de-

sign of the library that determines the
actual customizability of the operating
system, rather than the design of the ker-
nel. The design of the library is unre-
stricted; the microkernel does not impose
any paradigm at all for the construction of
services on a higher level.

Inherently, a microkernel performs a
large amount of domain crossings. The
major improvement in the new generation
shows that the biggest cost of these do-
main crossings is in software, and that it
can be overcome by solid kernel design.
The minimum cost possible is attained
when all software steps are eliminated. It
is still an open question whether at that
point microkernels will perform better and
be more flexible than other systems, for
example, those based on pure software
protection. The minimal concepts exhib-
ited by a microkernel still have to prove
whether they are powerful enough to sup-
port all kinds of functionality.

The next two sections discuss caching
and reflective operating systems. Unlike
“pure” microkernels, their kernel is not
minimal, but provides support for the re-
flection or cache paradigm. This paradigm
defines the way in which services are to be
built in user space. Consequently, the con-
struction of system services is supported
by the kernel. The downside is that appli-
cations must be specifically designed (or
retrofitted) to suit the paradigm of the op-
erating system.

5.2. Caching Operating Systems

The Cache Kernel is the kernel of the
V++ operating system [Cheriton and Duda
1994]. In this architecture, applications
run on top of application kernels, either in
the same or in a different address space.
The application kernels implement the op-
erating system services. They run in user
level and manage the loading and unload-
ing of operating system objects (threads,
address spaces and other application ker-
nels) according to their own policies. The
Cache Kernel itself functions as a cache
for these objects. The objects present in
the kernel are those that are in active
use.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

A Survey of Customizability in Operating Systems Research 461

A small number of objects can be locked
in the kernel. This mechanism is used to
ensure that schedulers and exception han-
dlers do not generate exceptions (e.g., page
errors) themselves. The kernel interface
has operations for loading and unloading
of system objects and it has signals to in-
dicate whether a certain object must be
loaded or unloaded.

The Cache Kernel uses a caching ap-
proach in some ways similar to EROS.
Where EROS writes operating system ob-
jects back to protected structures, the
Cache Kernel writes this state back to
untrusted application kernels.

5.3. Reflective Operating Systems

Reflective operating systems introduce an
explicit paradigm which enables applica-
tions to dynamically customize their exe-
cution environment. An application must
be explicitly structured as a set of objects;
the operating system services are supplied
by a set of meta-objects which support the
application objects.

MetaOS [Horie et al. 1997, 1998] is
an object-oriented reflective operating sys-
tem, using the Java [Arnold and Gosling
1996] language. It improves on the con-
cepts of Apertos [Yokote 1992, 1993]. Its
architecture consists of three levels. The
application objects reside at the base
level. The level below consists of meta-
objects, dynamically grouped into meta-
spaces. Each metaspace supports a num-
ber of applications with similar require-
ments. This level is called the meta-level.
At the bottom is the meta-meta level,
which comprises a single meta-space, the
master meta-space. This meta-space al-
locates the resources to the meta-spaces
according to a dynamically replaceable
policy.

MetaOS uses an open implementation
[Kiczales et al. 1997; Maeda et al. 1997] to
support the definition and construction of
objects, meta-objects and their interfaces.
Via those interfaces, meta-spaces can be
adapted and extended in a dynamic and
secure manner.

When an application starts running, it
chooses the best suited meta-space avail-

able. It can try to initiate a number of fine-
grained changes in the meta-space. If this
would fail or prove insufficient, the appli-
cation can clone the meta-space and mi-
grate to it. It then has full control over the
cloned meta-space, and thus over its own
execution environment.

6. APPLICATION-INITIATED ADAPTATION
AT KERNEL LEVEL

In this section, we discuss operating sys-
tems which allow application-initiated
changes by importing application code into
the kernel. Hence, we call these systems
extensible kernels.

Extensible kernels are able to accept
and execute user code in privileged mode,
in a secure manner. Consequently, the be-
havior of the kernel itself can be dynam-
ically changed. This practice eliminates
crossings between user and kernel mode
and between address spaces.

An extension, code introduced in the ker-
nel by an application, cannot be trusted.
The kernel must be protected from in-
correct or bad behavior from the various
extensions present. The employed safety
mechanism is crucial in the design and
organization of the kernel. We will treat
this mechanism as the primary focus in
the following discussion of extensible ker-
nels. It’s worth to mention that these
mechanisms are also relevant in other,
increasingly important domains, such as
mobile code (Java Applets, ActiveX) and
active networks, where “active” packets
contain code to be incorporated into a net-
work router or other active component of
a network to modify its behavior in an
application-specific manner.

The design of the kernel determines
where and how extensions can be intro-
duced. As mentioned in Section 2.4, a de-
sign which allows fine-grained adaptivity
will require complex safety mechanisms.
This may incur performance penalties.

Besides accessing memory in an unau-
thorized way, there are various other ways
in which an extension can misbehave: re-
source hoarding (infinite looping, network
flooding, excessive memory allocation, ac-
quiring kernel locks, etc.), denial of service

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

462 G. Denys et al.

(when the system is relying on the exten-
sion’s correct execution to make forward
progress) and use of unauthorized kernel
interfaces. One consequence is that an ex-
tension cannot be allowed to hold any lim-
ited kernel resource for an arbitrarily long
period of time [Seltzer et al. 1996].

The safety policy of the operating sys-
tem can be enforced through verification
or protection. Verification ensures the cor-
rect behavior of an extension prior to in-
stallation and deployment. We consider
two kinds of verification: verification of
origin, and verification of behavior. With
verification of origin, code is considered
safe if it is brought into the system by
a trusted party (e.g., the administrator).
This is a very common practise in produc-
tion operating systems, such as UNIX and
Windows NT, where it is called the load-
able kernel module technique. The tech-
nique is used both in a human-initiated
way, discussed in Section 4.2, and in a sim-
ple application-initiated way: applications
with root privileges can initiate the load-
ing of modules, or even applications with
user privileges can be allowed to load a
kernel module as long as it has been signed
by a trusted third party (e.g., the operating
system manufacturer).

With verification of behavior, the oper-
ating system tries to analyze whether a
given piece of code behaves in a conform-
ing way. Automatic verification of behav-
ior is very appealing, but is also very hard.
We will discuss an example of this tech-
nique in Section 6.2.

Protection tries to ensure the correct be-
havior of an application after its installa-
tion and otherwise tries to limit the dam-
age done. Protection can be achieved by
hardware means. This is typically done in
microkernels. The kernel is protected from
the customizations because they reside
at user (nonprivileged) level. The hard-
ware ensures that these customizations
can never directly access or modify the
kernel’s data. When a customization fails,
only the applications using it will fail as
well. However, the failure of a critical ser-
vice, such as a file system, may bring down
the entire system. Alternatively, protec-
tion can be achieved by software means.

The use of software means is more flexible
and the performance of domain crossings
is potentially faster. We explore software
protection in Section 6.1.

Extensible kernels based on software
protection logically converge to single ad-
dress space operating systems, like most
Java-based operating systems, where all
protection mechanisms are in software
[Back et al. 1998].

6.1. Software Protection

An extensible kernel cannot rely on hard-
ware protection because the untrusted
code, the extension, has the same privi-
lege level as the kernel. Software protec-
tion tries to enforce the correct behavior
of an extension while it is executing and
tries to limit the damage that can be done
by a misbehaving extension.

Software protection is potentially faster
and more flexible than hardware mech-
anisms. It can be faster, as discussed
in Wallach et al. [1997], and more flex-
ible, because the safety policy need not
be fixed. Hence, extensible kernels are
potentially faster and more flexible than
microkernels.

Software protection is pursued in two
approaches discussed: software fault iso-
lation and safe languages.

6.1.1. Software Fault Isolation (SFI). SFI

[Wahbe et al. 1993] is a technique to en-
sure memory protection within a single
address space (for instance, within the
kernel). It consists of two steps. First,
the untrusted code is loaded into its own
fault domain, a logically separate part
of (kernel) memory. Second, the code is
changed so that the module cannot write
or jump to an address outside of its fault
domain. One way of implementing this is
through sandboxing: a fault domain con-
sists of one code segment and one data
segment. A segment has the same pattern
of upper address bits (the segment iden-
tifier). Now, before every unsafe instruc-
tion in the code segment, instructions are
inserted that overwrite the upper bits of
the address used in the unsafe instruction
with the segment identifier.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

A Survey of Customizability in Operating Systems Research 463

Modules in different fault domains can-
not access each other’s data or code, ex-
cept via an explicit RPC-interface. This
RPC between fault domains performs sub-
stantially better than RPC between ad-
dress spaces (as is frequently used in
microkernels).

As mentioned, security involves more
than just memory protection. To build
a working system with SFI, as is done
in the VINO project [Seltzer et al. 1996],
other concerns must be addressed. In
VINO, every extension in the kernel has
its own stack and heap. SFI ensures the
memory protection. Further, VINO uses a
lightweight transaction system to control
the execution and resource use of the
extensions.

Extensibility in VINO can be done in two
ways:

—An application can replace the imple-
mentation of a method of a specific ker-
nel object (resource), if it is allowed so.
This allows the standard behavior of
resources to be changed.

—An application can register a handler to
the kernel for a specific event, such as
a network connection on a specific port.
This allows new services to be installed
in the kernel.

A drawback of SFI is that overhead in-
structions must be executed each time an
unsafe instruction is encountered.

6.1.2. Safe Languages. An interesting
way to ensure the kernel’s integrity is by
enforcing the constraints of a program-
ming language’s abstractions. The most
interesting mechanism available is type
checking. This implies that safe languages
are typed and type-safe.

Languages used in research projects are
Modula-3, Java and ML. ML has a for-
mal type system, the well-known Hindley-
Milner system, and allows for static type
checking. In contrast, Modula-3 and Java
are less formal, and must perform a sub-
stantive amount of runtime checking to
enforce the safety policy. For instance,
array boundaries are runtime checked
in Java. On the other hand, ML, as a

declarative (functional) language, intro-
duces other runtime inefficiencies.

SPIN [Bershad et al. 1994, 1995] is based
on Modula-3. Every interaction between
an application and the kernel happens
via extensions (either an extension pro-
vided by the application or the standard
extension that defines the standard be-
havior). Every extension is associated with
an event. An extension must be explic-
itly registered at the dispatcher, which in-
stalls the extensions and passes events to
the extensions. Multiple extensions can be
associated with the same event. The dis-
patcher will contact the extensions cur-
rently associated with an event and ask
for permission to replace it or to add an-
other extension.

Modula-3 is mainly used for ensuring
memory safety. Additional constraints are
enforced by the dispatcher and by the
standard extensions. The dynamic linker
ensures that only the authorized events
are visible for a given extension.

An obvious drawback of a system based
on a safe language is its ties to that lan-
guage. All system code and extensions
must be written in that language. An-
other drawback of a safe language is that
the safety policy is fixed and determined
by the semantics of the chosen language.
Also, a lot of checks are performed at
runtime and thus a performance cost is
incurred.

6.2. Automatic Verification

In Proof-Carrying Code (PCC) [Necula and
Lee 1996; Necula 1997], a proof is stati-
cally verified. This proof guarantees that
the code respects an agreed-upon safety
policy. When the proof is verified, the pro-
gram can run at full speed with no runtime
checks involved.

This approach requires the code to be
presented in a specific format, called PCC. A
PCC-module includes a formal proof of the
compliance of the code with a given safety
policy. The validity of the proof guarantees
the safety of the code.

The kernel must specify and publish
a safety policy. This includes a predicate
in first-order logic for each instruction to

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

464 G. Denys et al.

indicate in what circumstances the in-
struction will be safe to execute. The
safety policy also includes axioms and
derivation rules, which can be used in the
proof.

An application will use the predicates
of the safety policy to compute the safety
predicate. Next, it will prove the safety
predicate, using the rules of first-order
logic and the axioms and derivation rules
of the safety policy. This proof is attached
to the extensions.

The kernel, at its turn, will also com-
pute the safety predicate. Then, it checks
whether the associated proof is indeed a
valid proof of this safety predicate. This
validation can be done through simple and
efficient type checking.

PCC is a very promising approach, both
in terms of flexibility (the safety policy can
be specified) and efficiency (no runtime
checks). But a lot of problems remain to
date. One of them is the automatic gen-
eration of proofs. Other concerns are the
size of the proof and the use of proofs on
high-level languages.

7. AUTOMATIC ADAPTATION

As discussed in Section 3, portability
through conditional compilation can be
considered as a form of static automatic
adaptation in our taxonomy. However,
it is clear that from a research point
of view, dynamic automatic adaptation is
more interesting. Hence, we focus in this
section on automatic dynamic adaptation,
in which the operating systems adapts
itself at run time to the needs of the
applications.

Through automatic adaptation, the be-
havior of the services is changed in an
implicit way. The operating system it-
self observes and analyzes the application.
Based on this information, it adapts its
policies and behavior to support the ap-
plication in the best possible way.

The system behavior in this approach is
analogous to the behavior of a traditional
operating system. The application doesn’t
need to be concerned with anything other
than its own functionality. The operating
system is responsible for providing an

optimal execution environment for the
application.

Automatic adaptation is conceptually a
very promising approach. Applications do
not need to know anything about their
own performance or requirements. They
do not have to specify a certain policy or
build their own execution evironment. The
operating system will autonomously de-
termine the best behavior to support the
application. All information the system
needs will be derived by observing and an-
alyzing the behavior and the functionality
of the application. This approach lays all
responsibility in the hands of the operat-
ing system. The application cannot choose
an inappropriate policy.

It is clear that automatic adaption re-
quires a lot of knowledge and intelligence
from the part of the operating system. The
problem encountered here is threefold:

—The operating system must be able to
extract sufficient information by simply
observing the application’s behavior.

—Based on this information, optimal poli-
cies must be chosen for the system’s ser-
vices, such as paging, scheduling, etc.

—The goal is to optimize the overall per-
formance, for a general-purpose system.
As is known from other engineering
disciplines, the overall optimum perfor-
mance is not necessarily obtained by se-
lecting the local optimum performances.
The interaction between the different
policies is complex and not readily un-
derstood.

A substantial research effort will be
necessary to overcome these issues and
achieve a fine-grained, automatically
adapting operating system. However, few
research projects on customizable oper-
ating systems have pursued automatic
adaptation. The systems discussed in this
section only implement automatic adapta-
tion in a limited way. We will now briefly
describe two approaches.

7.1. Synthetix

The core idea of Synthetix [Cowan et al.
1996a, 1996b; Pu et al. 1995] is to
provide specialized implementations of

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

A Survey of Customizability in Operating Systems Research 465

operating system services, generated on
the fly, through partial evaluation. Syn-
thetix borrows this idea of run-time code
synthesis from its predecessor Synthesis
[Massalin 1992].

The granularity and spread of the cus-
tomizability are limited: the designer de-
cides which services can be specialized and
chooses the parameters for the specializa-
tion. As with specific operating system, the
kinds of applications to be supported must
be known in advance to achieve sufficient
adaptivity.

The service parameters are introduced
by means of invariants. These invariants
are protected by guards. Whenever an in-
variant is validated or invalidated, it is no-
ticed by its guard. Then, the module which
provides the service is replaced by a more,
or less, specialized one.

For example, a system call to open a file
can return specialized code to read from
the file. This code could be based on in-
variants such as disk block size, sequen-
tial access, exclusive access, etc. When the
same file is subsequently opened by a sec-
ond application, the exclusive access in-
variant will be invalidated (by a guard in
the open system call).

Basically, what Synthetix does is move
code away from the fast path. In the pre-
vious example, interpretation associated
with each read is moved to the open call.
The implicit assumption is that a file is
read more then it is opened. These pol-
icy decisions must be made by the system
designer.

7.2. VINO

The general-purpose automatic approach
is explored in the VINO-project [Seltzer and
Small 1997], which was already discussed
in Section 6. However, automatic adapta-
tion has only been explored, not imple-
mented in VINO.

The information needed to automati-
cally adapt the system behavior stems
from three sources:

(1) The periodic retrieval of the statistics
maintained by each subsystem in VINO.

(2) The specialized compiler.

(3) Traces and logs that register incoming
requests and produced results.

All information is gathered in real cir-
cumstances, during the regular opera-
tion of the application. This information
is used for analysis purposes. The on-
line analysis is responsible for detect-
ing emergencies—situations where the
resource consumption is bigger than ex-
pected, and rising. At this time, an adap-
tation is performed by applying a known
heuristic. Failing an appropriate heuris-
tic, a trace is installed on the resources and
the off-line analysis is responsible for find-
ing and simulating new algorithms. Obvi-
ously, this is a very challenging task which
requires some learning capabilities. Nev-
ertheless, the VINO approach is interesting
just by using the heuristics for well-known
cases.

As an example, consider an application
that pages excessively. A trace is gener-
ated for the concerned pages. The result-
ing traces are investigated for well-known
access patterns, such as linear memory ac-
cess. If a known pattern is matched, the
appropriate algorithm is installed.

VINO differs from Synthetix in that its
customizability is more general-purpose
in nature. Synthetix can adapt only the
functions and parameters as determined
by the designer. VINO supports a mecha-
nism in which the system could develop
and test new algorithms for new problems.
This means that, when new needs arise,
VINO could be able to cope and adapt its
behavior through newly found algorithms.

8. TAXONOMY OF RESEARCH PROJECTS

In this section, we revisit the taxonomy
as described previously in Section 3. In
Table I, we categorize each of the research
projects discussed into our taxonomy.

As can be seen from Table I, the two
main directions in customizable operating
systems research are:

(1) Static customization by the designer,
who customizes a (general-purpose) op-
erating system framework to a (specific)
operating system. Note that a frame-
work can also be used to create a

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

466 G. Denys et al.

Table I. Schematic Representation of the Taxonomy used to Classify the Research
Projects. The horizontal criterion is the initiator of customizability. The vertical

criterion is the time of customization

Human Application Operating System
Static OSKit (portability

Choices through conditional
Scout compilation)
Pebble components

Dynamic production Exokernel, L4 Synthetix
operating systems Kea, Pebble, SPACE (VINO)

EROS, Fluke
V++, MetaOS
SPIN, VINO

general-purpose operating system. For in-
stance, Fluke is built with the OSKit
framework.

(2) Dynamic customization by the appli-
cations, which request the operating sys-
tem to change its policies on their behalf.
This can be achieved by having the appli-
cation provide operating system services
as a user-level service or even as an exten-
sion directly introduced into the extensi-
ble kernel.

For dynamic or run-time adaptation, the
ideal would be that the operating system
itself can automatically produce an opti-
mal execution environment. The research
projects discussed in Section 7 perform
modest steps in this direction. However,
the majority of research projects accepts
that automatic adaptation requires a high
level of intelligence from the operating
system, and that the applications for now
know best what their needs and require-
ments are.

9. CONCLUSION

We presented a survey of the approaches
to achieve customizability in operating
systems. The survey was structured along
a taxonomy used to classify the different
approaches. The main line of division in
the taxonomy is defined by the initiator
of the customization. Customizability can
be automatic (the operating system adapts
itself), initiated by applications (the run-
ning applications adapt the operating
system), or by a human (the operating sys-
tem designer or administrator makes spe-
cific customizations). Automatic adapta-

tion is the most ambitious approach, and
can currently only be achieved in a lim-
ited form. Designer-initiated adaptation
gives very good results for specific oper-
ating systems, but lacks direct support
for general-purpose operating systems.
The dynamic application-driven approach
has the longest tradition: microkernels,
having a natural customizability, have
been studied for many years. More re-
cently, dynamic customization has been
tried using modern microkernels and ex-
tensible kernels.

In our opinion, a combination of dy-
namic and automatic techniques can lead
to the most flexible customization in a
general-purpose operating system. It is
generally assumed that resource-critical
applications, like database or transaction
systems, will be able to assist the oper-
ating system in creating an appropriate
execution environment. Hence, such ap-
plications will use application-driven tech-
niques. It would be unrealistic however
to require even the most simple appli-
cation to build or specify its own exe-
cution environment. For run-of-the-mill
applications, the operating system can
try to create the optimal execution en-
vironment in an automatic way, using
heuristics.

For special-purpose operating systems,
we believe that designer-initiated adap-
tation of a fine-grained customizable op-
erating system framework leads to the
best results, provided that the applica-
tions are well-known. These conditions are
typically fulfilled in case of embedded op-
erating systems for mobile appliances.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

A Survey of Customizability in Operating Systems Research 467

ACKNOWLEDGMENTS

The authors wish to thank the anonymous referees
of the first version of this paper. Their detailed and
interesting feedback has greatly improved the cover-
age and quality of the article.

REFERENCES

ARNOLD, K. AND GOSLING, J. 1996. The Java pro-
gramming language. Addison-Wesley.

BACK, G., TULLMANN, P., STOLLER, L., HSIEH, W. C., AND

LEPREAU, J. 1998. Java operating systems: De-
sign and implementation. Tech. Rep. UUCS-98-
015, Dept. of Computer Science, University of
Utah. 6,.

BERSHAD, B. N., CHAMBERS, C., EGGERS, S. J., MAEDA, C.,
MCNAMEE, D., PARDYAK, P., SAVAGE, S., AND SIRER,
E. G. 1994. SPIN - An extensible microker-
nel for application-specific operating system ser-
vices. In ACM SIGOPS European Workshop. 68–
71.

BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G.,
BECKER, D., FIUCZYNSKI, M., CHAMBERS, C., AND EG-
GERS, S. 1995. Extensibility, safety and perfor-
mance in the SPIN operating system. In Proceed-
ings of the 15th ACM Symposium on Operating
Systems Principles.

CAMPBELL, R., ISLAM, N., RAILA, D., AND MADANY, P.
1993. Designing and implementing Choices:
an object-oriented system in C++. Commun.
ACM 36, 9, 117–126.

CAMPBELL, R., RUSSO, V., AND JOHNSTON, G. M. 1987.
The design of a multiprocessor operating system.
In Proceedings of the USENIX C++ Workshop.
109–125.

CHEN, J. AND BERSHAD, B. 1993. The impact of oper-
ating system structure on memory system per-
formance. In Proceedings of the 14th ACM Sym-
posium on Operating System Principles.

CHERITON, D. R. AND DUDA, K. J. 1994. A caching
model of operating system kernel functionality.
In Operating Systems Design and Implementa-
tion. 179–193.

COWAN, C., AUTREY, T., KRASIC, C., PU, C., AND WALPOLE,
J. 1996a. Fast concurrent dynamic linking for
an adaptive operating system. In Proceedings
of the 3rd International Conference on Config-
urable Distributed Systems. 108–15.

COWAN, C., BLACK, A., KRASIC, C., PU, C., WALPOLE,
J., CONSEL, C., AND VOLANSCHI, E. 1996b. Spe-
cialization classes: An object framework for spe-
cialization. In Proceedings of the 5th Interna-
tional Workshop on Object-Orientation in Oper-
ating Systems (IWOOOS ’96).

ENGLER, D. R., AND KAASHOEK, F. 1995. Extermi-
nate all operating system abstractions. In Pro-
ceedings of the 5th Workshop on Hot Topics in
Operating Systems. 78–85.

ENGLER, D. R. KAASHOEK, F., AND O’TOOLE, J. 1995.
Exokernel: An operating system architecture for

application-level resource management. In Pro-
ceedings of the 15th ACM Symposium on Oper-
ating Systems Principles. 251–266.

FORD, B., BACK, G., BENSON, G., LEPREAU, J., LIN, A., AND

SHIVERS, O. 1997. The flux OSKit: A substrate
for kernel and language research. In Proceedings
of the 16th ACM Symposium on Operating Sys-
tems Principles. 38–51.

FORD, B., HIBLER, M., LEPREAU, J., TULLMANN, P., BACK,
G., AND CLAWSON, S. 1996. Microkernels meet
recursive virtual machines. In Proceedings of the
2nd Symposium on Operating Systems Design
and Implementation. 137–151.

GABBER, E., SMALL, C., BRUNO, J., BRUSTOLONI,
J., AND SILBERSCHATZ, A. 1999. The pebble
component-based operating system. In Proceed-
ings of the 1999 USENIX Annual Technical Con-
ference. 267–282.

HORIE, M., PANG, J., MANNING, E., AND SHOJA, G.
1998. Using meta-interfaces to support secure
dynamic system reconfiguration. In Proceedings
of the 4th International Conference on Config-
urable Distributed Systems (ICCDS’98).

HORIE, M., PANG, J. C., MANNING, E. G., AND SHOJA, G. C.
1997. Designing meta-interfaces for object-
oriented operating systems. In Proceedings of the
1997 IEEE Pacific Rim Conference on Communi-
cations, Computers, and Signal Processing. 989–
992.

KICZALES, G., LAMPING, J., LOPES, C. V., MAEDA, C.,
MENDHEKAR, A., AND MURPHY, G. C. 1997. Open
implementation design guidelines. In Proceed-
ings of the 19th International Conference on Soft-
ware Engineering. 481–490.

KICZALES, G., LAMPING, J., MAEDA, C., KEPPEL, D., AND

MCNAMEE, D. 1993. The need for customiz-
able operating systems. In Proceedings of the 4th
Workshop on Workstation Operating Systems.

LIEDTKE, J. 1993. Improving IPC by kernel design.
In Proceedings of the 14th ACM Symposium on
Operating System Principles (SOSP).

LIEDTKE, J. 1995. On microkernel construction. In
Proceedings of the 15th ACM Symposium on
Operating System Principles.

LIEDTKE, J. 1996. Toward real microkernels. Com-
mun. ACM 39, 9, 70–77.

MAEDA, C., LEE, A., MURPHY, G., AND KICZALES, G.
1997. Open implementation analysis and de-
sign. In Proceedings of the 1997 Symposium on
Software Reusability.

MAGOUTIS, K., BRUSTOLONI, J. C., GABBER, E., NG,
W. T., AND SILBERSCHATZ, A. 2000. Building ap-
pliances out of reusable components using peb-
ble. In Proceedings of the 9th ACM SIGOPS
European Workshop.

MASSALIN, H. 1992. Synthesis: An efficient im-
plementation of fundamental operating sys-
tem services. Ph.D. thesis, Columbia University,
Department of Computer Science.

MONTZ, A. B., MOSBERGER, D., O’MALLEY, S. W.,
PETERSON, L. L., AND PROEBSTING, T. A. 1995.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

468 G. Denys et al.

Scout: A communications-oriented operating
system. In Proceedings of the 5th Workshop on
Hot Topics in Operating Systems.

MOSBERGER, D. AND PETERSON, L. L. 1996. Making
paths explicit in the scout operating system. In
Proceedings of the 2nd Symposium on Operating
Systems Design and Implementation. 153–167.

NECULA, G. C. 1997. Proof-carrying code. In Con-
ference Record of POPL ’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 106–119.

NECULA, G. C. AND LEE, P. 1996. Safe kernel exten-
sions without run-time checking. In 2nd Sympo-
sium on Operating Systems Design and Imple-
mentation (OSDI ’96). 229–243.

PROBERT, D. AND BRUNO, J. 1996. Efficient cross-
domain mechanisms for building kernel-less op-
erating systems. Tech. Rep. TRCS96-06, De-
partment of Computer Science, University of
California at Santa Barbara.

PROBERT, D., BRUNO, J., AND KARZAORMAN, M. 1991.
Space: a new approach to operating system ab-
straction. In Proceedings of the International
Workshop on Object Orientation in Operating
Systems. 133–137.

PU, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN, C.,
INOUYE, J., KETHANA, L., WALPOLE, J., AND ZHANG,
K. 1995. Streamlining a commercial operat-
ing system. In Proceedings of the 15th ACM Sym-
posium on Operating System Principles.

SAMAR, V. AND LAI, C. 1996. Making login ser-
vices independent from authentication technolo-
gies. In Proceedings of the SunSoft Developer’s
Conference.

SELTZER, M. I., ENDO, Y., SMALL, C., AND SMITH, K. A.
1996. Dealing with disaster: Surviving misbe-
haved kernel extensions. In Proceedings of the

2nd Symposium on Operating Systems Design
and Implementation. 213–227.

SELTZER, M. I. AND SMALL, C. 1997. Self-monitoring
and self-adapting operating systems. In Pro-
ceedings of the 6th Workshop on Hot Topics in
Operating Systems.

SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. 1999.
EROS: a fast capability system. Operating Sys-
tem Review 34, 5, 170–185.

SOLOMON, D. A. AND RUSSINOVICH, M. E. 2000. Inside
Microsoft Windows 2000. Microsoft Press.

SPATSCHECK, O. AND PETERSON, L. 1997. Escort: a
path-based os security architecture. Tech. Rep.
TR97-17, Dept. of Computer Science, University
of Arizona.

VEITCH, A. AND HUTCHINSON, N. 1996. Kea—a dy-
namically extensible and configurable operating
system kernel. In Proceedings of the 3d Confer-
ence on Configurable Distributed Systems.

WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. 1993. Efficient software-based fault
isolation. ACM SIGOPS Operating Systems
Review 27, 5 (December), 203–216.

WALLACH, D. S., BALFANZ, D., DEAN, D., AND FEL-
TEN, E. W. 1997. Extensible security architec-
tures for Java. In 16th Symposium on Operating
Systems Principles. 116–128.

YOKOTE, Y. 1992. The Apertos reflective operating
system: The concept and its implementation. In
Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applica-
tions (OOPSLA). Addison-Wesley, 414–434.

YOKOTE, Y. 1993. Kernel structuring for object-
oriented operating systems: The Apertos ap-
proach,. In Proceedings of the International Sym-
posium on Object Technologies for Advanced
Software. Vol. 742. Springer-Verlag, 145–162.

Received March 2000; revised July 2001, March 2002; accepted June 2002

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

