
Linux Development Kit

Getting Started Guide
Version 1.7

System Requirements ... 3
Introduction to the Linux Development Kit 4

uClinux Overview 4

Linux Development Kit Overview 5
Working with Linux 6
The Linux File System in General 7
File System Structure and the LDK 8

Getting Started
Hardware Components 9
Hardware Installation 10
Software Installation 11

Creating New Applications 13
Rebuilding the niosuserland Applications 14
Rebuilding the ROMDISK 16
Building the IDE File System 17
Rebuilding the Linux Kernel 19
Running a Custom Core 21

Running Applications from a Server 22
The Default Root File System 24
Debugging Applications ... 26

Annual Support Contracts 28

Table of Contents

Linux Development Kit2

Getting Started Guide 3

The Linux Development Kit requires the following before beginning the installation:

1. Workstation (PC) with:
-two serial COM ports available
-Windows NTTM v4 or Windows 2000TM

2. Altera ExcaliburTM Development Kit featuring the NiosTM Embedded Processor
(Version 2.0), with the GNUPro Tools and CygwinTM installed.

3. QUARTUS IITM Programmable Logic Development Tools
-This is only required if new devices are to be supported on the

Excalibur Board that will require the Nios processor core to be rebuilt.

System Requirements

This guide assumes that the reader has basic
knowledge of the Linux operating system and

its conventions.

If you are new to the Linux operating system, it
is recommended that one of the many available
beginner or intermediate guides be purchased
to give the necessary background information.

Linux Development Kit4

Introduction to the Linux
Development Kit

The Linux Development Kit (LDK) includes an embedded version of Linux intended
for processors without a Memory Management Unit (also referred to as MMU-less
processors). The version of Linux distributed with the LDK is known as uClinuxTM,

which Microtronix was responsible for porting to the NiosTM soft-core embedded
processor. Also included are selected hardware components that have been devel-
oped to work with the AlteraTM ExcaliburTM Development Kit featuring the Nios
processor. All of the tools and libraries necessary to supplement the Altera
Software Development Kit (SDK) are also included to provide a complete develop-
ment environment for building, loading, and debugging the Linux kernel. A group of
user applications and examples completes the set.

uClinux Overview
uClinux is an open source version of Linux modified to run on embedded proces-
sors lacking, or having limited, memory management capabilities -- such as the
Altera Nios soft-core processor. Its memory usage is flexible enough to provide a
small footprint with limited features, or it can be built as a feature-rich model.

The default configuration included in the LDK is medium size, providing TCP/IP net-
working, a DHCP client, a web server, telnet access, and both NFS and SMB clients
for accessing Linux and Windows NT servers. These clients allow the development
workstation to host executable application images, which makes the task of testing
and debugging applications less cumbersome.

NOTE: Please see the README.TXT file located on the Software Support
Package CDROM supplied with the Linux Development Kit for up to date
information, including application notes.

Getting Started Guide 5

Linux Development Kit
Overview

The LDK is based on a Windows NT or 2000 user environment using the Cygwin
tool chain. It is possible to set up a development environment in native Linux;
please contact Microtronix for further details.

Compact�
Flash�

Memory�
Expansion Board�

OS Support�
Board�

Ethernet�
Board�

UART�

COM1�

COM2�

Excalibur�
Development�
Board�

Windows Workstation�

Ethernet�

NFS�
SMB�

Mount�

Nios LDK�
Environment�

Cygwin�

Component Locations�

Software Components�

CompactFlash Card�
Default root file system�

Memory Expansion Card�
Standard Kernel (in flash)�
ROMDisk images (in flash)�

Cygwin�
GNUPro Tools�
Nios LDK Environment�

On Board Flash�
Default Nios Processor Core�
Development Nios Processor Core�

Hardware Components�

OS Support Board�
Compact Flash Interface�
IDE Header�
SPI Interface:�
 Real Time Clock�
 Temperature Sensor�

Memory Expansion Board�
16MB SDRAM�
8MB Flash�

Ethernet Board�
10BaseT Ethernet�

Linux Development Kit6

Linux Development Kit
Overview

Working With Linux
If you have worked with a desktop version of Linux, you will be familiar with many of
the conventions and utilities that you will find are a part of the Linux Development
Kit environment. It is outside of the scope of this user guide to provide the back-
ground necessary to begin doing embedded development with Linux. Therefore,
we recommend the following resources:

For more information on the uClinux kernel, visit:
www.uclinux.org

For more information on embedded Linux in general, visit:
www.linuxdevices.com
www.alllinuxdevices.com

For written resources on getting started with Linux, visit:
www.oreilly.com

For a free subscription to the Embedded Linux Journal (if you qualify), visit:
www.embeddedlinuxjournal.com

For updates to the Linux Development Kit documentation, visit:
www.microtronix.com

Getting Started Guide 7

The Linux Filesystem in General
There are standard directories in any Linux filesystem that hold certain files. Not all
of these directories need to be present (certainly not in your embedded system),
and there may be others. Listed are the well known directories and a brief descrip-
tion of their purpose.

/bin: user commands are in this directory. This directory is part of the PATH state-
ment that allows you (or your script files) to execute commands in this directory from
any location.

/sbin: location of statically linked binaries (generally ‘non-user’ system tools).

/opt: this is the standard directory space for applications.

/mnt: this directory refers to temporarily mounted file systems. On a desktop sys-
tem this might refer to a floppy or CDROM drive. In the LDK it is used for SMB and
NFS mount points, described later on in this guide under the section entitled
“Running Applications From A Server”.

/lib: Runtime libraries are located in this directory.

/dev: the references in this directory represent physical devices, such as the serial
port.

/usr/src/linux: the Linux kernel sources are located in this directory.

/etc: applications that use configuration files will usually place the files here. In
addition, uClinux start up scripts also reside here.

Linux Development Kit
Overview

Linux Development Kit8

Linux Development Kit
Overview

File System Structure and the LDK
It is important to remember that there are actually two file systems you will need to
keep track of. One of these is the file system that resides under your Cygwin envi-
ronment. This is the environment in which you will do your development. When you
install the LDK for example, a subdirectory under the root Cygwin directory will be
created called opt. This subdirectory will house all of the specific LDK files on your
host machine.

The other file system is known as the target file system. This is the file system that
uClinux will use when running on the Nios Excalibur Board. This file system can be
loaded into the flash memory of the Memory Expansion Board or onto the Compact
Flash card which is used with the Operating System Support Board.

Getting Started Guide 9

Getting Started -
Hardware Components

The Linux Development Kit contains:
- a Memory Expansion Board
- an Operating System Support Board with Compact Flash Card
- an Ethernet Connectivity Board.

Also included with the Kit is:
- a Software Support Package CD
- two ethernet patch cables (one straight-through, one crossover cable)
- a serial Y cable.

In the event that you have not received any of these components, please contact
the Altera Applications Support Hotline at the number listed on the back of this
Getting Started Guide.

Linux Development Kit10

Getting Started -
Hardware Installation

1. Power down the Excalibur Board, after verifying that the
board is configured with the default factory core flash image.

2. Plug the Memory Expansion Board into the SODIMM socket
J2 by placing the card in the slot at the angle demonstrated in
the figure to the right (A). When the card is inserted at this
angle, press down lightly to lock it in place (B). You should
hear a small click once the board has been secured.

3. Plug the Ethernet Connectivity Board onto the 3.3V
Expansion Prototype Connector by lining up the sockets and
pressing the board vertically downward. This connector con-
sists of headers JP8, JP9, and JP10.

4. Plug the Operating System Support Board onto the 5V
Expansion Prototype Connector by lining up the sockets and
pressing the board vertically downward. This connector con-
sists of headers JP11, JP12, and JP13. Be sure to plug the
Compact Flash card into the Operating System Support
Board’s socket if this hasn’t been already done.

5. If the Ethernet Connectivity Board is to be connected to a
hub then the Ethernet Patch Cable should be used. If the Ethernet Board is to be
attached directly to another ethernet card, the Ethernet Cross-Over Patch Cable
should be used.

6. The Serial Y-Cable is used to connect two UARTs built into the core to two seper-
ate serial COM ports on a PC. The male end should be connected to the serial port
connector J3 on the Excalibur Board. The female end, labelled COM1, is the main
console serial port, and it must be connected to the PC’s COM1 port before any
communication with the board can occur. The other female end (labelled COM2) is
meant to be used for debugging with GDB. You only need to connect this port if
you plan to perform debugging tasks.

7. Power on the Excalibur Board.

2.

3.

4.

Getting Started Guide 11

Getting Started -
Software Installation

Installing the Linux Development Kit

1. Ensure that the "Software Support Package" CD is placed in an available CD-
ROM drive. You should have Adobe Acrobat Reader installed to view all documen-
tation files.

2. Using Windows Explorer, navigate to the CD-ROM drive in which the "Software
Support Package" CD was placed. From there, run "setup.exe" by double-clicking it
(please ensure that there are no other programs or windows open before you do
this). This will launch the LDK Installer. Simply follow the on screen directions until
the Installer completes its task. (Note: the LDK should be installed in the Cygwin
directory. The Installer will ask for you to confirm the directory into which Cygwin
was previously installed).

The Installer will copy a shortcut, Nios_2_0_LDK, onto your desktop that will allow
you to invoke the LDK bash environment.

3. The Nios LDK environment is now set up. When developing using the LDK you
should run bash configured with this new environment using the desktop shortcut,
Nios_2_0_LDK.

Linux Development Kit12

Getting Started -
Software Installation

In order to support the devices now plugged into the Excalibur Board, the Nios core
needs to be updated with the one supplied in the LDK. The following steps must be
taken to load this new core into the flash memory located on the Excalibur board.

1. Ensure that the serial Y-Cable is connected between the Excalibur port and
COM1 of the PC.

2. Invoke the LDK bash window by double-clicking the Nios_2_0_LDK icon on the
desktop.

3. Make sure GERMSmon is running on the board and load the new core into flash
by entering the command (all on one line):

[Nios2.0 LDK Bash]..uClinux/: nios-run
LDKcore2.hexout.flash

4. After nios-run indicates that the download has completed successfully, restart
the board by powering the board off and on again.

The prebuilt image of uClinux and a copy of the root file system (the ROMDISK
image) are pre-loaded onto the Memory Expansion Board’s flash memory. The new
GERMSmon will look for an executable image in this flash when it is restarted.
nios-run (which has remained in terminal mode) will now display the messages
from the uClinux startup. The default root file system is pre-loaded onto the
CompactFlash card.

5. In order to log into uClinux, at the login prompt any user name can be used.
However, the password that must be entered is uClinux

If you need to find out the IP address of the board, use the ifconfig com-
mand at the Nios shell prompt.

When uClinux is initialized it is set up to look for a DHCP Server by default.
However, if a DHCP Server is not available, an error message will be displayed.
To manually set the IP address and other variables, you must use the
ifattach command. A description of how to use this command is under the
“Setting an IP Address” heading in the “Running Applications From a Server”
section in this guide.

Getting Started Guide 13

Creating New Applications

Creating a new application is a relatively straightforward task, as most of the build
process has been automated. The steps are as follows:

1. Create a directory under the root of the application tree (/opt/uClinux/niosuser-
land). Example:

[Nios2.0 LDK Bash]..//: cd /opt/uClinux/niosuserland
[Nios2.0 LDK Bash]../niosuserland/: mkdir myNewApp

3. Peruse the niosuserland tree and find a Makefile that most closely matches your
requirements. For a simple application, consider the makefile in hello/Makefile. A
more complex example can be found in route/Makefile. This makefile builds a
library and an executable using that library. Edit the makefile to reflect your applica-
tion source files. Note that the default target for executables is
/opt/uClinux/romdisk/bin.

NOTE: Make sure your new application’s Makefile contains the line:
include ../Rules.mak

This is very important as the file Rules.mak contains many of the rules and
variable definitions required for applications to be built properly for use with
the Nios.

If your needs differ (for instance, if you wish to place your executable onto an SMB
server), edit the FTARGET variable in your makefile to reflect the proper path, for
example: /opt/uClinux/niosuserland/bin as in hello/Makefile. Refer to the
“Running Applications From a Server” section for more details.

4. To build your application, you can either run make from its subdirectory or use the
command “make all -C ApplicationDirectoryName” from the niosuserland direc-
tory. Alternatively, you can follow the steps defined in this guide under the section
“Rebuilding the niosuserland Applications.”

Points to Keep in Mind
1. The top-level Makefile and Rules.mak do most of the work for you, allowing your
makefiles to be relatively simple.

2. Try to reuse an existing makefile whenever possible.

Linux Development Kit14

Rebuilding the
niosuserland Applications

The source code for the included applications reside in the directory
/opt/uClinux/niosuserland/. In this directory, there is a top level makefile that
builds all of the applications which reside in the various subdirectories.

To force a rebuild of all applications, use the following command:

[Nios2.0 LDK Bash]..niosuserland/: make clean

This is only necessary if the uC-libc library or the Linux header files have changed.

To build a new application or rebuild applications whose source files have changed,
use the following command:

[Nios2.0 LDK Bash]..niosuserland/: make all

Alternatively, individual applications can be built using the -C argument to make. For
example, if you wish to do a make clean and make on only the ping utility, you can
issue the following commands:

[Nios2.0 LDK Bash]..niosuserland/: make clean -C ping
[Nios2.0 LDK Bash]..niosuserland/: make all -C ping

These commands have the same effect as changing the current working directory
to the application’s subdirectory and doing a make clean and make from there.

The make command copies the resulting executables to:

/opt/uClinux/romdisk/bin/
/opt/uClinux/romdisk/sbin/

This is done so that the applications will be included in the ROMDISK image when it
is rebuilt (refer to the section “Rebuilding the ROMDISK” for information about this
procedure).

Getting Started Guide 15

Rebuilding the
niosuserland Applications

Executables may also be copied to a subdirectory outside of the ROMDISK to be
run from the target via SMB or NFS. Refer to the section “Running Applications
From a Server” for details. The usual directory is:

/opt/uClinux/niosuserland/bin/

The individual application makefiles dictate to which directory executables are
copied.

Linux Development Kit16

Rebuilding the ROMDISK
The Nios LDK comes with a pre-built romfs image (ROMDISK) programmed into the
flash memory of the Memory Expansion Board. The loadable image file is located
at:

/opt/uClinux/romdisk.flash

The ROMDISK can be used as the root file system (although by default, the ext2 file
system on the Compact Flash Card is used as the root), and includes various device
files (nodes) and application executables. The ROMDISK is an image made from
an existing directory tree which resides under:

/opt/uClinux/romdisk/

Therefore, any new files that are to be included in the ROMDISK file system should
first be placed under this directory. The following command should then be run to
rebuild the ROMDISK image file from that tree:

[Nios2.0 LDK Bash]../uClinux/: ./mkflashromfs

The mkflashromfs script will create the new romdisk.flash, which contains the neces-
sary commands for erasing the flash reserved for this purpose, and the romdisk
image itself. The image can then be loaded onto the Excalibur Board’s flash memo-
ry. The procedure for accomplishing this is:

[Nios2.0 LDK Bash]../uClinux/: nios-run romdisk.flash

Note: If there is already a Linux image running on the board, you must press and
hold the SW4 button and press the RESET button (SW2) before using this com-
mand.

This will program the image into flash. nios-run will remain in terminal mode to
allow testing of the new romfs. If the Linux kernel is already loaded into flash, it
should start up automatically; otherwise press the CLEAR (SW3) button to restart
the kernel.

Getting Started Guide 17

This section will guide you through the process of creating a new file system on the
CompactFlash Card device. It should be noted that by default, the file system on
the CompactFlash Card is used as the default root file system. The information pre-
sented in this section assumes that you have changed this setting (you are using
the ROMDISK as the default root file system; see the “readme” file in the
/opt/uClinux/tools/cmdline_edit/ directory for more details).
More information regarding the file system utilities can be found elsewhere, as they
are standard, well documented Linux applications.

Before making any modifcations to the Compact Flash Card, make sure that it is not
mounted. You can unmount the device using the following command:

umount /dev/hda1

To create a new file system on the Compact Flash Card, you should first invoke
fdisk, which is a utility that allows you to manage partitions on a specified device:

fdisk /dev/hda

This will run fdisk on the hda device (the Compact Flash Card) and bring you to
fdisk's main menu from where a number of operations can be performed. It may be
necessary to delete an existing partition from the device to make room for the new
partiton.

- From the main menu, use the d command to delete a partition.
- Next, the n command can be used to add a new partition.

- Use p to select the primary partition.
- fdisk will then prompt you to pick a partition number. If you are

creating a new root file system, you should pick 1, then use the
appropriate starting and last cylinder number (the starting and last
cylinder numbers will determine the size of the resulting partition).

- You make the changes permanent, use the w command. This will write
the changes you made to the partition table and exit fdisk. If you wish to
discard the changes you made, use the q command at the main menu.

The CompactFlash Card should now contain a Linux ext2 primary parition.

Building the IDE File
System

Linux Development Kit18

Next, the newly created partition should be formatted. This can be accomplished
using the following:

mke2fs -s0 -Onone -LuClinux /dev/hda1

NOTE: the "1" of /dev/hda1 specifies the primary partition, the one you just
created.

After the partition is formatted, it can then be mounted using the following com-
mand:

mount /dev/hda1 /mnt/ide0

NOTE: the second argument to the mount command (in this case, /mnt/ide0)
is the point at which to mount the partition. This can be changed to any
mount point as necessary.

The final step to take is to populate the file system with the necessary files. If you
are creating a root file system, the shell script mkidedisk can be used. This script
will create the necessary directory tree, and device node files. You can then copy
any files you wish to include in the root file system into the tree. If you are not cre-
ated a root file system, the desired files can simply be copied onto the device.

Building the IDE File
System

Getting Started Guide 19

Rebuilding the Linux
Kernel

The Nios LDK comes with a pre-built Linux kernel, named linux.srec, located in the
/opt/uClinux/linux directory. This is a compiled, ready to run kernel that can be
loaded onto the Excalibur Board’s RAM.

However, if changes are to be made to the Linux kernel code, this srec file must be
rebuilt and reloaded onto the board. Rebuilding the kernel can be accomplished by
using the following commands:

[Nios2.0 LDK Bash]..linux/: make clean
[Nios2.0 LDK Bash]..linux/: make

Where:

make clean deletes all executable and object files.This ensures that existing object
files are not reused.

make will actually compile the source and build the final srec file. This is the only
step required if changes have been made to existing source files and the depend-
encies and configuration have not been modified.

Other make options are:

make mrproper
make config
make dep

make mrproper deletes all executable, object, configuration, and dependency files.
This ensures a fresh start for building the kernel.

make config will allow the desired kernel options to be selected and used. This
creates the configuration files used to control the build process.

make dep will create the dependencies. This step is mandatory if a source or
header file has been added to the kernel tree or if include directories have been
added or removed. This step also needs to be run if a make mrproper has just
been run, since make mrproper deletes dependencies.

Linux Development Kit20

Rebuilding the Linux
Kernel

After building a new kernel, the linux/linux.srec file is suitable for downloading into
RAM memory using nios-run, for example:

[Nios2.0 LDK Bash]../linux/: nios-run linux.srec

To make a more permanent image of the kernel that will start up automatically when
power is applied or the CLEAR button (SW3) is pressed, the image can be loaded
into flash. The procedure for accomplishing this is:

1. Prepare a loadable file in the uClinux directory:

[Nios2.0 LDK Bash]../linux/: cd ..
[Nios2.0 LDK Bash]../uClinux/: ./mkflashlinux

This creates linux.flash, which contains the necessary commands for erasing the
flash reserved for this purpose, and the kernel load itself.

2. Program the flash:

Note: If there is already an existing Linux image running, you must press and hold
the SW4 button, then press and release the reset button (SW2) before using this
command.

[Nios2.0 LDK Bash] ..uClinux/: nios-run linux.flash

This will put the image into flash and begin execution. nios-run will remain in termi-
nal mode, and the Linux startup messages will be displayed.

Getting Started Guide 21

Running a Custom Core

If you wish to use a core other than the one provided with the Nios LDK, you will
need to update some of the header files and then rebuild the uClinux kernel, uC-
libc, and niosuserland applications.

The Nios LDK includes a script file that automates the procedure of updating the
necessary header files. This file is located in the /opt/uClinux/ directory. To use it,
type the following command:

[Nios2.0 LDK Bash] ..uClinux/: ./core_update <path to
Quartus project directory>

NOTE: Be sure not to use a trailing "/" after the path of the Quartus project
directory.

For example, you could run the core_update script passing the project directory pro-
vided on the Nios LDK CD-ROM as an argument:

[Nios2.0 LDK Bash] ..uClinux/: ./core_update
/cygdrive/d/Quartus Project/Hardwarev_3_0_base/cpu_sdk

After running this script, you should rebuild the uClinux kernel, being sure to use the

make mrproper
make config
make dep
make

commands. You should also rebuild both uC-libc and niosuserland and then reload
the kernel and applications onto the Excalibur Board.

Linux Development Kit22

Running Applications
From a Server

The default kernel configuration shipped with the LDK includes both SMB and NFS
support. This will allow you to mount a remote SMB share or NFS mount point. If
you remove either of these and rebuild the kernel you will not be able to mount the
respective remote system. Because of the convenience of being able to load and
execute an application from a remote system where the applications are being built
it is recommended that SMB and NFS be left in the kernel until application debug-
ging is complete.

SMB
For SMB you will need to share the drive or folder that you want to access from the
Linux Development Kit. For information on doing this follow the Windows Operating
System instructions.

NFS
For NFS you will need to install the NFS server software. You will also need to
specify which file system to export using NFS. For information on doing this, follow
the NFS HOWTO document, that can be found at
http://www.linuxdoc.org/HOWTO/NFS-HOWTO.

Once you have the remote file system mounted the applications can be built and
tested without having to rebuild the romdisk. This provides a significant time bene-
fit.

Setting Up an IP Address
Although the ethernet controller is automatically assigned an IP address when
uClinux starts up, you can manually assign it an arbitrary address using the ifattach
command:

ifattach --addr <local_IP_address> --mask <subnet_mask>
--net <network_id> --gw <gateway_address>
--if <device>

Example:

ifattach --addr 10.1.2.9 --mask 255.255.255.0
--net 10.1.2.0 --if eth0

Getting Started Guide 23

Running Applications
From a Server

Mounting an SMB Remote File System From uClinux
To SMB mount a remote shared drive or folder you will need to know the server
name, share name, server IP address and the password (if one was assigned). You
will also need a mount point which was either created on the rom file system or in
the ram disk. For example:

To mount the following system:
Server Name: WINDOWS
Share Name: c
Password: MyPass
IP Address: 10.1.1.50

at mount point: /mnt/smb

You would type (on one line):
smbmount //WINDOWS/c /mnt/smb -I 10.1.1.50

-U john -C -P MyPass

Mounting an NFS Remote File System from uClinux
To NFS mount a remote NFS server mount point you will need to know the exported
file system and the NFS server IP address. For example:

To mount the following system:
Server Name: LinuxBox
Exported File System: /opt
IP Address: 10.1.1.52

at mount point: /mnt/nfs

You would type:
mount -t nfs 10.1.1.52:/opt /mnt/nfs

Linux Development Kit24

The Default Root File
System

Directories and Files in the Default Root File System
By default, the LDK is configured to use the CompactFlash Card as the default root
file system.

To view the default root file system’s structure, examine the /opt/uClinux/romdisk
subdirectory. Everything in and below this directory is present by default in the
default file system (on the CompactFlash Card).

Directories in the Default Root File System
/bin /dev /etc /home /mnt /proc /sbin /usr /var

These directories serve essentially the same purpose as in any standard Linux dis-
tribution. However, because this is an embedded system, there are some differ-
ences.

First, there are no user profiles established. This is why it doesn’t matter which user
name you use when you login into the uClinux environment. Every time a login is
made, it is at the system adminstrator level (or “root” as it is referred to in Linux).

Secondly, although this is a “default” file system, when you start to work on specific
applications for your board, you will likely wish to customize this file system to
reflect the most efficient use of space. In the prebuilt system we’ve provided, all of
the niosuserland/ applications are included by default, however there will probably
be a lot of applications, files, and directories that can be removed to tailor the envi-
ronment to your specific requirements.

ROMDISK
The ROMDISK is a pre-built file system (the pre-built image is included in the LDK
as /opt/uClinux/romdisk.flash) that can be loaded into the flash memory and used as
the default file system (however, by default the CompactFlash Card is used as the
default) The LDK comes with a sample ROMDISK already pre-loaded into the flash
memory of the Memory Expansion board. If you wish to use this image as the
default root file system, please see the “readme” file in the
/opt/uClinux/tools/cmdline_edit/ directory.
This file system has read only access, however you can build a custom ROMDISK

Getting Started Guide 25

The Default Root File
System

by modifying the files and directories in the /opt/uClinux/romdisk tree and then building
a flash image of this tree. The new image would then need to be loaded onto the
Memory Expansion Board. For more information on building a custom ROMDISK,
please refer to the "Rebuilding the ROMDISK" section in this guide.

IDE
The kernel that comes preloaded into flash memory is set up to use the IDE File
System (CompactFlash Card) as the default root file system. However, this setting
can be changed when rebuilding the kernel or by using the cmdline_edit utility (see
the “readme” file in the /opt/uClinux/tools/cmdline_edit/ directory).
For more information on the IDE file system, please refer to “Rebuilding the IDE File
System” section in this guide.

Navigating the Default Root File System
Listed here are some important files and their locations:

bin/
Binaries for most of the utility applications ported to the Nios Processor reside here.

etc/
Any configuration files used in your uClinux environment are located here. Make sure
that you understand any changes being made before attempting to modify or delete
any files in this directory. For example, in the /config subdirectory you will find the
configuration file for the Boa Web Server (boa.conf). Usually by referring to the text of
a configuration file you will find which application the file is related to, and instructions
on the proper method of modifying it.

sbin/
Applications used by the system (such as the Boa Web Server) are here.

dev/
All devices accessed by Linux are represented by a file. In this directory you will find
references to specific devices that are available to your uClinux environment. Before
attempting to modify or delete any files, it is important that you understand what is
being changed!

Linux Development Kit26

Debugging
Applications

The LDK only supports remote debugging; there is no self-hosted debugger avail-
able. Remote debugging consists of a debugger stub on the target (which is built
into uClinux), and a host debugger on your workstation.

To debug an application, you should first ensure that you have a gdb.ini file in the
subdirectory from which nios-elf-gdb will be invoked (This should be the applica-
tion’s subdirectory). This file should contain information that will allow nios-elf-gdb
to properly set up. The contents of the file should look like this:

set architecture nios32
file /opt/uClinux/linux/linux
set remotebaud 115200
target remote com2

Next, invoke the debugger stub from a console terminal by preceeding the applica-
tion command line with a "debug". For example, if you wish to debug the "ping" pro-
gram, you would type:

debug ping 10.1.1.23

At this point, you should start up your nios-elf-gdb:

[Nios2.0 LDK Bash] ../: nios-elf-gdb

The stub will then display some information on the system console similar to the fol-
lowing:

GDB: Trap 5 at 0x????????
GDB: Enter the following command in the nios-elf-gdb

console window:
GDB:add-symbol-file ping.abself 0x????? 0x????? 0x?????

Getting Started Guide 27

Debugging
Applications

Open up a console window in GDB. If the terminal emulator you are using supports
it, copy the "add-symbol-file ping.abself ..." command string from the console termi-
nal into the console window of the GDB (you will need to substitute the actual val-
ues shown for the ?'s). If your terminal emulator does not support copying and past-
ing from the terminal window, you will have to type this command line manually into
the GDB console window.

NOTE: you may have to change the path to the abself file as appropriate.

You can now use GDB to step from crt0 into __uClibc_main() and then into
your applications main().

Linux Development Kit28

Annual Support
Contracts

Microtronix offers many options for technical support according to your
needs. Please contact sales@microtronix.com for more information.

Getting Started Guide 29

Copyright 2001,2002

Microtronix Datacom Ltd.
120 Bessemer Road
London, ON, CA
N6E1R2

www.microtronix.com

If you require assistance installing your LDK,
please email Altera Technical Support:

support@altera.com

If you would like to purchase an annual support
contract, or if you are interested in any of the
following services:

Device Driver Development
Hardware Design, Layout, and Manufacturing
Linux Kernel Development
Programmable Logic Design and/or Prototyping
IP Integration
Embedded Systems Services

Please email ldk@microtronix.com or visit our
website (www.microtronix.com) for more infor-
mation.

Altera, Excalibur, Nios, and FLEX are trademarks of the Altera Corporation. Linux is a trademark of Linus Torvalds.
uClinux is a trademark of LIneo Inc. Any other trademarks and/or registered usages of terminology belong to their
respective owners.

951-6000-01-B

