
Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

112. C++ Strings

Programming in C++

C++ String Variables

The standard C++ library provides an object string type to complement the string
literals used earlier:

string Name1, // must #include <string>
Name2;

A string variable may be assigned the value
of a string literal or another string variable:

Name1 = “Bjarne Stroustrup”;
Name2 = Name1;

string myString;
myString = ‘N’;

const int asciiN = 78;

myString = asciiN; // string equals “N”

Note: do not accidentally use
#include <string.h>

as this will include the C-style
array of char string library.
Standard C++ class libraries do
not use the “.h” extension of
the C libraries.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

212. C++ Strings

Programming in C++

String Initialization

A string variable may be initialized at the point of declaration:

string Greet1 = “Hello”,
Greet2 = Greet1;

It is not, however, legal to assign a char or int value to a string in the declaration:

string String1 = ‘N’, // illegal
String2 = 78; // illegal

Since it would be legal to assign ‘N’ to String1, you might ask why it is illegal
to initialize String1 with ‘N’ in the declaration of String1. The full reason
would take us into a discussion of the notion of a class in C++, a topic not covered
in this course.

Suffice it to say at this point that the statements above are true.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

312. C++ Strings

Programming in C++

String Initialization (continued)

It is not legal to have a line break within a string literal in C++:

string BadString = “It is as a tale told by an idiot, // not
full of sound and fury, // legal

signifying nothing.”;

. . . however, somewhat perversely, this is OK:

string LongString = “It is as a tale told by an idiot, ”
“full of sound and fury, ”

“signifying nothing.”;

And, of course, it is legal for a string literal to contain a newline character:

string Prompt = “Type your user id below and press <Enter>:\n”;

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

412. C++ Strings

Programming in C++

String Output

A string variable may be printed by inserting it to an output stream, just as with any
simple variable:

string Greetings = “Hello, world!”;
cout << Greetings << endl;

Just as with string literals, no whitespace padding is provided automatically, so:

cout << Greetings << “It’s a wonderful day!”;

would print:

Hello, world!It’s a wonderful day!

Of course, you can provide whitespace yourself:

cout << Greetings << “ ” << “It’s a wonderful day!”;

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

512. C++ Strings

Programming in C++

String Input: extraction

The stream extraction operator may be used to read characters into a string variable:

string Greetings;
cin >> Greetings;

The extraction statement reads a whitespace-terminated string into the target string
(Greetings in this case), ignoring any leading whitespace and not including the
terminating whitespace character in the target string.

The amount of storage allocated for the variable Greetings will be adjusted as
necessary to hold the number of characters read. (There is a limit on the number of
characters a string variable can hold, but that limit is so large it is of no concern.)

Of course, it is often desirable to have more control over where the extraction stops.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

612. C++ Strings

Programming in C++

String Input: getline()

The getline() standard library function provides a simple way to read
character input into a string variable, controlling the “stop” character.

Suppose we have the following input file:

Fred Flintstone Laborer 13301
Barney Rubble Laborer 43583

There is a single tab after the employee name, another single tab after the job title,
and a newline after the ID number.

Assuming iFile is connected to the input file above, the statement

getline(iFile, String1);

would result in String1 having the value:

“Fred Flintstone Laborer 13301”

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

712. C++ Strings

Programming in C++

String Input: getline() (continued)

As used on the previous slide, getline() takes two parameters. The first specifies
an input stream and the second a string variable.

Called in this manner, getline() reads from the current position in the input
stream until a newline character is found.

Leading whitespace is included in the target string.

The newline character is removed from the input stream, but not included in the target
string.

It is also possible to call getline() with three parameters. The first two are as
described above. The third parameter specifies the “stop” character; i.e., the character
at which getline() will stop reading from the input stream.

By selecting an appropriate stop charcter, the getline()function can be used to read
text that is formatted using known delimiters. The example program on the following
slides illustrates how this can be done with the input file specified on the preceding
slide.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

812. C++ Strings

Programming in C++

String Input Example

#include <fstream> // file streams

#include <iostream> // standard streams

#include <string> // string variable support

using namespace std; // using standard library

void main() {

string EmployeeName, JobTitle; // strings for name and title

int EmployeeID; // int for id number

ifstream iFile; // open input file

iFile.open("String1.dat");

// Priming read:

getline(iFile, EmployeeName, ’\t’); // read to first tab

getline(iFile, JobTitle, ’\t’); // read to next tab

iFile >> EmployeeID; // extract id number

iFile.ignore(80, ’\n’); // skip to start of next line

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

912. C++ Strings

Programming in C++

String Input Example (continued)

while (iFile) { // read to failure

cout << "Next employee: " << endl; // print record header

cout << EmployeeName << endl // name on one line

<< JobTitle << " ” // title and id number

<< EmployeeID << endl << endl; // on another line

getline(iFile, EmployeeName, '\t'); // repeat priming read

getline(iFile, JobTitle, '\t'); // logic

iFile >> EmployeeID;

iFile.ignore(80, '\n');

}

iFile.close(); // close input file

}

This program takes advantage of the formatting of the input file to treat each input line
as a collection of logically distinct entities (a name, a job title, and an id number). That
is almost certainly more useful than simply grabbing a whole line of input at once.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1012. C++ Strings

Programming in C++

Strings are C++ Classes

Like the input and output streams, cin and cout and their file-oriented siblings, string
variables (objects) in C++ are actually instances of the standard string class.

Being classes, every string object automatically has a number of associated functions
(called member functions) that you can use to perform operations on that string or to
obtain information about it. The following slides will present a few of the basic string
member functions.

Recall the syntax for using a member function:

string myString = “Virginia Polytechnic Institute”;

int myLength = myString.length(); // call the length() member
// function of the string

// object myString

To use a member function, you give the object name, followed by a period, followed
by the function call (function name and parameter list, if any).

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1112. C++ Strings

Programming in C++

Length of a String

string s1 = “Fred Flintstone”;
int sLength = s1.length(); // sLength == 15

The length is probably most useful in formatting output. For example:

cout << s1;
cout << setw(20 - s1.Length()) << Age;

will print the name in s1, followed by the value of Age, right-justified to column
20.

The length of a string is the number of characters it contains, including whitespace
characters, if any. The length of the string currently stored in a string variable may
be found by using the member function:

int length();

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1212. C++ Strings

Programming in C++

Testing if a String is Empty

returns true if the string variable currently holds no characters and false otherwise.
For example, one might use this function to determine whether a read attempt
actually placed any characters into the target string:

string s1 = “”;
cin >> s1;
if (s1.empty())

cout << “Read failed” << endl;

Of course, the test is only useful if you make certain that s1 is empty before
attempting to read something into it.

The Boolean member function

bool empty();

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1312. C++ Strings

Programming in C++

String Concatenation

Two strings may be concatenated; that is, one may be appended to another:

string Greet1 = “Hello”;
string Greet2 = “world”;
string Greetings = Greet1 + “, ” + Greet2 + “!”;

Here, the concatenation operator (+) is used to combine several strings, variable and
literal and the result is assigned to Greetings. The effect of the statement above
is the same as:

string Greetings = “Hello, world!”;

You may use the concatenation operator to combine string variables, string literals
and characters:

Greetings = Greetings + ‘\n’;

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1412. C++ Strings

Programming in C++

Comparing Strings for Equality

Two strings may be compared for equality using the usual equals relational operator
(==). So we may write the following:

string s1 = “yadda”;
string s2 = s1 + s1 + s1;
string s3 = “yadda yadda yadda”;
if (s2 == s3)

cout << s2 << “ equals ” << s3 << endl;
else

cout << s2 << “ doesn’t equal ” << s3 << endl;

We may also use the not-equals operator (!=) with string variables:

string s3 = “”;

while (s3 != s2)
s3 = s3 + s1;

The other relational operators (<, <=, >, >=) may also be used with C++ string
variables.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1512. C++ Strings

Programming in C++

Lexicographic Comparison

s1.compare(s2) returns:

➯ a negative value, if the first differing element in s1 compares less than the
corresponding element in s2 (as determined by their ASCII codes), or if s1
is a prefix of s2, but s2 is longer;

➯ zero, if s1 == s2;

➯ a positive value, otherwise.

Two strings may also be compared by using the member function

int compare();

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1612. C++ Strings

Programming in C++

Lexicographic Comparison Example

Given the strings:

string Worker1 = “Fred Flintstone”;
string Worker2 = “Fred Munster”;
string Worker3 = “e e cummings”;
string Worker4 = “Fred Munst”;

the compare function would behave as follows:

int c1 = Worker1.compare(Worker2); // c1 < 0

int c2 = Worker1.compare(Worker3); // c2 < 0 (Why?)

int c3 = Worker2.compare(Worker4); // c3 > 0

int c4 = Worker1.compare(Worker1); // c4 == 0

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1712. C++ Strings

Programming in C++

Accessing String Elements

The character at a particular position in a string variable may be obtained by using the
member function:

char at(int position);

// position: position of desired element

For example:

string s1 = “mairsy doates and doesy doates”;

char ch1 = s1.at(5); // ch1 == ‘y’

Note that the positions in a string are numbered sequentially, starting at zero. So:

for (int i = 7; i <= 12; i++)
cout << s1.at(i) << ‘\t’;

would print: d o a t e s

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1812. C++ Strings

Programming in C++

Accessing String Elements (continued)

The character at a particular position in a string variable may also be referenced by
indexing a string object.

For example:

string s1 = “mairsy doates and doesy doates”;

char ch1 = s1[5]; // ch1 == ‘y’

Note that the positions in a string are numbered sequentially, starting at zero. So:

for (int i = 7; i <= 12; i++)
cout << s1[i] << ‘\t’;

would print: d o a t e s

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

1912. C++ Strings

Programming in C++

Inserting one String into Another

A string of characters may be inserted at a particular position in a string variable by using
the member function:

string& insert(int startinsert, string s);

// startinsert: position at which insert begins
// s: string to be inserted

For example:

string Name = “Fred Flintstone”;
string MiddleInitial = “ G.”;

Name.insert(4, MiddleInitial);
cout << Name << endl;

prints: Fred G. Flintstone

The function returns (a reference to) the string s1 which can be assigned to another
string variable if desired; but the content of the original string is changed in any case.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

2012. C++ Strings

Programming in C++

Inserting a Part of one String into Another

Another version of the insert function takes four parameters:

string& insert(int startinsert, string s, int startcopy,
int numtocopy);

// startinsert: position at which insert begins
// s: string to be inserted
// startcopy: position (in s) of first element to be used
// numtocopy: number of elements (of s) to be used

For example:

string s4 = “0123456789”;
string s5 = “abcdefghijklmnopqrstuvwxyz”;

s4.insert(3, s5, 7, 5);

cout << "s4: " << s4 << endl;

prints: s4: 012hijkl3456789

Note: a sequence of characters from a string is called a substring.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

2112. C++ Strings

Programming in C++

Extracting a Substring

A substring of a string may be extracted (copied) and assigned to another by using the
member function:

string& substr(int startcopy, int numtocopy);

// startcopy: position at which substring begins
// numtocopy: length of substring

For example:

string s4 = “Fred Flintstone”;
string s5 = s4.substr(5, 10);

cout << s4 << endl << s5 << endl;

prints: Fred Flintstone
Flintstone

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

2212. C++ Strings

Programming in C++

Erasing a Substring

A substring may be deleted from a string by using the member function:

For example:

string s6 = “abcdefghijklmnopqrstuvwxyz”;

s6.erase(3, 5);

cout << "s6: " << s6 << endl;

would print: s6: abcijklmnopqrstuvwxyz

string& erase(int starterase, int numtoerase);

// starterase: position of first element to be erased
// numtoerase: number of elements to be erased

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

2312. C++ Strings

Programming in C++

Replacing a Substring

A substring may be erased and replaced by another substring by using the member
function:

For example:

string s6 = “abcdefghijklmnopqrstuvwxyz”;
string s7 = “Fred Flintstone”;

s6.replace(3, 5, “01234”);

s7.replace(0, 4, “Bradley”);

cout << "s6: " << s6 << endl;

cout << "s7: " << s7 << endl;

would print: s6: abc01234ijklmnopqrstuvwxyz
s7: Bradley Flintstone

string& replace(int startreplace, int numtoreplace,
string s);

// startreplace: position of first element to be replaced
// numtoreplace: number of elements to be replaced

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

2412. C++ Strings

Programming in C++

Searching for a Substring

A string may be searched for an occurrence of a substring by using the member
function:

int find(string s, int startsearch);

// s: substring to be searched for
// startsearch: position at which to begin search
// returns position at which matching substring
// starts; -1 if no match is found

For example:

string s1 = “To be or not to be, that is the question.”;
int loc = s1.find(“be”, 0);
int newloc = s1.find(“be”, loc + 1);
cout << loc << ‘\t’ << newloc << endl;

prints: 3 16

Note: using loc instead of loc + 1 in the second call would result in finding the first
occurrence again.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

2512. C++ Strings

Programming in C++

Just for Fun

Putting several of the member functions together:

string s1 = “But I have heard it works, even if you don’t believe in it.”;

s1.erase(0, 4); // erase initial “But ”

s1.replace(s1.find(“even”, 0), 4, “only”); // change “even” to “only”

s1.replace(s1.find(“don’t ”, 0), 5, “”); // erase “don’t ” by replacing it

// with the empty string

cout << s1 << endl;

prints: I have heard it works, only if you believe in it.

Computer Science Dept Va Tech August, 1999 ©1995-1998 Barnette ND, McQuain WD, Keenan MA

2612. C++ Strings

Programming in C++

And That’s Just the Beginning

This chapter includes only a minimal introduction to the world of string objects in C++.

There are many additional member functions. For example, there are six different
compare member functions and ten different replace member functions in the
standard C++ string library.

The interested reader is referred to Bjarne Stroustrup’s excellent The C++ Programming
Language, 3rd Ed. for further details.

