
GRMON2 User's Manual 1

.

GRMON2 User's Manual

GRMON2 User's Manual GRMON2-UM
Version 2.0.68

September 2015

Kungsgatan 12 tel +46 31 7758650
411 19 Gothenburg fax +46 31 421407
Sweden www.aeroflex.com/gaisler

GRMON2 User's Manual 2

GRMON2 User's Manual

Copyright © 2015 Aeroflex Gaisler AB

GRMON2 User's Manual iii

Table of Contents
1. Introduction .. 1

1.1. Overview ... 1
1.2. Supported platforms and system requirements .. 1
1.3. Obtaining GRMON ... 1
1.4. Installation ... 1
1.5. License ... 2
1.6. GRMON Evaluation version ... 2
1.7. Problem reports .. 2

2. Debugging concept .. 3
2.1. Overview ... 3
2.2. Target initialization ... 4
2.3. Memory register reset values .. 5

3. Operation ... 6
3.1. Overview ... 6
3.2. Starting GRMON .. 6

3.2.1. Debug link options ... 6
3.2.2. Debug driver options .. 6
3.2.3. General options .. 6

3.3. GRMON command-line interface (CLI) .. 7
3.4. Common debug operations ... 8

3.4.1. Examining the hardware configuration ... 8
3.4.2. Uploading application and data to target memory .. 10
3.4.3. Running applications ... 10
3.4.4. Inserting breakpoints and watchpoints ... 11
3.4.5. Displaying processor registers ... 11
3.4.6. Backtracing function calls .. 12
3.4.7. Displaying memory contents ... 12
3.4.8. Using the trace buffer .. 13
3.4.9. Profiling .. 15
3.4.10. Attaching to a target system without initialization .. 15
3.4.11. Multi-processor support .. 16
3.4.12. Stack and entry point ... 16
3.4.13. Memory Management Unit (MMU) support ... 17
3.4.14. CPU cache support .. 17

3.5. Tcl integration .. 17
3.5.1. Shells ... 17
3.5.2. Commands .. 17
3.5.3. API .. 18
3.5.4. Links .. 18

3.6. Symbolic debug information ... 18
3.6.1. Multi-processor symbolic debug information .. 19

3.7. GDB interface .. 19
3.7.1. Connecting GDB to GRMON ... 20
3.7.2. Executing GRMON commands from GDB .. 20
3.7.3. Running applications from GDB .. 20
3.7.4. Running SMP applications from GDB .. 21
3.7.5. Running AMP applications from GDB ... 22
3.7.6. GDB Thread support ... 23
3.7.7. Virtual memory .. 24
3.7.8. Specific GDB optimization ... 26
3.7.9. Limitations of GDB interface .. 26

3.8. Thread support ... 27
3.8.1. GRMON thread commands .. 27

3.9. Forwarding application console I/O .. 28
3.10. FLASH programming ... 29

GRMON2 User's Manual iv

3.10.1. CFI compatible Flash PROM .. 29
3.10.2. SPI memory device ... 29

4. Debug link ... 31
4.1. Serial debug link ... 32
4.2. Ethernet debug link ... 32
4.3. JTAG debug link .. 33

4.3.1. Xilinx parallel cable III/IV ... 33
4.3.2. Xilinx Platform USB cable ... 34
4.3.3. Altera USB Blaster or Byte Blaster .. 36
4.3.4. FTDI FT4232/FT2232 ... 36
4.3.5. Amontec JTAGkey ... 37
4.3.6. Actel FlashPro 3/3x/4 .. 37
4.3.7. Digilent HS1 .. 37

4.4. USB debug link .. 38
4.5. PCI debug link ... 39
4.6. GRESB debug link .. 40

5. Debug drivers ... 41
5.1. AMBA AHB trace buffer driver .. 41
5.2. DSU Debug drivers ... 41

5.2.1. Switches .. 41
5.2.2. Commands .. 42
5.2.3. Tcl variables .. 43

5.3. Ethernet controller ... 43
5.3.1. Commands .. 43

5.4. GRPWM core ... 43
5.5. I2C ... 43
5.6. I/O Memory Management Unit .. 43
5.7. Multi-processor interrupt controller .. 44
5.8. On-chip logic analyzer driver .. 44
5.9. Memory controllers .. 45

5.9.1. Switches .. 46
5.9.2. Commands .. 47

5.10. PCI ... 47
5.10.1. PCI Trace .. 51

5.11. SPI ... 51
5.12. SVGA frame buffer ... 51

6. Support .. 53
A. Command index ... 54
B. Command syntax .. 57
C. Tcl API ... 182
D. License key installation .. 186
E. Appending environment variables ... 187
F. Compatibility .. 188

GRMON2 User's Manual 1

1. Introduction

1.1. Overview

GRMON is a general debug monitor for the LEON processor, and for SOC designs based on the GRLIB IP
library. Only LEON 3 and later are supported. GRMON includes the following functions:

• Read/write access to all system registers and memory

• Built-in disassembler and trace buffer management

• Downloading and execution of LEON applications

• Breakpoint and watchpoint management

• Remote connection to GNU debugger (GDB)

• Support for USB, JTAG, RS232, PCI, Ethernet and SpaceWire debug links

• Tcl interface (scripts, procedures, variables, loops etc.)

1.2. Supported platforms and system requirements

GRMON is currently provided for platforms: Linux-x86 (GLIBC 2.3.4), Windows XP Sp3 and Windows 7

1.3. Obtaining GRMON

The primary site for GRMON is Aeroflex Gaisler website [http://www.gaisler.com/], where the latest ver-
sion of GRMON can be ordered and evaluation versions downloaded.

1.4. Installation

To install GRMON, extract the archive anywhere on the host computer. The archive contains a directory for
each OS that grmon supports. Each OS- folder contains additional directories as described in the list below.

grmon-pro-2.0.XX/<OS>/bin
grmon-pro-2.0.XX/<OS>/lib
grmon-pro-2.0.XX/<OS>/share

The bin directory contains the executable. For convenience the it is recommended to add the bin directory
of the host OS to the environment variable PATH. See Appendix E, Appending environment variables for
instructions on how to append environment variables.

GRMON must find the share directory to work properly. GRMON will try to automatically detect the
location of the folder. A warning will be printed when starting GRMON if it fails to find the share fold-
er. If it fails to automatically detect the folder, then the environment variable GRMON_SHARE can be set
to point the share/grmon folder. For example on Windows it could be set to c:\opt\grmon-pro
\win32\share\grmon or on Linux it could be set to /opt/grmon-pro/linux/share/grmon.

The lib directory contains some additional libraries that GRMON requires. On the Windows platform the
lib directory is not available. On the Linux platform, if GRMON fails to start because of some missing li-
braries that are located in this directory, then add this path to the environment variable LD_LIBRARY_PATH
or add it the ld.so.cache (see man pages about ldconfig for more information).

In addition, some debug interfaces requires installation of third-party drivers, see Chapter 4, Debug link for
more information.

The professional versions use a HASP HL license key. See Appendix D, License key installation for instal-
lation of the HASP HL device drivers.

http://www.gaisler.com/
http://www.gaisler.com/

GRMON2 User's Manual 2

1.5. License

The GRMON license file can be found in the share folder of the installation. For example on Windows it
can be found in c:\opt\grmon-pro\win32\share\grmon or on Linux it could be found in /opt/
grmon-pro/linux/share/grmon.

1.6. GRMON Evaluation version

The evaluation version of GRMON can be downloaded from Aeroflex Gaisler website [http://
www.gaisler.com/]. The evaluation version may be used during a period of 21 days without purchasing a
license. After this period, any commercial use of GRMON is not permitted without a valid license. The
following features are not available in the evaluation version:

• Support for LEON3-FT, LEON4

• FT memory controllers

• SpaceWire drivers

• Custom JTAG configuration

• Profiling

• TCL API (drivers, init scripts, hooks, I/O forward to TCL channel etc)

1.7. Problem reports

Please send bug reports or comments to support@gaisler.com.

Customers with a valid support agreement may send questions to support@gaisler.com. Include a GRMON
log when sending questions, please. A log can be obtained by starting GRMON with the command line
switch -log filename.

The leon_sparc community at Yahoo may also be a source to find solutions to problems.

http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/

GRMON2 User's Manual 3

2. Debugging concept

2.1. Overview

The GRMON debug monitor is intended to debug system-on-chip (SOC) designs based on the LEON pro-
cessor. The monitor connects to a dedicated debug interface on the target hardware, through which it can
perform read and write cycles on the on-chip bus (AHB). The debug interface can be of various types: the
LEON3/4 processor supports debugging over a serial UART, 32-bit PCI, JTAG, Ethernet and SpaceWire
(using the GRESB Ethernet to SpaceWire bridge) debug interfaces. On the target system, all debug inter-
faces are realized as AHB masters with the Debug protocol implemented in hardware. There is thus no soft-
ware support necessary to debug a LEON system, and a target system does in fact not even need to have
a processor present.

Figure 2.1. GRMON concept overview

GRMON can operate in two modes: command-line mode and GDB mode. In command-line mode, GRMON
commands are entered manually through a terminal window. In GDB mode, GRMON acts as a GDB gateway
and translates the GDB extended-remote protocol to debug commands on the target system.

GRMON is implemented using three functional layers: command layer, debug driver layer, and debug in-
terface layer. The command layer takes input from the user and parses it in a Tcl Shell. It is also possible to
start a GDB server service, which has its own shell, that takes input from GDB. Each shell has it own set of
commands and variables. Many commands depends on drivers and will fail if the core is note present in the
target system. More information about Tcl integration can be found in the Section 3.5, “Tcl integration”.

The debug driver layer implements drivers that probes and initializes the cores. GRMON will scan the target
system at start-up and detect which IP cores are present. The drivers may also provides information to the
commands.

The debug interface layer implements the debug link protocol for each supported debug interface. Which
interface to use for a debug session is specified through command line options during the start of GRMON.
Only interfaces based on JTAG supports 8-/16-bit accesses, all other interfaces access subwords using read-
modify-write. 32-bit accesses are supported by all interfaces. More information can be found in Chapter 4,
Debug link.

GRMON2 User's Manual 4

2.2. Target initialization

When GRMON first connects to the target system, it scans the system to detect which IP cores are present.
This is done by reading the plug and play information which is normally located at address 0xfffff000 on
the AHB bus. A debug driver for each recognized IP core is then initialized, and performs a core-specific
initialization sequence if required. For a memory controller, the initialization sequence would typically con-
sist of a memory probe operation to detect the amount of attached RAM. For a UART, it could consist of
initializing the baud rate generator and flushing the FIFOs. After the initialization is complete, the system
configuration is printed:

 GRMON2 LEON debug monitor v2.0.15 professional version

 Copyright (C) 2012 Aeroflex Gaisler - All rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com

 GRLIB build version: 4111
 Detected frequency: 40 MHz

 Component Vendor
 LEON3 SPARC V8 Processor Aeroflex Gaisler
 AHB Debug UART Aeroflex Gaisler
 JTAG Debug Link Aeroflex Gaisler
 GRSPW2 SpaceWire Serial Link Aeroflex Gaisler
 LEON2 Memory Controller European Space Agency
 AHB/APB Bridge Aeroflex Gaisler
 LEON3 Debug Support Unit Aeroflex Gaisler
 Generic UART Aeroflex Gaisler
 Multi-processor Interrupt Ctrl. Aeroflex Gaisler
 Modular Timer Unit Aeroflex Gaisler
 General Purpose I/O port Aeroflex Gaisler

 Use command 'info sys' to print a detailed report of attached cores

grmon2>

More detailed system information can be printed using the ‘info sys’ command as listed below. The detailed
system view also provides information about address mapping, interrupt allocation and IP core configuration.
Information about which AMBA AHB and APB buses a core is connected to can be seen by adding the -v
option. GRMON assigns a unique name to all cores, the core name is printed to the left. See Appendix C,
Tcl API for information about Tcl variables and device names.

grmon2> info sys
 cpu0 Aeroflex Gaisler LEON3 SPARC V8 Processor
 AHB Master 0
 ahbuart0 Aeroflex Gaisler AHB Debug UART
 AHB Master 1
 APB: 80000700 - 80000800
 Baudrate 115200, AHB frequency 40000000.00
 ahbjtag0 Aeroflex Gaisler JTAG Debug Link
 AHB Master 2
 grspw0 Aeroflex Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 3
 APB: 80000A00 - 80000B00
 IRQ: 10
 Number of ports: 1
 mctrl0 European Space Agency LEON2 Memory Controller
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit sdram: 1 * 64 Mbyte @ 0x40000000
 col 9, cas 2, ref 7.8 us
 apbmst0 Aeroflex Gaisler AHB/APB Bridge
 AHB: 80000000 - 80100000
 dsu0 Aeroflex Gaisler LEON3 Debug Support Unit
 AHB: 90000000 - A0000000
 AHB trace: 128 lines, 32-bit bus
 CPU0: win 8, hwbp 2, itrace 128, V8 mul/div, srmmu, lddel 1
 stack pointer 0x43fffff0
 icache 2 * 4096 kB, 32 B/line lru
 dcache 1 * 4096 kB, 16 B/line
 uart0 Aeroflex Gaisler Generic UART
 APB: 80000100 - 80000200
 IRQ: 2

GRMON2 User's Manual 5

 Baudrate 38461
 irqmp0 Aeroflex Gaisler Multi-processor Interrupt Ctrl.
 APB: 80000200 - 80000300
 gptimer0 Aeroflex Gaisler Modular Timer Unit
 APB: 80000300 - 80000400
 IRQ: 8
 8-bit scalar, 2 * 32-bit timers, divisor 40
 grgpio0 Aeroflex Gaisler General Purpose I/O port
 APB: 80000800 - 80000900

2.3. Memory register reset values

To ensure that the memory registers has sane values, GRMON will reset the registers when commands that
access the memories are issued, for example run, load commands and similar commands. To modify the
reset values, use the commands listed in Section 5.9.2, “Commands”.

GRMON2 User's Manual 6

3. Operation

3.1. Overview

A GRMON debug session typically consists of the following steps:

1. Starting GRMON and attaching to the target system
2. Examining the hardware configuration
3. Uploading application program
4. Setup debugging, for example insert breakpoints and watchpoint
5. Executing the application
6. Debugging the application and examining the CPU and hardware state

Step 2 though 6 is performed using the GRMON terminal interface or by attaching GDB and use the standard
GDB interface. The GDB section describes how GRMON specific commands are accessed from GDB.

The following sections will give an overview how the various steps are performed.

3.2. Starting GRMON

GRMON is started by giving the grmon command in a terminal window. Without options, GRMON will
default to connect to the target using the serial debug link. UART1 of the host (ttyS0 or COM1) will be
used, with a default baud rate of 115200 baud. On windows hosts, GRMON can be started in a command
window (cmd.exe) or in a MSYS shell.

Command line options may be split up in several different groups by function as below.

• The debug link options: setting up a connection to GRLIB target
• General options: debug session behavior options
• Debug driver options: configure the hardware, skip core auto-probing etc.

Below is an example of GRMON connecting to a GR712 evaluation board using the FTDI USB serial
interface, tunneling the UART output of APBUART0 to GRMON and specifying three RAM wait states
on read and write:

$ grmon -ftdi -u -ramws 3

3.2.1. Debug link options

GRMON connects to a GRLIB target using one debug link interface, the command line options selects which
interface the PC uses to connect to the target and optionally how the debug link is configured. All options
are described in Chapter 4, Debug link.

3.2.2. Debug driver options

The debug drivers provide an interface to view and access AMBA devices during debugging and they offer
device specific ways to configure the hardware when connecting and before running the executable. Drivers
usually auto-probe their devices for optimal configuration values, however sometimes it is useful to override
the auto-probed values. Some options affects multiple drivers. The debug driver options are described in
Chapter 5, Debug drivers.

3.2.3. General options

The general options are mostly target independent options configuring the behavior of GRMON. Some of
them affects how the target system is accessed both during connection and during the whole debugging
session. All general options are described below.

grmon [options]

Options:

-abaud baudrate
Set baud-rate for all UARTs in the system, however not the debug-link AHBUART. By default, 38400
baud is used.

GRMON2 User's Manual 7

-ambamb [maxbuses]
Enable auto-detection of AHBCTRL_MB system and (optionally) specifies the maximum number of
buses in the system if an argument is given. The optional argument to -ambamb is decoded as below:

0, 1: No Multi-bus (MB) (max one bus)

2..3: Limit MB support to 2 or 3 AMBA PnP buses

4 or no argument: Selects Full MB support

-c filename
Run the commands in the batch file at start-up.

-echo
Echo all the commands in the batch file at start-up. Has no effect unless -c is also set.

-freq sysclk
Overrides the detected system frequency. The frequency is specified in MHz.

-gdb [port]
Listen for GDB connection directly at start-up. Optionally specify the port number for GDB communi-
cations. Default port number is 2222.

-ioarea address
Specify the location of the I/O area. (Default is 0xfff00000).

-log filename
Log session to the specified file. If the file already exists the new session is appended. This should be
used when requesting support.

-ni
Read plug n' play and detect all system device, but don't do any target initialization. See Section 3.4.10,
“Attaching to a target system without initialization” for more information.

-nothreads
Disable thread support.

-u [device]
Put UART 1 in FIFO debug mode if hardware supports it, else put it in loop-back mode. Debug mode
will enable both reading and writing to the UART from the monitor console. Loop-back mode will only
enable reading. See Section 3.9, “Forwarding application console I/O”. The optional device parameter
is used to select a specific UART to be put in debug mode. The device parameter is an index starting
with 0 for the first UART and then increasing with one in the order they are found in the bus scan. If
the device parameter is not used the first UART is selected.

3.3. GRMON command-line interface (CLI)

The GRMON2 command-line interface features a Tcl 8.5 interpreter which will interpret all entered com-
mands substituting variables etc. before GRMON is actually called. Variables exported by GRMON can
also be used to access internal states and hardware registers without going through commands. The GRMON
Tcl interface is described in Section 3.5, “Tcl integration”.

GRMON dynamically loads libreadline.so if available on your host system, and uses the readline
library to enter and edit commands. Short forms of the commands are allowed, e.g lo, loa, or load, are all
interpreted as load. Tab completion is available for commands, Tcl variables, text-symbols, file names, etc.
If libreadline.so is not found, the standard input/output routines are used instead (no history, poor
editing capabilities and no tab-completion).

The commands can be separated in to three categories similar to the start-up options:

• Tcl internal commands and reserved key words
• GRMON built-in commands always available regardless of target

GRMON2 User's Manual 8

• GRMON commands accessing debug drivers

Tcl internal and GRMON built-in commands are available regardless of target hardware present whereas
debug driver commands may only be present on supported systems. The Tcl and driver commands are
described in Section 3.5, “Tcl integration” and Chapter 5, Debug drivers respectively. In Table 3.1 is a
summary of all GRMON built-in commands. For the full list of commands, see Appendix A, Command
index.

Table 3.1. BUILT-IN commands

batch Execute batch script

bdump Dump memory to a file

bload Load a binary file

disassemble Disassemble memory

dump Dump memory to a file

dwarf print or lookup dwarf information

eeload Load a file into an EEPROM

exit Exit GRMON

gdb Controll the builtin GDB remote server

help Print all commands or detailed help for a specific command

info Show information

load Load a file or print filenames of uploaded files

mem AMBA bus 32-bit memory read access, list a range of addresses

memb AMBA bus 8-bit memory read access, list a range of addresses

memh AMBA bus 16-bit memory read access, list a range of addresses

quit Quit the GRMON console

reset Reset drivers

shell Execute shell process

silent Suppress stdout of a command

symbols Load, print or lookup symbols

verify Verify that a file has been uploaded correctly

wmem AMBA bus 32-bit memory write access

wmemb AMBA bus 8-bit memory write access

wmemh AMBA bus 16-bit memory write access

wmems Write a string to an AMBA bus memory address

3.4. Common debug operations

This section describes and gives some examples of how GRMON is typically used, the full command ref-
erence can be found in Appendix A, Command index.

3.4.1. Examining the hardware configuration

When connecting for the first time it is essential to verify that GRMON has auto-detected all devices and
their configuration correctly. At start-up GRMON will print the cores and the frequency detected. From the
command line one can examine the system by executing info sys as below:

grmon2> info sys
 cpu0 Aeroflex Gaisler LEON3-FT SPARC V8 Processor
 AHB Master 0
 cpu1 Aeroflex Gaisler LEON3-FT SPARC V8 Processor
 AHB Master 1
 greth0 Aeroflex Gaisler GR Ethernet MAC
 AHB Master 3

GRMON2 User's Manual 9

 APB: 80000E00 - 80000F00
 IRQ: 14
 grspw0 Aeroflex Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 5
 APB: 80100800 - 80100900
 IRQ: 22
 Number of ports: 1
 grspw1 Aeroflex Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 6
 APB: 80100900 - 80100A00
 IRQ: 23
 Number of ports: 1
 mctrl0 Aeroflex Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us
 apbmst0 Aeroflex Gaisler AHB/APB Bridge
 AHB: 80000000 - 80100000
 dsu0 Aeroflex Gaisler LEON3 Debug Support Unit
 AHB: 90000000 - A0000000
 AHB trace: 256 lines, 32-bit bus
 CPU0: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x407ffff0
 icache 4 * 4096 kB, 32 B/line lru
 dcache 4 * 4096 kB, 16 B/line lru
 CPU1: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x407ffff0
 icache 4 * 4096 kB, 32 B/line lru
 dcache 4 * 4096 kB, 16 B/line lru
 uart0 Aeroflex Gaisler Generic UART
 APB: 80000100 - 80000200
 IRQ: 2
 Baudrate 38461, FIFO debug mode
 irqmp0 Aeroflex Gaisler Multi-processor Interrupt Ctrl.
 APB: 80000200 - 80000300
 EIRQ: 12
 gptimer0 Aeroflex Gaisler Modular Timer Unit
 APB: 80000300 - 80000400
 IRQ: 8
 16-bit scalar, 4 * 32-bit timers, divisor 80
 grgpio0 Aeroflex Gaisler General Purpose I/O port
 APB: 80000900 - 80000A00
 uart1 Aeroflex Gaisler Generic UART
 APB: 80100100 - 80100200
 IRQ: 17
 Baudrate 38461
 ...

The memory section for example tells us that GRMON are using the correct amount of memory and memory
type. The parameters can be tweaked by passing memory driver specific options on start-up, see Section 3.2,
“Starting GRMON”. The current memory settings can be viewed in detail by listing the registers with info
reg or by accessing the registers by the Tcl variables exported by GRMON:

grmon2> info sys
 ...
 mctrl0 Aeroflex Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us
 ...
 grmon2> info reg
 ...
 Memory controller with EDAC
 0x80000000 Memory config register 1 0x1003c0ff
 0x80000004 Memory config register 2 0x9ac05463
 0x80000008 Memory config register 3 0x0826e000
 ...
grmon2> puts [format 0x%08x $mctrl0:: [TAB-COMPLETION]
mctrl0::mcfg1 mctrl0::mcfg2 mctrl0::mcfg3 mctrl0::pnp::
mctrl0::mcfg1:: mctrl0::mcfg2:: mctrl0::mcfg3::
grmon2> puts [format 0x%08x $mctrl0::mcfg1]
 0x0003c0ff

GRMON2 User's Manual 10

grmon2> puts [format 0x%08x $mctrl0::mcfg2 :: [TAB-COMPLETION]
mctrl0::mcfg2::d64 mctrl0::mcfg2::sdramcmd
mctrl0::mcfg2::rambanksz mctrl0::mcfg2::sdramcolsz
mctrl0::mcfg2::ramrws mctrl0::mcfg2::sdramrf
mctrl0::mcfg2::ramwidth mctrl0::mcfg2::sdramtcas
mctrl0::mcfg2::ramwws mctrl0::mcfg2::sdramtrfc
mctrl0::mcfg2::rbrdy mctrl0::mcfg2::sdramtrp
mctrl0::mcfg2::rmw mctrl0::mcfg2::se
mctrl0::mcfg2::sdpb mctrl0::mcfg2::si
mctrl0::mcfg2::sdrambanksz
grmon2> puts [format %x $mctrl0::mcfg2::ramwidth]
 2

3.4.2. Uploading application and data to target memory

A LEON software application can be uploaded to the target system memory using the load command:

grmon2> load v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (786.00kbit/s)
 Entry point 0x40000000
 Image /home/daniel/examples/v8/stanford.exe loaded

The supported file formats are SPARC ELF-32, ELF-64 (MSB truncated to 32-bit addresses), srecord and
a.out binaries. Each section is loaded to its link address. The program entry point of the file is used to set
the %PC, %NPC when the application is later started with run. It is also possible to load binary data by
specifying file and target address using the bload command.

One can use the verify command to make sure that the file has been loaded correctly to memory as below.
Any discrepancies will be reported in the GRMON console.

grmon2> verify v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (726.74kbit/s)
 Entry point 0x40000000
 Image of /home/daniel/examples/v8/stanford.exe verified without errors

On-going DMA can be turned off to avoid that hardware overwrites the loaded image by issuing the reset
command prior to load. This is important after the CPU has been executing using DMA in for example
Ethernet network traffic.

3.4.3. Running applications

After the application has been uploaded to the target with load the run command can be used to start exe-
cution. The entry-point taken from the ELF-file during loading will serve as the starting address, the first
instruction executed. The run command issues a driver reset, however it may be neccessary to perform a
reset prior to loading the image to avoid that DMA overwrites the image. See the reset command for de-
tails. Applications already located in FLASH can be started by specifying an absolute address. The cont
command resumes execution after a temporary stop, e.g. a breakpoint hit. go also affects the CPU execution,
the difference compared to run is that the target device hardware is not initialized before starting execution.

grmon2> reset
grmon2> load v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (786.00kbit/s)
 Entry point 0x40000000
 Image /home/daniel/examples/v8/stanford.exe loaded

grmon2> run
Starting
 Perm Towers Queens Intmm Mm Puzzle Quick Bubble Tree FFT
 34 67 33 117 1117 367 50 50 250 1133

Nonfloating point composite is 144

Floating point composite is 973

 CPU 0: Program exited normally.
 CPU 1: Power down mode

GRMON2 User's Manual 11

The output from the application normally appears on the LEON UARTs and thus not in the GRMON console.
However, if GRMON is started with the -u switch, the UART is put into debug mode and the output is
tunneled over the debug-link and finally printed on the console by GRMON. See Section 3.9, “Forwarding
application console I/O”. Note that older hardware (GRLIB 1.0.17-b2710 and older) has only partial support
for -u, it will not work when the APBUART software driver uses interrupt driven I/O, thus Linux and
vxWorks are not supported on older hardware. Instead, a terminal emulator should be connected to UART
1 of the target system.

Since the application changes (at least) the .data segment during run-time the application must be reloaded
before it can be executed again. If the application uses the MMU (e.g. Linux) or installs data exception
handlers (e.g. eCos), GRMON should be started with -nb to avoid going into break mode on a page-fault
or data exception. Likewise, when a software debugger is running on the target (e.g. GDB natively in Linux
user-space or WindRiver Workbench debugging a task) soft breakpoints ("TA 0x01" instruction) will result
in traps that the OS will handle and tell the native debugger. To prevent GRMON from interpreting it as its
own breakpoints and stop the CPU one must use the -nswb switch.

3.4.4. Inserting breakpoints and watchpoints

All breakpoints are inserted with the bp command. The subcommand (soft, hard, watch, bus, data, delete)
given to bp determine which type of breakpoint is inserted, if no subcommand is given bp defaults to a
software breakpoint.

Instruction breakpoints are inserted using bp soft or bp hard commands. Inserting a software breakpoint
will add a (TA 0x1) instruction by modifying the target's memory before starting the CPU, while bp hard
will insert a hardware breakpoint using one of the IU watchpoint registers. To debug instruction code in
read-only memories or memories which are self-modifying the only option is hardware breakpoints. Note
that it's possible to debug any RAM-based code using software breakpoints, even where traps are disabled
such as in trap handlers. Since hardware breakpoints triggers on the CPU instruction address one must be
aware that when the MMU is turned on, virtual addresses are triggered upon.

CPU data address watchpoints (read-only, write-only or read-write) are inserted using the bp watch com-
mand. Watchpoints can be setup to trigger within a range determined by a bit-mask where a one means that
the address must match the address pattern and a zero mask indicate don't care. The lowest 2-bits are not
available, meaning that 32-bit words are the smallest address that can be watched. Byte accesses can still be
watched but accesses to the neighboring three bytes will also be watched.

AMBA-bus watchpoints can be inserted using bp bus or bp data. When a bus watchpoint is hit the trace
buffer will freeze. The processor can optionally be put in debug mode when the bus watchpoint is hit. This
is controlled by the tmode command:

grmon2> tmode break N

If N = 0, the processor will not be halted when the watchpoint is hit. A value > 0 will break the processor
and set the AHB trace buffer delay counter to the same value.

For hardware supported break/watchpoints the target must have been configured accordingly, otherwise a
failure will be reported. Note also that the number of watchpoints implemented varies between designs.

3.4.5. Displaying processor registers

The current register window of a LEON processor can be displayed using the reg command or by accessing
the Tcl cpu namespace that GRMON provides. GRMON exports cpu and cpuN where N selects which
CPU's registers are accessed, the cpu namespace points to the active CPU selected by the cpu command.

grmon2> reg
 INS LOCALS OUTS GLOBALS
 0: 00000008 0000000C 00000000 00000000
 1: 80000070 00000020 00000000 00000001
 2: 00000000 00000000 00000000 00000002
 3: 00000000 00000000 00000000 00300003
 4: 00000000 00000000 00000000 00040004
 5: 00000000 00000000 00000000 00005005
 6: 407FFFF0 00000000 407FFFF0 00000606
 7: 00000000 00000000 00000000 00000077

GRMON2 User's Manual 12

 psr: F34010E0 wim: 00000002 tbr: 40000060 y: 00000000

 pc: 40003E44 be 0x40003FB8
 npc: 40003E48 nop
grmon2> puts [format %x $::cpu::iu::o6]
 407ffff0

Other register windows can be displayed using reg wN, when N denotes the window number. Use the float
command to show the FPU registers (if present).

3.4.6. Backtracing function calls

When debugging an application it is often most useful to view how the CPU entered the current function.
The bt command analyze the previous stack frames to determine the backtrace. GRMON reads the register
windows and then switches to read from the stack depending on the %WIM and %PSR register.

The backtrace is presented with the caller's program counter (%PC) to return to (below where the CALL
instruction was issued) and the stack pointer (%SP) at that time. The first entry (frame #0) indicates the
current location of the CPU and the current stack pointer. The right most column print out the %PC address
relative the function symbol, i.e. if symbols are present.

grmon2> bt

 %pc %sp
 #0 0x40003e24 0x407ffdb8 <Fft+0x4>
 #1 0x40005034 0x407ffe28 <main+0xfc4>
 #2 0x40001064 0x407fff70 <_start+0x64>
 #3 0x4000cf40 0x407fffb0 <_hardreset_real+0x78>

In order to display a correct backtrace for optimized code where optimized leaf functions are present a
symbol table must exist.

In a MP system the backtrace of a specific CPU can be printed, either by changing the active CPU with the
cpu command or by passing the CPU index to bt.

3.4.7. Displaying memory contents

Any memory location can be displayed and written using the mem commands listed in the table below.
Memory commands that are prefixed with a v access the virtual address space seen by doing MMU address
lookups for active CPU.

Table 3.2. Memory access commands

Command
Name

Description

mem AMBA bus 32-bit memory read access, list a range of addresses

wmem AMBA bus 32-bit memory write access

vmem AMBA bus 32-bit virtual memory read access, list a range of addresses

memb AMBA bus 8-bit memory read access, list a range of addresses

memh AMBA bus 16-bit memory read access, list a range of addresses

vmemb AMBA bus 8-bit virtual memory read access, list a range of addresses

vmemh AMBA bus 16-bit virtual memory read access, list a range of addresses

vwmemb AMBA bus 8-bit virtual memory write access

vwmemh AMBA bus 16-bit virtual memory write access

vwmems Write a string to an AMBA bus virtual memory address

vwmem AMBA bus 32-bit virtual memory write access

wmemb AMBA bus 8-bit memory write access

wmemh AMBA bus 16-bit memory write access

wmems Write a string to an AMBA bus memory address

GRMON2 User's Manual 13

Most debug links only support 32-bit accesses, only JTAG links support unaligned access. An unaligned
access is when the address or number of bytes are not evenly divided by four. When an unaligned data read
request is issued, then GRMON will read some extra bytes to align the data, but only return the requested
data. If a write request is issued, then an aligned read-modify-write sequence will occur.

The mem command requires an address and an optional length, if the length is left out 64 bytes are displayed.
If a program has been loaded, text symbols can be used instead of a numeric address. The memory content
is displayed in hexadecimal-decimal format, grouped in 32-bit words. The ASCII equivalent is printed at
the end of the line.

grmon> mem 0x40000000

 40000000 a0100000 29100004 81c52000 01000000 ...).....
 40000010 91d02000 01000000 01000000 01000000
 40000020 91d02000 01000000 01000000 01000000
 40000030 91d02000 01000000 01000000 01000000

grmon> mem 0x40000000 16

 40000000 a0100000 29100004 81c52000 01000000 ...).....

grmon> mem main 48

 40003278 9de3bf98 2f100085 31100037 90100000 /...1..7....
 40003288 d02620c0 d025e178 11100033 40000b4b & .%.x...3@..K
 40003298 901223b0 11100033 40000af4 901223c0 ..#....3@.....#.

If the memory contents is SPARC machine code, the contents can be displayed in assembly code using the
disassemble command:

grmon2> disassemble 0x40000000 10
 0x40000000: 88100000 clr %g4 <start+0>
 0x40000004: 09100034 sethi %hi(0x4000d000), %g4 <start+4>
 0x40000008: 81c12034 jmp %g4 + 0x34 <start+8>
 0x4000000c: 01000000 nop <start+12>
 0x40000010: a1480000 mov %psr, %l0 <start+16>
 0x40000014: a7500000 mov %wim, %l3 <start+20>
 0x40000018: 10803401 ba 0x4000d01c <start+24>
 0x4000001c: ac102001 mov 1, %l6 <start+28>
 0x40000020: 91d02000 ta 0x0 <start+32>
 0x40000024: 01000000 nop <start+36>

grmon2> dis main
 0x40004070: 9de3beb8 save %sp, -328, %sp <main+0>
 0x40004074: 15100035 sethi %hi(0x4000d400), %o2 <main+4>
 0x40004078: d102a3f4 ld [%o2 + 0x3f4], %f8 <main+8>
 0x4000407c: 13100035 sethi %hi(0x4000d400), %o1 <main+12>
 0x40004080: 39100088 sethi %hi(0x40022000), %i4 <main+16>
 0x40004084: 3710003a sethi %hi(0x4000e800), %i3 <main+20>
 0x40004088: d126e2e0 st %f8, [%i3 + 0x2e0] <main+24>
 0x4000408c: d1272398 st %f8, [%i4 + 0x398] <main+28>
 0x40004090: 400006a9 call 0x40005b34 <main+32>
 0x40004094: 901262f0 or %o1, 0x2f0, %o0 <main+36>
 0x40004098: 11100035 sethi %hi(0x4000d400), %o0 <main+40>
 0x4000409c: 40000653 call 0x400059e8 <main+44>
 0x400040a0: 90122300 or %o0, 0x300, %o0 <main+48>
 0x400040a4: 7ffff431 call 0x40001168 <main+52>
 0x400040a8: 3510005b sethi %hi(0x40016c00), %i2 <main+56>
 0x400040ac: 2510005b sethi %hi(0x40016c00), %l2 <main+60>

3.4.8. Using the trace buffer

The LEON processor and associated debug support unit (DSU) can be configured with trace buffers to store
both the latest executed instructions and the latest AHB bus transfers. The trace buffers are automatically
enabled by GRMON during start-up , but can also be individually enabled and disabled using tmode com-
mand. The command ahb is used to show the AMBA buffer. The command inst is used to show the in-
struction buffer. The command hist is used to display the contents of the instruction and the AMBA buffers
mixed together. Below is an example debug session that shows the usage of breakpoints, watchpoints and
the trace buffer:

grmon2> lo v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (786.00kbit/s)

GRMON2 User's Manual 14

 Entry point 0x40000000
 Image /home/daniel/examples/v8/stanford.exe loaded

grmon2> bp Fft
 Software breakpoint 1 at <Fft>

grmon2> bp watch 0x4000eae0
 Hardware watchpoint 2 at 0x4000eae0

grmon2> bp
 NUM ADRESS MASK TYPE SYMBOL
 1 : 0x40003e20 (soft) Fft+0
 2 : 0x4000eae0 0xfffffffc (watch rw) floated+0

grmon2> run

 CPU 0: watchpoint 2 hit
 0x40001024: c0388003 std %g0, [%g2 + %g3] <_start+36>
 CPU 1: Power down mode

grmon2> inst
 TIME ADDRESS INSTRUCTION RESULT
 84675 40001024 std %g0, [%g2 + %g3] [4000eaf8 00000000 00000000]
 84678 4000101c subcc %g3, 8, %g3 [00000440]
 84679 40001020 bge,a 0x4000101c [00000448]
 84682 40001024 std %g0, [%g2 + %g3] [4000eaf0 00000000 00000000]
 84685 4000101c subcc %g3, 8, %g3 [00000438]
 84686 40001020 bge,a 0x4000101c [00000440]
 84689 40001024 std %g0, [%g2 + %g3] [4000eae8 00000000 00000000]
 84692 4000101c subcc %g3, 8, %g3 [00000430]
 84693 40001020 bge,a 0x4000101c [00000438]
 84694 40001024 std %g0, [%g2 + %g3] [TRAP]

grmon2> ahb
 TIME ADDRESS TYPE D[31:0] TRANS SIZE BURST MST LOCK RESP HIRQ
 84664 4000eb08 write 00000000 2 2 1 0 0 0 0000
 84667 4000eb0c write 00000000 3 2 1 0 0 0 0000
 84671 4000eb00 write 00000000 2 2 1 0 0 0 0000
 84674 4000eb04 write 00000000 3 2 1 0 0 0 0000
 84678 4000eaf8 write 00000000 2 2 1 0 0 0 0000
 84681 4000eafc write 00000000 3 2 1 0 0 0 0000
 84685 4000eaf0 write 00000000 2 2 1 0 0 0 0000
 84688 4000eaf4 write 00000000 3 2 1 0 0 0 0000
 84692 4000eae8 write 00000000 2 2 1 0 0 0 0000
 84695 4000eaec write 00000000 3 2 1 0 0 0 0000

grmon2> reg
 INS LOCALS OUTS GLOBALS
 0: 80000200 00000000 00000000 00000000
 1: 80000200 00000000 00000000 00000000
 2: 0000000C 00000000 00000000 4000E6B0
 3: FFF00000 00000000 00000000 00000430
 4: 00000002 00000000 00000000 4000CC00
 5: 800FF010 00000000 00000000 4000E680
 6: 407FFFB0 00000000 407FFF70 4000CF34
 7: 4000CF40 00000000 00000000 00000000

 psr: F30010E7 wim: 00000002 tbr: 40000000 y: 00000000

 pc: 40001024 std %g0, [%g2 + %g3]
 npc: 4000101c subcc %g3, 8, %g3

grmon2> bp del 2

grmon2> cont
 Towers Queens Intmm Mm Puzzle Quick Bubble Tree FFT
 CPU 0: breakpoint 1 hit
 0x40003e24: a0100018 mov %i0, %l0 <Fft+4>
 CPU 1: Power down mode

grmon2>
grmon2> hist
 TIME ADDRESS INSTRUCTIONS/AHB SIGNALS RESULT/DATA
 30046975 40003e20 AHB read mst=0 size=2 [9de3bf90]
 30046976 40005030 or %l2, 0x1e0, %o3 [40023de0]
 30046980 40003e24 AHB read mst=0 size=2 [91d02001]
 30046981 40005034 call 0x40003e20 [40005034]
 30046985 40003e28 AHB read mst=0 size=2 [b136201f]
 30046990 40003e2c AHB read mst=0 size=2 [f83fbff0]
 30046995 40003e30 AHB read mst=0 size=2 [82040018]
 30047000 40003e34 AHB read mst=0 size=2 [d11fbff0]
 30047005 40003e38 AHB read mst=0 size=2 [9a100019]
 30047010 40003e3c AHB read mst=0 size=2 [9610001a]

GRMON2 User's Manual 15

When printing executed instructions, the value within brackets denotes the instruction result, or in the case
of store instructions the store address and store data. The value in the first column displays the relative time,
equal to the DSU timer. The time is taken when the instruction completes in the last pipeline stage (write-
back) of the processor. In a mixed instruction/AHB display, AHB address and read or write value appears
within brackets. The time indicates when the transfer completed, i.e. when HREADY was asserted.

As the AHB trace is disabled when a breakpoint is hit, AHB accesses related to instruction cache fetches
after the time of break can be missed. The command ahb force can be used enable AHB tracing even when
the processor is in debug mode.

When switching between tracing modes with tmode the contents of the trace buffer will not be valid until
execution has been resumed and the buffer refilled.

3.4.9. Profiling

GRMON supports profiling of LEON applications when run on real hardware. The profiling function collects
(statistical) information on the amount of execution time spent in each function. Due to its non-intrusive
nature, the profiling data does not take into consideration if the current function is called from within another
procedure. Even so, it still provides useful information and can be used for application tuning.

To increase the number of samples, use the fastest debug link available on the target system. I.a. do not use
I/O forwarding (start GRMON without the -u commandline option)

grmon2> lo v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (786.00kbit/s)
 Entry point 0x40000000
 Image /home/daniel/examples/v8/stanford.exe loaded

grmon2> profile on

grmon2> run
Starting
 Perm Towers Queens Intmm Mm Puzzle Quick Bubble Tree FFT

 CPU 0: Interrupted!
 0x40003ee4: 95a0c8a4 fsubs %f3, %f4, %f10 <Fft+196>
 CPU 1: Interrupted!
 0x40000000: 88100000 clr %g4 <start+0>

grmon2> prof
 FUNCTION SAMPLES RATIO(%)
 Trial 0000000096 27.35
 __window_overflow_rettseq_ret 0000000060 17.09
 main 0000000051 14.52
 __window_overflow_slow1 0000000026 7.40
 Fft 0000000023 6.55
 Insert 0000000016 4.55
 Permute 0000000013 3.70
 tower 0000000013 3.70
 Try 0000000013 3.70
 Quicksort 0000000011 3.13
 Checktree 0000000007 1.99
 _malloc_r 0000000005 1.42
 start 0000000004 1.13
 outbyte 0000000003 0.85
 Towers 0000000002 0.56
 __window_overflow_rettseq 0000000002 0.56
 ___st_pthread_mutex_lock 0000000002 0.56
 _start 0000000001 0.28
 Perm 0000000001 0.28
 __malloc_lock 0000000001 0.28
 ___st_pthread_mutex_trylock 0000000001 0.28

3.4.10. Attaching to a target system without initialization

When GRMON connects to a target system, it probes the configuration and initializes memory and registers.
To determine why a target has crashed, or resume debugging without reloading the application, it might

GRMON2 User's Manual 16

be desirable to connect to the target without performing a (destructive) initialization. This can be done by
specifying the -ni switch during the start-up of GRMON. The system information print-out (info sys) will
then however not be able to display the correct memory settings. The use of the -stack option and the go
command might also be necessary in case the application is later restarted. The run command may not have
the intended effect since the debug drivers have not been initialized during start-up.

3.4.11. Multi-processor support

In systems with more than one LEON processor, the cpu command can be used to control the state and
debugging focus of the processors. In MP systems, the processors are enumerated with 0..N-1, where N
is the number of processors. Each processor can be in two states; enabled or disabled. When enabled, a
processor can be started by LEON software or by GRMON. When disabled, the processor will remain halted
regardless. One can pause a MP operating system and disable a CPU to debug a hanged CPU for example.

Most per-CPU (DSU) debugging commands such as displaying registers, backtrace or adding breakpoints
will be directed to the active processor only. Switching active processor can be done using the 'cpu active
N' command, see example below. The Tcl cpu namespace exported by GRMON is also changed to point
to the active CPU's namespace, thus accessing cpu will be the same as accessing cpu1 if CPU1 is the
currently active CPU.

grmon2> cpu
 cpu 0: enabled active
 cpu 1: enabled

grmon2> cpu act 1

grmon2> cpu
 cpu 0: enabled
 cpu 1: enabled active

grmon2> cpu act 0

grmon2> cpu dis 1

grmon2> cpu
 cpu 0: enabled active
 cpu 1: disabled

grmon2> puts $cpu::fpu::f1
 -1.984328031539917

grmon2> puts $cpu0::fpu::f1
 -1.984328031539917

grmon2> puts $cpu1::fpu::f1
 2.3017966689845248e+18

Non-MP software can still run on the first CPU unaffected of the additional CPUs since it is the target
software that is responsible for waking other CPUs. All processors are enabled by default.

Note that it is possible to debug MP systems using GDB, but the user are required to change CPU itself.
GRMON specific commands can be entered from GDB using the monitor command.

3.4.12. Stack and entry point

The stack pointer is located in %O6 (%SP) register of SPARC CPUs. GRMON sets the stack pointer before
starting the CPU with the run command. The address is auto-detected to end of main memory, however it is
overridable using the -stack when starting GRMON or by issuing the stack command. Thus stack pointer
can be used by software to detect end of main memory.

The entry point (EP) determines at which address the CPU start its first instruction execution. The EP defaults
to main memory start and normally overridden by the load command when loading the application. ELF-
files has support for storing entry point. The entry point can manually be set with the ep command.

In a MP systems if may be required to set EP and stack pointer individual per CPU, one can use the cpu
command in conjunction with ep and stack.

GRMON2 User's Manual 17

3.4.13. Memory Management Unit (MMU) support

The LEON optionally implements the reference MMU (SRMMU) described in the SPARCv8 specification.
GRMON support viewing and changing the MMU registers through the DSU, using the mmu command.
GRMON also supports address translation by reading the MMU table from memory similar to the MMU.
The walk command looks up one address by walking the MMU table printing out every step taken and the
result. To simply print out the result of such a translation, use the va command.

The memory commands that are prefixed with a v work with virtual addresses, the addresses given are
translated before listing or writing physical memory. If the MMU is not enabled, the vmem command for
example is an alias for mem. See Section 3.4.7, “Displaying memory contents” for more information.

Many commands are affected by that the MMU is turned on, such as the disassemble command.

3.4.14. CPU cache support

The LEON optionally implements Level-1 instruction-cache and data-cache. GRMON supports the CPU's
cache by adopting certain operations depending on if the cache is activated or not. The user may also be
able to access the cache directly. This is however not normally needed, but may be useful when debugging
or analyzing different cache aspects. By default the L1-cache is turned on by GRMON , the cctrl command
can be used to change the cache control register. The commandline switches -nic and -ndc disables
instruction and data cache respectively.

With the icache and dcache commands it is possible to view the current content of the cache or check if
the cache is consistent with the memory. Both caches can be flushed instantly using the commands cctrl
flush. The data cache can be flushed instantly using the commands dcache flush. The instruction cache can
be flushed instantly using the commands icache flush.

3.5. Tcl integration

GRMON has built-in support for Tcl 8.5. All commands lines entered in the terminal will pass through a
Tcl-interpreter. This enables loops, variables, procedures, scripts, arithmetics and more for the user. I.a. it
also provides an API for the user to extend GRMON.

3.5.1. Shells

GRMON creates several independent TCL shells, each with its own set of commands and variables. I.e.
changing active CPU in one shell does not affect any other shell. There are two shells available for the user,
the CLI shell and a GDB shell. The CLI shell is access from the terminal and the GDB shell is accessed from
GDB by using the command mon. There is also a system shell running in the background that GRMON
uses internally.

3.5.2. Commands

There are two groups of commands, the native Tcl commands and GRMON's commands. Information about
the native Tcl commands and their syntax can be found at the Tcl website [http://www.tcl.tk/]. The GRMON
commands' syntax documentation can be found in Appendix B, Command syntax.

The commands have three types of output:

1. Standard output. GRMON's commands prints information to standard output. This information is of-
ten structured in a human readable way and cannot be used by other commands. Most of the GRMON
commands print some kind of information to the standard output, while very few of the Tcl commands
does that. Setting the variable ::grmon::settings:suppress_output to 1 will stop GRMON
commands from printing to the standard output, i.e. the TCL command puts will still print it's output. It
is also possible to put the command silent in front of another GRMON command to suppress the output
of a single command, e.g. grmon2> puts [expr [silent mem 0x40000000 4] + 4]

2. Return values. The return value from GRMON is seldom the same as the information that is printed to
standard output, it's often the important data in a raw format. Return values can be used as input to other

http://www.tcl.tk/
http://www.tcl.tk/

GRMON2 User's Manual 18

commands or to be saved in variables. All TCL commands and many GRMON commands have return
values. The return values from commands are normally not printed. To print the return value to standard
output one can use the Tcl command puts. I.a. if the variable ::grmon::settings:echo_result
to 1, then GRMON will always print the result to stdout.

3. Return code. The return code from a command can be accessed by reading the variable errorCode
or by using the Tcl command catch. Both Tcl and GRMON commands will have an error message as
return value if it fails, which is also printed to standard output. More about error codes can be read about
in the Tcl tutorial or on the Tcler's Wiki [http://wiki.tcl.tk/].

For some of the GRMON commands it is possible to specify which core the commands is operation on.
This is implemented differently depending for each command, see the commands' syntax documentation
in Appendix B, Command syntax for more details. Some of these commands use a device name to specify
which core to interact with, see Appendix C, Tcl API for more information about device names.

3.5.3. API

It is possible to extend GRMON using Tcl. GRMON provides an API that makes it possible do write own
device drivers, implement hooks and to write advanced commands. See Appendix C, Tcl API for a detailed
description of the API.

GRMON will automatically load the scripts in GRMON appdata folder. On Linux the appdata folder
is located in ~/.grmon-2.0/ and on Windows it's typically located at C:\Documents and Set-
tings\username\Application Data\Aeroflex Gaisler\GRMON\2.0\. In the folder there
are two different sub folders where scripts may be found, <appdata>/scripts/sys and <appda-
ta>/scripts/user. Scripts located in the sys-folder will be loaded into the system shell only, before
the Plug and Play area is scanned, i.e. drivers and fix-ups should be defined here. The scripts found in the
user-folder will be loaded into all shells (including the system shell), i.e. all user defined commands and
hooks should be defined there. In addition there are two commandline switches -udrv <filename> and
-ucmd <filename> to load scripts into the system shell or all shells.

TCL API switches:

-udrv<filename>
Load script specified by filename into system shell. This option is mainly used for user defined drivers.

-ucmd<filename>
Load script specified by filename into all shells, including the system shell. This option is mainly used
for user defined procedures and hooks.

3.5.4. Links

More about Tcl, its syntax and other useful information can be found at:

Tcl Website [http://www.tcl.tk]
Tcl Commands [http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm]
Tcl Tutorial [http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html]
Tcler's Wiki [http://wiki.tcl.tk/]

3.6. Symbolic debug information

GRMON will automatically extract the symbol information from ELF-files, debug information is never read
from ELF-files. The symbols can be used to GRMON commands where an address is expected as below.
Symbols are tab completed.

grmon2> load v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Image /home/daniel/examples/v8/stanford.exe loaded

grmon2> bp main
 Software breakpoint 1 at <main>

http://wiki.tcl.tk/
http://wiki.tcl.tk/
http://www.tcl.tk
http://www.tcl.tk
http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://wiki.tcl.tk/
http://wiki.tcl.tk/

GRMON2 User's Manual 19

grmon2> dis strlen 5
 0x40005b88: 808a2003 andcc %o0, 0x3, %g0 <strlen+0>
 0x40005b8c: 12800012 bne 0x40005BD4 <strlen+4>
 0x40005b90: 94100008 mov %o0, %o2 <strlen+8>
 0x40005b94: 033fbfbf sethi %hi(0xFEFEFC00), %g1 <strlen+12>
 0x40005b98: da020000 ld [%o0], %o5 <strlen+16>

The symbols command can be used to display all symbols, lookup the address of a symbol, or to read in
symbols from an alternate (ELF) file:

grmon2> symbols load v8/stanford.exe

grmon2> symbols lookup main
 Found address 0x40004070

grmon2> symbols list
 0x40005ab8 GLOBAL FUNC putchar
 0x4000b6ac GLOBAL FUNC _mprec_log10
 0x4000d9d0 GLOBAL OBJECT __mprec_tinytens
 0x4000bbe8 GLOBAL FUNC cleanup_glue
 0x4000abfc GLOBAL FUNC _hi0bits
 0x40005ad4 GLOBAL FUNC _puts_r
 0x4000c310 GLOBAL FUNC _lseek_r
 0x4000eaac GLOBAL OBJECT piecemax
 0x40001aac GLOBAL FUNC Try
 0x40003c6c GLOBAL FUNC Uniform11
 0x400059e8 GLOBAL FUNC printf
...

Reading symbols from alternate files is necessary when debugging self-extracting applications (MKPROM),
when switching between virtual and physical address space (Linux) or when debugging a multi-core ASMP
system where each CPU has its own symbol table. It is recommended to clear old symbols with symbols
clear before switching symbol table, otherwise the new symbols will be added to the old table.

3.6.1. Multi-processor symbolic debug information

When loading symbols into GRMON it is possible to associate them with a CPU. When all symbols/images
are associated with CPU index 0, then GRMON will assume its a single-core or SMP application and lookup
all symbols from the symbols table associated with CPU index 0.

If different CPU indexes are specified (by setting active CPU or adding cpu# argument to the commands)
when loading symbols/images, then GRMON will assume its an AMP application that has been loaded.
GRMON will use the current active CPU (or cpu# argument) to determine which CPU index to lookup
symbols from.

grmon2> cpu active 1

grmon2> symbols ../tests/threads/rtems-mp2
 Loaded 1630 symbols

grmon2> bp _Thread_Handler
 Software breakpoint 1 at <_Thread_Handler>

grmon2> symbols ../tests/threads/rtems-mp1 cpu0
 Loaded 1630 symbols

grmon2> bp _Thread_Handler cpu0
 Software breakpoint 2 at <_Thread_Handler>

grmon2> bp
 NUM ADRESS MASK TYPE CPU SYMBOL
 1 : 0x40418408 (soft) 1 _Thread_Handler+0
 2 : 0x40019408 (soft) 0 _Thread_Handler+0

3.7. GDB interface

This section describes the GDB interface support available in GRMON. Other tools that communicate over
the GDB protocol may also attach to GRMON, some tools such as Eclipse Workbench and DDD commu-
nicate with GRMON via GDB.

GDB must be built for the SPARC architecture, a native PC GDB does not work together with GRMON.
The toolchains that Aeroflex Gaisler distributes comes with a patched and tested version of GDB targeting
all SPARC LEON development tools.

GRMON2 User's Manual 20

Please see the GDB documentation available from the official GDB homepage [http://www.gnu.org/soft-
ware/gdb/].

3.7.1. Connecting GDB to GRMON

GRMON can act as a remote target for GDB, allowing symbolic debugging of target applications. To initiate
GDB communications, start the monitor with the -gdb switch or use the GRMON gdb start command:

$ grmon -xilusb -gdb
...
 Started GDB service on port 2222.
...
grmon2> gdb status
 GDB Service is waiting for incoming connection
 Port: 2222

Then, start GDB in a different window and connect to GRMON using the extended-remote protocol. By
default, GRMON listens on port 2222 for the GDB connection:

(gdb) target extended-remote :2222
Remote debugging using :2222
main () at stanford.c:1033
1033 {
(gdb) monitor gdb status
GDB Service is running
Port: 2222
(gdb)

3.7.2. Executing GRMON commands from GDB

While GDB is attached to GRMON, most GRMON commands can be executed using the GDB monitor
command. Output from the GRMON commands is then displayed in the GDB console like below. Some
DSU commands are naturally not available since they would conflict with GDB. All commands executed
from GDB are executed in a separate Tcl interpreter, thus variables created from GDB will not be available
from the GRMON terminal.

(gdb) monitor hist
 TIME ADDRESS INSTRUCTIONS/AHB SIGNALS RESULT/DATA
 30046975 40003e20 AHB read mst=0 size=2 [9de3bf90]
 30046976 40005030 or %l2, 0x1e0, %o3 [40023de0]
 30046980 40003e24 AHB read mst=0 size=2 [91d02001]
 30046981 40005034 call 0x40003e20 [40005034]
 30046985 40003e28 AHB read mst=0 size=2 [b136201f]
 30046990 40003e2c AHB read mst=0 size=2 [f83fbff0]
 30046995 40003e30 AHB read mst=0 size=2 [82040018]
 30047000 40003e34 AHB read mst=0 size=2 [d11fbff0]
 30047005 40003e38 AHB read mst=0 size=2 [9a100019]
 30047010 40003e3c AHB read mst=0 size=2 [9610001a]
(gdb)

3.7.3. Running applications from GDB

To load and start an application, use the GDB load and run command.

$ sparc-rtems-gdb v8/stanford.exe
(gdb) target extended-remote :2222
Remote debugging using :2222
main () at stanford.c:1033
1033 {
(gdb) load
Loading section .text, size 0xdb30 lma 0x40000000
Loading section .data, size 0xb78 lma 0x4000db30
Start address 0x40000000, load size 59048
Transfer rate: 18 KB/sec, 757 bytes/write.
(gdb) b main
Breakpoint 1 at 0x40004074: file stanford.c, line 1033.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/daniel/examples/v8/stanford.exe

Breakpoint 1, main () at stanford.c:1033
1033 {
(gdb) list
1028 /* Printcomplex(6, 99, z, 1, 256, 17); */

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/

GRMON2 User's Manual 21

1029 };
1030 } /* oscar */ ;
1031
1032 main ()
1033 {
1034 int i;
1035 fixed = 0.0;
1036 floated = 0.0;
1037 printf ("Starting \n");
(gdb)

To interrupt execution, Ctrl-C can be typed in GDB terminal (similar to GRMON). The program can be
restarted using the GDB run command but the program image needs to be reloaded first using the load
command. Software trap 1 (TA 0x1) is used by GDB to insert breakpoints and should not be used by the
application.

GRMON translates SPARC traps into (UNIX) signals which are properly communicated to GDB. If the
application encounters a fatal trap, execution will be stopped exactly before the failing instruction. The target
memory and register values can then be examined in GDB to determine the error cause.

GRMON implements the GDB breakpoint and watchpoint interface and makes sure that memory and cache
are synchronized.

3.7.4. Running SMP applications from GDB

If GRMON is running on the same computer as GDB, or if the executable is available on the remote computer
that is running GRMON, it is recommended to issue the GDB command set remote exec-file <remote-file-
path>. After this has been set, GRMON will automatically load the file, and symbols if available, when the
GDB command run is issued.

$ sparc-rtems-gdb /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems"...
(gdb) target extended-remote :2222
Remote debugging using :2222
0x00000000 in ?? ()
(gdb) set remote exec-file /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe
(gdb) break Init
Breakpoint 1 at 0x40001318: file ../../../../../leon3smp/lib/include/rtems/score/thread.h, line 627.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe

If the executable is not available on the remote computer where GRMON is running, then the GDB command
load can be used to load the software to the target system. In addition the entry points for all CPU's, except
the first, must be set manually using the GRMON ep before starting the application.

$ sparc-rtems-gdb /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems"...
(gdb) target extended-remote :2222
Remote debugging using :2222
trap_table () at /opt/rtems-4.11/src/rtems-4.11/c/src/lib/libbsp/sparc/leon3/../../sparc/shared/start
/start.S:69
69 /opt/rtems-4.11/src/rtems-4.11/c/src/lib/libbsp/sparc/leon3/../../sparc/shared/start/start.S: No
such file or directory.
 in /opt/rtems-4.11/src/rtems-4.11/c/src/lib/libbsp/sparc/leon3/../../sparc/shared/start/start.S
Current language: auto; currently asm
(gdb) load
Loading section .text, size 0x1aed0 lma 0x40000000
Loading section .data, size 0x5b0 lma 0x4001aed0
Start address 0x40000000, load size 111744
Transfer rate: 138 KB/sec, 765 bytes/write.
(gdb) mon ep $cpu::iu::pc cpu1

GRMON2 User's Manual 22

(gdb) mon ep $cpu::iu::pc cpu2
(gdb) mon ep $cpu::iu::pc cpu3
Cpu 1 entry point: 0x40000000
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe

3.7.5. Running AMP applications from GDB

If GRMON is running on the same computer as GDB, or if the executables are available on the remote
computer that is running GRMON, it is recommended to issue the GDB command set remote exec-file
<remote-file-path>. When this is set, GRMON will automatically load the file,and symbols if available,
when the GDB command run is issued. The second application needs to be loaded into GRMON using
the GRMON command load <remote-file-path> cpu1. In addition the stacks must also be set manually in
GRMON using the command stack <address> cpu# for both CPUs.

$ sparc-rtems-gdb /opt/rtems-4.10/src/samples/rtems-mp1
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems"...
(gdb) target extended-remote :2222
Remote debugging using :2222
(gdb) set remote exec-file /opt/rtems-4.10/src/samples/rtems-mp1
(gdb) mon stack 0x403fff00 cpu0
 CPU 0 stack pointer: 0x403fff00
(gdb) mon load /opt/rtems-4.10/src/samples/rtems-mp2 cpu1
Total size: 177.33kB (1.17Mbit/s)
Entry point 0x40400000
Image /opt/rtems-4.10/src/samples/rtems-mp2 loaded
(gdb) mon stack 0x407fff00 cpu1
 CPU 1 stack pointer: 0x407fff00
(gdb) run
Starting program: /opt/rtems-4.10/src/samples/rtems-mp1
NODE[0]: is Up!
NODE[0]: Waiting for Semaphore A to be created (0x53454d41)
NODE[0]: Waiting for Semaphore B to be created (0x53454d42)
NODE[0]: Waiting for Task A to be created (0x54534b41)
^C[New Thread 151060481]

Program received signal SIGINT, Interrupt.
[Switching to Thread 151060481]
pwdloop () at /opt/rtems-4.10/src/rtems-4.10/c/src/lib/libbsp/sparc/leon3/startup/bspidle.S:26
warning: Source file is more recent than executable.
26 retl
Current language: auto; currently asm
(gdb)

If the executable is not available on the remote computer where GRMON is running, then the GDB command
file and load can be used to load the software to the target system. Use the GRMON command cpu act
<num> before issuing the GDB command load to specify which CPU is the target for the software being
loaded. In addition the stacks must also be set manually in GRMON using the command stack <address>
cpu# for both CPUs.

$ sparc-rtems-gdb
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems".
(gdb) target extended-remote :2222
Remote debugging using :2222
0x40000000 in ?? ()
(gdb) file /opt/rtems-4.10/src/samples/rtems-mp2
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
Reading symbols from /opt/rtems-4.10/src/samples/rtems-mp2...done.
(gdb) mon cpu act 1
(gdb) load
Loading section .text, size 0x2b3e0 lma 0x40400000
Loading section .data, size 0x1170 lma 0x4042b3e0

GRMON2 User's Manual 23

Loading section .jcr, size 0x4 lma 0x4042c550
Start address 0x40400000, load size 181588
Transfer rate: 115 KB/sec, 759 bytes/write.
(gdb) file /opt/rtems-4.10/src/samples/rtems-mp1
A program is being debugged already.
Are you sure you want to change the file? (y or n) y

Load new symbol table from "/opt/rtems-4.10/src/samples/rtems-mp1"? (y or n) y
Reading symbols from /opt/rtems-4.10/src/samples/rtems-mp1...done.
(gdb) mon cpu act 0
(gdb) load
Loading section .text, size 0x2b3e0 lma 0x40001000
Loading section .data, size 0x1170 lma 0x4002c3e0
Loading section .jcr, size 0x4 lma 0x4002d550
Start address 0x40001000, load size 181588
Transfer rate: 117 KB/sec, 759 bytes/write.
(gdb) mon stack 0x407fff00 cpu1
 CPU 1 stack pointer: 0x407fff00
(gdb) mon stack 0x403fff00 cpu0
 CPU 0 stack pointer: 0x403fff00
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/rtems-4.10/src/samples/samples/rtems-mp1

3.7.6. GDB Thread support

GDB is capable of listing a operating system's threads, however it relies on GRMON to implement low-
level thread access. GDB normally fetches the threading information on every stop, for example after a
breakpoint is reached or between single-stepping stops. GRMON have to access the memory rather many
times to retrieve the information, GRMON. See Section 3.8, “Thread support” for more information.

Start GRMON with the -nothreads switch to disable threads in GRMON and thus in GDB too.

Note that GRMON must have access to the symbol table of the operating system so that the thread structures
of the target OS can be found. The symbol table can be loaded from GDB by one must bear in mind that the
path is relative to where GRMON has been started. If GDB is connected to GRMON over the network one
must make the symbol file available on the remote computer running GRMON.

(gdb) mon puts [pwd]
/home/daniel
(gdb) pwd
Working directory /home/daniel.
(gdb) mon sym load /opt/rtems-4.10/src/samples/rtems-hello
(gdb) mon sym
0x00016910 GLOBAL FUNC imfs_dir_lseek
0x00021f00 GLOBAL OBJECT Device_drivers
0x0001c6b4 GLOBAL FUNC _mprec_log10
...

When a program running in GDB stops GRMON reports which thread it is in. The command info threads
can be used in GDB to list all known threads, thread N to switch to thread N and bt to list the backtrace
of the selected thread.

Program received signal SIGINT, Interrupt.
[Switching to Thread 167837703]

0x40001b5c in console_outbyte_polled (port=0, ch=113 `q`) at rtems/.../leon3/console/debugputs.c:38
38 while ((LEON3_Console_Uart[LEON3_Cpu_Index+port]->status & LEON_REG_UART_STATUS_THE) == 0);

(gdb) info threads

 8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 3 Thread 167837697 (UI1 ready) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in console_outbyte_polled (port=0, ch=113 `q`)
 at ../../../rtems/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38
 (gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f760 in _Thread_Dispatch ()
 at rtems/.../threaddispatch.c:109
109 _Context_Switch(&executing->Registers, &heir->Registers);

GRMON2 User's Manual 24

(gdb) bt

#0 0x4002f760 in _Thread_Dispatch () at rtems/cpukit/score/src/threaddispatch.c:109
#1 0x40013ee0 in rtems_event_receive(event_in=33554432, option_set=0, ticks=0, event_out=0x43fecc14)
 at ../../../../leon3/lib/include/rtems/score/thread.inl:205
#2 0x4002782c in rtems_bsdnet_event_receive (event_in=33554432, option_set=2, ticks=0,
 event_out=0x43fecc14) at rtems/cpukit/libnetworking/rtems/rtems_glue.c:641
#3 0x40027548 in soconnsleep (so=0x43f0cd70) at rtems/cpukit/libnetworking/rtems/rtems_glue.c:465
#4 0x40029118 in accept (s=3, name=0x43feccf0, namelen=0x43feccec) at rtems/.../rtems_syscall.c:215
#5 0x40004028 in daemon () at rtems/c/src/libnetworking/rtems_servers/ftpd.c:1925
#6 0x40053388 in _Thread_Handler () at rtems/cpukit/score/src/threadhandler.c:123
#7 0x40053270 in __res_mkquery (op=0, dname=0x0, class=0, type=0, data=0x0, datalen=0, newrr_in=0x0,
 buf=0x0, buflen=0)
 at ../rtems/cpukit/libnetworking/libc/res_mkquery.c:199
#8 0x00000008 in ?? ()
#9 0x00000008 in ?? ()
Previous frame identical to this frame (corrupt stack?)

In comparison to GRMON the frame command in GDB can be used to select a individual stack frame. One
can also step between frames by issuing the up or down commands. The CPU registers can be listed using
the info registers command. Note that the info registers command only can see the following registers for
an inactive task: g0-g7, l0-l7, i0-i7, o0-o7, PC and PSR. The other registers will be displayed as 0:

gdb) frame 5

#5 0x40004028 in daemon () at rtems/.../rtems_servers/ftpd.c:1925
1925 ss = accept(s, (struct sockaddr *)&addr, &addrLen);

(gdb) info reg

g0 0x0 0
g1 0x0 0
g2 0xffffffff -1
g3 0x0 0
g4 0x0 0
g5 0x0 0
g6 0x0 0
g7 0x0 0
o0 0x3 3
o1 0x43feccf0 1140772080
o2 0x43feccec 1140772076
o3 0x0 0
o4 0xf34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43fecc88 0x43fecc88
o7 0x40004020 1073758240
l0 0x4007ce88 1074253448
l1 0x4007ce88 1074253448
l2 0x400048fc 1073760508
l3 0x43feccf0 1140772080
l4 0x3 3
l5 0x1 1
l6 0x0 0
l7 0x0 0
i0 0x0 0
i1 0x40003f94 1073758100
i2 0x0 0
i3 0x43ffafc8 1140830152
i4 0x0 0
i5 0x4007cd40 1074253120
fp 0x43fecd08 0x43fecd08
i7 0x40053380 1074082688
y 0x0 0
psr 0xf34000e0 -213909280
wim 0x0 0
tbr 0x0 0
pc 0x40004028 0x40004028 <daemon+148>
npc 0x4000402c 0x4000402c <daemon+152>
fsr 0x0 0
csr 0x0 0

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of
all threads. It is not possible to change the value of registers other than those of the current thread.

3.7.7. Virtual memory

There is no way for GRMON to determine if an address sent from GDB is physical or virtual. If an MMU
unit is present in the system and it is enabled, then GRMON will assume that all addresses are virtual and

GRMON2 User's Manual 25

try to translate them. When debugging an application that uses the MMU one typically have an image with
physical addresses used to load data into the memory and a second image with debug-symbols of virtual
addresses. It is therefore important to make sure that the MMU is enabled/disabled when each image is used.

The example below will show a typical case on how to handle virtual and physical addresses when debug-
ging with GDB. The application being debugged is Linux and it consists of two different images created
with Linuxbuild. The file image.ram contains physical addresses and a small loader, that among others
configures the MMU, while the file image contains all the debug-symbols in virtual address-space.

First start GRMON and start the GDB server.

$ grmon -nb -gdb -xilusb

Then start GDB in a second shell, load both files into GDB, connect to GRMON and then upload the ap-
plication into the system. The addresses will be interpreted as physical since the MMU is disabled when
GRMON starts.

$ sparc-linux-gdb
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-linux".
(gdb) file output/images/image.ram
Reading symbols from /home/user/linuxbuild-1.0.2/output/images/image.ram...(no d
ebugging symbols found)...done.
(gdb) symbol-file output/images/image
Reading symbols from /home/user/linuxbuild-1.0.2/output/images/image...done.
(gdb) target extended-remote :2222
Remote debugging using :2222
t_tflt () at /home/user/linuxbuild-1.0.2/linux/linux-2.6-git/arch/sparc/kernel/h
ead_32.S:88
88 t_tflt: SPARC_TFAULT /* Inst. Access Exception
 */
Current language: auto; currently asm
(gdb) load
Loading section .text, size 0x10b0 lma 0x40000000
Loading section .data, size 0x50 lma 0x400010b0
Loading section .vmlinux, size 0x3f1a60 lma 0x40004000
Loading section .startup_prom, size 0x7ee0 lma 0x403f5a60
Start address 0x40000000, load size 4172352
Transfer rate: 18 KB/sec, 765 bytes/write.

The program must reach a state where the MMU is enabled before any virtual address can be translated.
Software breakpoints cannot be used since the MMU is still disabled and GRMON won't translate them
into a physical. Hardware breakpoints don't need to be translated into physical addresses, therefore set a
hardware assisted breakpoint at 0xf0004000, which is the virtual start address for the Linux kernel.

(gdb) hbreak *0xf0004000
Hardware assisted breakpoint 1 at 0xf0004000: file /home/user/linuxbuild-1.0.2/l
inux/linux-2.6-git/arch/sparc/kernel/head_32.S, line 87.
(gdb) cont
Continuing.

Breakpoint 1, trapbase_cpu0 () at /home/user/linuxbuild-1.0.2/linux/linux-2.6-gi
t/arch/sparc/kernel/head_32.S:87
87 t_zero: b gokernel; nop; nop; nop;

At this point the loader has enabled the MMU and both software breakpoints and symbols can be used.

(gdb) break leon_init_timers
Breakpoint 2 at 0xf03cff14: file /home/user/linuxbuild-1.0.2/linux/linux-2.6-git
/arch/sparc/kernel/leon_kernel.c, line 116.

(gdb) cont
Continuing.

Breakpoint 2, leon_init_timers (counter_fn=0xf00180c8 <timer_interrupt>)
 at /home/user/linuxbuild-1.0.2/linux/linux-2.6-git/arch/sparc/kernel/leon_ke
rnel.c:116
116 leondebug_irq_disable = 0;
Current language: auto; currently c
(gdb) bt
#0 leon_init_timers (counter_fn=0xf00180c8 <timer_interrupt>)

GRMON2 User's Manual 26

 at /home/user/linuxbuild-1.0.2/linux/linux-2.6-git/arch/sparc/kernel/leon_ke
rnel.c:116
#1 0xf03ce944 in time_init () at /home/user/linuxbuild-1.0.2/linux/linux-2.6-gi
t/arch/sparc/kernel/time_32.c:227
#2 0xf03cc13c in start_kernel () at /home/user/linuxbuild-1.0.2/linux/linux-2.6
-git/init/main.c:619
#3 0xf03cb804 in sun4c_continue_boot ()
#4 0xf03cb804 in sun4c_continue_boot ()
Backtrace stopped: previous frame identical to this frame (corrupt stack?)
(gdb) info locals
eirq = <value optimized out>
rootnp = <value optimized out>
np = <value optimized out>
pp = <value optimized out>
len = 13
ampopts = <value optimized out>
(gdb) print len
$2 = 13

If the application for some reason need to be reloaded, then the MMU must first be disabled via GRMON.
In addition all software breakpoints should be deleted before the application is restarted since the MMU has
been disabled and GRMON won't translate virtual addresses anymore.

(gdb) mon mmu mctrl 0
mctrl: 006E0000 ctx: 00000000 ctxptr: 40440800 fsr: 00000000 far: 00000000
(gdb) load
Loading section .text, size 0x10b0 lma 0x40000000
Loading section .data, size 0x50 lma 0x400010b0
Loading section .vmlinux, size 0x3f1a60 lma 0x40004000
Loading section .startup_prom, size 0x7ee0 lma 0x403f5a60
Start address 0x40000000, load size 4172352
Transfer rate: 18 KB/sec, 765 bytes/write.
(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) hbreak *0xf0004000
Hardware assisted breakpoint 3 at 0xf0004000: file /home/user/linuxbuild-1.0.2/l
inux/linux-2.6-git/arch/sparc/kernel/head_32.S, line 87.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/user/linuxbuild-1.0.2/output/images/image.ram

Breakpoint 3, trapbase_cpu0 () at /home/user/linuxbuild-1.0.2/linux/linux-2.6-gi
t/arch/sparc/kernel/head_32.S:87
87 t_zero: b gokernel; nop; nop; nop;
Current language: auto; currently asm
(gdb) break leon_init_timers
Breakpoint 4 at 0xf03cff14: file /home/user/linuxbuild-1.0.2/linux/linux-2.6-git
/arch/sparc/kernel/leon_kernel.c, line 116.
(gdb) cont
Continuing.

Breakpoint 4, leon_init_timers (counter_fn=0xf00180c8 <timer_interrupt>)
 at /home/user/linuxbuild-1.0.2/linux/linux-2.6-git/arch/sparc/kernel/leon_ke
rnel.c:116
116 leondebug_irq_disable = 0;
Current language: auto; currently c

3.7.8. Specific GDB optimization

GRMON detects GDB access to register window frames in memory which are not yet flushed and only
reside in the processor register file. When such a memory location is read, GRMON will read the correct
value from the register file instead of the memory. This allows GDB to form a function trace-back without
any (intrusive) modification of memory. This feature is disabled during debugging of code where traps are
disabled, since no valid stack frame exist at that point.

To avoid a huge number of cache-flushes GRMON auto-detects when GDB loads a new application to
memory, this approach however requires the user to restart the application after loading a file. Thus, loading
files during run-time may not work as expected.

3.7.9. Limitations of GDB interface

GDB must be built for the SPARC architecture, a native PC GDB does not work together with GRMON.
The toolchains that Aeroflex Gaisler distributes comes with a patched and tested version of GDB targeting
all SPARC LEON development tools.

GRMON2 User's Manual 27

Do not use the GDB where commands in parts of an application where traps are disabled (e.g.trap handlers).
Since the stack pointer is not valid at this point, GDB might go into an infinite loop trying to unwind false
stack frames. The thread support might not work either in some trap handler cases.

The step instruction commands si or stepi are implemented by GDB inserting software breakpoints through
GRMON. This is an approach that is not possible when debugging in read-only memory such as boot se-
quences executed in PROM/FLASH. One can instead use hardware breakpoints using the GDB command
hbreak manually.

3.8. Thread support

GRMON has thread support for some operating systems show below. The thread information is accessed
using the GRMON thread command. The GDB interface of GRMON is also thread aware and the related
GDB commands are described in the GDB documentation and in Section 3.7.6, “GDB Thread support”.

Supported operative systems

• RTEMS
• VXWORKS
• eCos
• Bare-metal

GRMON needs the symbolic information of the image that is being debugged in order to retrieve the ad-
dresses of the thread information. Therefore the symbols of the OS must be loaded automatically by the ELF-
loader using load or manually by using the symbols command. GRMON will traverse the thread structures
located in the target's memory when the thread command is issued (and on GDB's request). Bare-metal
threads will be used as a fallback if no OS threads can be found. In addition the startup switch -bmthreads
can be used to force bare-metal threads.

The target's thread structures are never changed, and they are never accessed unless the thread command
is executed. Starting GRMON with the -nothreads switch disables the thread support in GRMON and
thus in GDB too.

During debugging sessions it can help the developer a lot to view all threads, their stack traces and their
states to understand what is happening in the system.

3.8.1. GRMON thread commands

thread info lists all threads currently available in the operating system. The currently running thread is
marked with an asterisk.

grmon> thread info

 Name | Type | Id | Prio | Ticks | Entry point | PC | State

 Int. | internal | 0x09010001 | 255 | 138 | _CPU_Thread_Idle_body | 0x4002f760 | READY

 UI1 | classic | 0x0a010001 | 120 | 290 | Init | 0x4002f760 | READY

 ntwk | classic | 0x0a010002 | 100 | 11 | rtems_bsdnet_schedneti | 0x4002f760 | READY

 DCrx | classic | 0x0a010003 | 100 | 2 | rtems_bsdnet_schedneti | 0x4002f760 | Wevnt

 DCtx | classic | 0x0a010004 | 100 | 4 | rtems_bsdnet_schedneti | 0x4002f760 | Wevnt

 FTPa | classic | 0x0a010005 | 10 | 1 | split_command | 0x4002f760 | Wevnt

 FTPD | classic | 0x0a010006 | 10 | 1 | split_command | 0x4002f760 | Wevnt

* HTPD | classic | 0x0a010007 | 40 | 79 | rtems_initialize_webse | 0x40001b60 | READY

thread bt ?id? lists the stack back trace. bt lists the back trace of the currently executing thread as usual.

grmon> thread bt 0x0a010003

 %pc
#0 0x4002f760 _Thread_Dispatch + 0x11c
#1 0x40013ed8 rtems_event_receive + 0x88

GRMON2 User's Manual 28

#2 0x40027824 rtems_bsdnet_event_receive + 0x18
#3 0x4000b664 websFooter + 0x484
#4 0x40027708 rtems_bsdnet_schednetisr + 0x158

A backtrace of the current thread (equivalent to the bt command):

grmon> thread bt 0x0a010007

 %pc %sp
#0 0x40001b60 0x43fea130 console_outbyte_polled + 0x34
#1 0x400017fc 0x43fea130 console_write_support + 0x18
#2 0x4002dde8 0x43fea198 rtems_termios_puts + 0x128
#3 0x4002df60 0x43fea200 rtems_termios_puts + 0x2a0
#4 0x4002dfe8 0x43fea270 rtems_termios_write + 0x70
#5 0x400180a4 0x43fea2d8 rtems_io_write + 0x48
#6 0x4004eb98 0x43fea340 device_write + 0x2c
#7 0x40036ee4 0x43fea3c0 write + 0x90
#8 0x4001118c 0x43fea428 trace + 0x38
#9 0x4000518c 0x43fea498 websOpenListen + 0x108
#10 0x40004fb4 0x43fea500 websOpenServer + 0xc0
#11 0x40004b0c 0x43fea578 rtems_initialize_webserver + 0x204
#12 0x40004978 0x43fea770 rtems_initialize_webserver + 0x70
#13 0x40053380 0x43fea7d8 _Thread_Handler + 0x10c
#14 0x40053268 0x43fea840 __res_mkquery + 0x2c8

3.9. Forwarding application console I/O

If GRMON is started with -u [N] (N defaults to zero - the first UART), the LEON UART[N] is placed in
FIFO debug mode or in loop-back mode. Debug mode was added in GRLIB 1.0.17-b2710 and is reported
by info sys in GRMON as "DSU mode (FIFO debug)", older hardware is still supported using loop-back
mode. In both modes flow-control is enabled. Both in loop-back mode and in FIFO debug mode the UART
is polled regularly by GRMON during execution of an application and all console output is printed on the
GRMON console. When -u is used there is no point in connecting a separate terminal to UART1.

In addition it is possible to enable or disable UART forwarding using the command forward. Optionally it
is also possible to forward the I/O to a custom TCL channel using this command.

With FIFO debug mode it is also possible to enter text in GRMON which is inserted into the UART receive
FIFO. These insertions will trigger interrupts if receiver FIFO interrupts are enabled. This makes it possible
to use GRMON as a terminal when running an interrupt-driven O/S such as Linux or VxWorks.

The following restrictions must be met by the application to support either loop-back mode or FIFO debug
mode:

1. The UART control register must not be modified such that neither loop-back nor FIFO debug mode is
disabled

2. In loop-back mode the UART data register must not be read

This means that -u cannot be used with PROM images created by MKPROM. Also loop-back mode can
not be used in kernels using interrupt driven UART consoles (e.g. Linux, VxWorks).

RXVT must be disabled for debug mode to work in a MSYS console on Windows. This can be done by
deleting or renaming the file rxvt.exe inside the bin directory, e.g., C:\msys\1.0\bin. Starting with
MSYS-1.0.11 this will be the default.

3.9.1. UART debug mode

When the application is running with UART debug mode enabled the following key sequences will be
available. The sequences can be used to adjust the input to what the target system expects.

Ctrl+A B - Toggle delete to backspace conversion
Ctrl+A C - Send break (Ctrl+C) to the running application
Ctrl+A D - Toggle backspace to delete conversion
Ctrl+A E - Toggle local echo on/off
Ctrl+A H - Show a help message
Ctrl+A N - Enable/disable newline insertion on carriage return
Ctrl+A S - Show current settings

GRMON2 User's Manual 29

Ctrl+A Z - Send suspend (Ctrl+Z) to the running application

3.10. FLASH programming

3.10.1. CFI compatible Flash PROM

GRMON supports programming of CFI compatible flash PROMs attached to the external memory bus,
through the flash command. Flash programming is only supported if the target system contains one of the
following memory controllers MCTRL, FTMCTRL, FTSRCTRL or SSRCTRL. The PROM bus width can
be 8-, 16- or 32-bit. It is imperative that the PROM width in the MCFG1 register correctly reflects the width
of the external PROM.

To program 8-bit and 16-bit PROMs, GRMON must be able to do byte (or half-word) accesses to the target
system. To support this either connect with a JTAG debug link or have at least one working SRAM/SDRAM
bank and a CPU available in the target system.

Some flash chips provides lock protection to prevent the flash from being accidentally written. The user is
required to actively lock and unlock the flash. Note that the memory controller can disable all write cycles
to the flash also, however GRMON automatically enables PROM write access before the flash is accessed.

The flash device configuration is auto-detected, the information is printed out like in the example below.
One can verify the configuration so that the auto-detection is correct if problems are experienced. The block
lock status (if implement by the flash chip) can be viewed like in the following example:

grmon2> flash
 Manuf. : Intel
 Device : MT28F640J3
 Device ID : 09169e01734a9981
 User ID : ffffffffffffffff

 1 x 8 Mbytes = 8 Mbytes total @ 0x00000000

 CFI information
 Flash family : 1
 Flash size : 64 Mbit
 Erase regions : 1
 Erase blocks : 64
 Write buffer : 32 bytes
 Lock-down : Not supported
 Region 0 : 64 blocks of 128 kbytes

 grmon2> flash status
 Block lock status: U = Unlocked; L = Locked; D = Locked-down
 Block 0 @ 0x00000000 : L
 Block 1 @ 0x00020000 : L
 Block 2 @ 0x00040000 : L
 Block 3 @ 0x00060000 : L
...
 Block 60 @ 0x00780000 : L
 Block 61 @ 0x007a0000 : L
 Block 62 @ 0x007c0000 : L
 Block 63 @ 0x007e0000 : L

A typical command sequence to erase and re-program a flash memory could be:

grmon2> flash unlock all
 Unlock complete

grmon2> flash erase all
 Erase in progress
 Block @ 0x007e0000 : code = 0x80 OK
 Erase complete

grmon2> flash load rom_image.prom
...
grmon2> flash lock all
 Lock complete

3.10.2. SPI memory device

GRMON supports programming of SPI memory devices that are attached to a SPICTRL or SPIMCTRL core.
The flash programming commands are available through the cores' debug drivers. A SPI flash connected to

GRMON2 User's Manual 30

the SPICTRL controller is programmed using 'spi flash', for SPIMCTRL connected devices the 'spim flash'
command is used instead. See the command reference for respective command for the complete syntax,
below are some typical use cases exemplified.

When interacting with a memory device via SPICTRL the driver assumes that the clock scaler settings have
been initialized to attain a frequency that is suitable for the memory device. When interacting with a memory
device via SPIMCTRL all commands are issued with the normal scaler setting unless the alternate scaler
has been enabled.

A command sequence to save the original first 32 bytes of data before erasing and programming the SPI
memory device connected via SPICTRL could be:

spi set div16
spi flash select 1
spi flash dump 0 32 32bytes.srec
spi flash erase
spi flash load romfs.elf

The first command initializes the SPICTRL clock scaler. The second command selects a SPI memory
device configuration and the third command dumps the first 32 bytes of the memory device to the file
32bytes.srec. The fourth command erases all blocks of the SPI flash. The last command loads the ELF-
file romfs.elf into the device, the addresses are determined by the ELF-file section address.

Below is a command sequence to dump the data of a SPI memory device connected via SPIMCTRL. The
first command tries to auto-detect the type of memory device. If auto-detection is successful GRMON will
report the device selected. The second command dumps the first 128 bytes of the memory device to the file
128bytes.srec.

spim flash detect
spim flash dump 0 128 128bytes.srec

GRMON2 User's Manual 31

4. Debug link

The default communication interface between GRMON and the target system is the host’s serial port con-
nected to the AHB uart of the target system. Connecting using any of the other supported interfaces can
be performed by using the switches listed below. More switches that may affect the connection are listed
at each subsection.

-amontec Connect to the target system using the Amontec USB/JTAG key.

-altjtag Connect to the target system using Altera Blaster cable (USB or parallel).

-eth Connect to the target system using Ethernet. Requires the EDCL core to be present
in the target system.

-d2xx Connect to the target system using a JTAG cable based on a FTDI chip. (Windows)

-digilent Connect to the target system Digilent HS1 cable.

-fpro Connect to the target system using the Actel FlashPro cable. (Windows only)

-ftdi Connect to the target system using a JTAG cable based on a FTDI chip. (Linux)

-gresb Connect to the target system through the GRESB bridge. The target needs a SpW
core with RMAP.

-jtag Connect to the target system the JTAG Debug Link using Xilinx Parallel Cable
III or IV.

-pci vid:did[:i] Connect to the target system through PCI. Board is identified by vendor id, device
id and optionally instance number. Requires a supported PCI core on the target
system.

-usb Connect to the target system using the USB debug link. Requires the
GRUSB_DCL core to be present in the target.

-wildcard Connect to the target system using a WildCard PC Card. Requires the WILD2AHB
core to be present in target.

-xilusb Connect to the JTAG Debug Link using Xilinx Platform USB cable.

8-/16-bit access to the target system is only supported by the JTAG debug links, all other interfaces access
subwords using read-modify-write. All links supports 32-bit accesses. 8-bit access is generally not needed.
An example of when it is needed is when programming a 8 or 16-bit flash memory on a target system without
a LEON CPU available. Another example is when one is trying to access cores that have byte-registers,
for example the CAN_OC core, but almost all GRLIB cores have word-registers and can be accessed by
any debug link.

The speed of the debug links affects the performance of GRMON. It is most noticeable when loading large
applications, for example Linux or VxWorks. Another case when the speed of the link is important is during
profiling, a faster link will increase the number of samples. See Table 4.1 for a list of estimated speed of
the debug links.

Table 4.1. Estimated debug link application download speed

Name Estimated speed

UART ~100 kbit/s

JTAG (Parallel port) ~200 kbit/s

JTAG (USB) ~1 Mbit/s

GRESB ~25 Mbit/s

USB ~30 Mbit/s

Ethernet ~35 Mbit/s

PCI ~50 Mbit/s

GRMON2 User's Manual 32

4.1. Serial debug link

To successfully attach GRMON using the AHB uart, first connect the serial cable between the uart connec-
tors on target board and the host system. Then power-up and reset the target board and start GRMON. Use
the -uart option in case the target is not connected to the first uart port of your host. On some hosts, it
might be necessary to lower the baud rate in order to achieve a stable connection to the target. In this case,
use the -baud switch with the 57600 or 38400 options. Below is a list of start-up switches applicable for
the AHB uart interface.

Extra options for UART:

-uart <device>
By default, GRMON communicates with the target using the first uart port of the host. This can be
overridden by specifying an alternative device. Device names depend on the host operating system. On
Linux systems serial devices are named as /dev/tty## and on Windows they are named \\.\com#.

-baud <baudrate>
Use baud rate for the DSU serial link. By default, 115200 baud is used. Possible baud rates are 9600,
19200, 38400, 57600, 115200, 230400, 460800. Rates above 115200 need special uart hardware on
both host and target.

4.2. Ethernet debug link

If the target system includes a GRETH core with EDCL enabled then GRMON can connect to the system
using Ethernet. The default network parameters can be set through additional switches.

Extra options for Ethernet:

-eth [<ipnum>]
Use the Ethernet connection and optionally use ipnum for the target system IP number. Default is
192.168.0.51.

-eth_bufsize <kB>
Force EDCL Total Buffer Size. The EDCL hardware can be configured with different the packet buffer
size and Number of Packet Buffers. Both options are described by the Total Buffer Size. Use this option
to force the Total Buffer Size (in KB) used by GRMON during EDCL debug-link communication. By
default the smallest buffer (1kBytes) is used for compatibility reasons. Valid options are: 1, 2, 4, 8,
16, 32, 64.

The default IP address of the EDCL is normally determined at synthesis time. The IP address can be changed
using the edcl command. If more than one core is present i the system, then select core by appending the
name. The name of the core is listed in the output of info sys.

Note that if the target is reset using the reset signal (or power-cycled), the default IP address is restored.
The edcl command can be given when GRMON is attached to the target with any interface (serial, JTAG,
PCI ...), allowing to change the IP address to a value compatible with the network type, and then connect
GRMON using the EDCL with the new IP number. If the edcl command is issued through the EDCL inter-
face, GRMON must be restarted using the new IP address of the EDCL interface. The current IP address
is also visible in the output from info sys.

grmon2> edcl
 Device index: greth0
 Edcl ip 192.168.0.51, buffer 2 kB

grmon2> edcl greth1
 Device index: greth1
 Edcl ip 192.168.0.52, buffer 2 kB

grmon2> edcl 192.168.0.53 greth1
 Device index: greth1
 Edcl ip 192.168.0.53, buffer 2 kB

grmon2> info sys greth0 greth1

GRMON2 User's Manual 33

 greth0 Aeroflex Gaisler GR Ethernet MAC
 APB: FF940000 - FF980000
 IRQ: 24
 edcl ip 192.168.0.51, buffer 2 kbyte
 greth1 Aeroflex Gaisler GR Ethernet MAC
 APB: FF980000 - FF9C0000
 IRQ: 25
 edcl ip 192.168.0.53, buffer 2 kbyte

4.3. JTAG debug link

The subsections below describe how to connect to a design that contains a JTAG AHB debug link (AHBJ-
TAG). The following commandline options are common for all JTAG interfaces. If more than one cable of
the same type is connected to the host, then you need to specify which one to use, by using a commandline
option. Otherwise it will default to the first it finds.

Extra options common for all JTAG cables:

-jtaglist
List all available cables and exit application.

-jtagcable <n>
Specify which cable to use if more than one is connected to the computer. If only one cable of the same
type is connected to the host computer, then it will automatically be selected. It's also used to select
parallel port.

-jtagdevice <n>
Specify which device in the chain to debug. Use if more than one is device in the chain is debuggable.

-jtagcomver <version>
Specify JTAG debug link version.

JTAG debug link version. The JTAG interface has in the past been unreliable in systems with very high
bus loads, or extremely slow AMBA AHB slaves, that lead to GRMON reading out AHB read data before
the access had actually completed on the AHB bus. Read failures have been seen in systems where the debug
interface needed to wait hundreds of cycles for an AHB access to complete. With version 1 of the JTAG
AHB debug link the reliability of the debug link has been improved. In order to be backward compatible
with earlier versions of the debug link, GRMON cannot use all the features of AHBJTAG version 1 before
the debug monitor has established that the design in fact contains a core with this version number. In order
to do so, GRMON scans the plug and play area. However, in systems that have the characteristics described
above, the scanning of the plug and play area may fail. For such systems the AHBJTAG version assumed by
GRMON during plug and play scanning can be set with the switch -fjtagcomver<version>. This will
enable GRMON to keep reading data from the JTAG AHB debug interface until the AHB access completes
and valid data is returned. Specifying the version in systems that have AHBJTAG version 0 has no benefit
and may lead to erroneous behavior.

JTAG chain devices. If more than one device in the JTAG chain are recognized as debuggable (FPGAs,
ASICs etc), then the device to debug must be specified using the commandline option -jtagdevice. In
addition, all devices in the chain must be recognized. GRMON automatically recognizes the most common
FPGAs, CPLDs, proms etc. But unknown JTAG devices will cause GRMON JTAG chain initialization to
fail. If you report the device ID and corresponding JTAG instruction register length to Aeroflex Gaisler,
then the device will be supported in future releases of GRMON.

4.3.1. Xilinx parallel cable III/IV

If target system has the JTAG AHB debug link, GRMON can connect to the system through Xilinx Parallel
Cable III or IV. The cable should be connected to the host computers parallel port, and GRMON should be
started with the -jtag switch. Use -jtagcable to select port. On Linux, you must have read and write
permission, i.e. make sure that you are a member of the group 'lp'. I.a. on some systems the Linux module
lp must be unloaded, since it uses the port.

GRMON2 User's Manual 34

Extra options for Xilinx parallel cable:

-jtag
Connect to the target system using a Xilinx parallel cable III/IV cable

4.3.2. Xilinx Platform USB cable

JTAG debugging using the Xilinx USB Platform cable is supported on Linux and Windows systems. The
platform cable models DLC9G and DLC10 are supported. The legacy model DLC9 is not supported. GR-
MON should be started with -xilusb switch. Certain FPGA boards have a USB platform cable logic im-
plemented directly on the board, using a Cypress USB device and a dedicated Xilinx CPLD. GRMON can
also connect to these boards, using the --xilusb switch.

Extra options for Xilinx USB Platform cable:

-xilusb
Connect to the target system using a Xilinx USB Platform cable.

-xilmhz [6|3|1.5|0.75]
Set Xilinx Platform USB frequency. Valid values are 6, 3, 1.5 or 0.75 MHz. Default is 3 MHz.

On Linux systems, the Xilinx USB drivers must be installed by executing ’./setup_pcusb’ in the ISE
bin/bin/lin directory (see ISE documentation). I.a. the program fxload must be available in /sbin on
the used host, and libusb must be installed.

On Windows hosts follow the instructions below. the USB cable drivers should be installed from ISE or ISE-
Webpack. Xilinx ISE 9.2i or later is required. Then install the filter driver, from the libusb-win32 project
[http://libusb-win32.sourceforge.net], by running install-filter-win.exe from the libusb package.

1. Install the ISE, ISE-Webpack or iMPACT by following their instructions. This will install the drivers
for the Xilinx Platform USB cable. Xilinx ISE 9.2i or later is required. After the installation is complete,
make sure that iMPACT can find the Platform USB cable.

2. Then run libusb-win32-devel-filter-1.2.6.0.exe, which can be found in the folder
'<grmon-win32>/share/grmon/', where grmon-win32 is the path to the extracted win32 folder
from the the GRMON archive. This will install the libusb filter driver tools. Step through the installer
dialog boxes as seen in Figure 4.1 until the last dialog.

3. Make sure that 'Launch filter installer wizard' is checked, then press Finish. The wizard
can also be launched from the start menu.

http://libusb-win32.sourceforge.net
http://libusb-win32.sourceforge.net

GRMON2 User's Manual 35

Figure 4.1.

4. At the first dialog, as seen in Figure 4.2, choose 'Install a device filter' and press Next.

5. In the second dialog, mark the Xilinx USB cable. You can identify it either by name Xilinx USB
Cable in the 'Description' column or vid:03fd in the 'Hardware ID' column. Then press Install
to continue.

6. Press OK to close the pop-up dialog and then Cancel to close the filter wizard. You should now be able
to use the Xilinx Platform USB cable with both GRMON and iMPACT.

GRMON2 User's Manual 36

Figure 4.2.

4.3.3. Altera USB Blaster or Byte Blaster

For GRLIB systems implemented on Altera devices GRMON can use USB blaster or Byte Blaster cable to
connect to the system. GRMON is started with -altjtag switch. Drivers are included in the the Altera
Quartus software, see Actel's documentation on how to install on your host computer.

On Linux systems, the path to Quartus shared libraries has to be defined in the LD_LIBRARY_PATH
environment variable, i.e.

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/quartus/linux
$ grmon -altjtag

 GRMON2 LEON debug monitor v2.0.15 professional version
 ...

On Windows, the path to the Quartus binary folder must the added to the environment variable PATH, see
Appendix E, Appending environment variables in how to this. The default installation path to the binary fold-
er should be similar to C:\altera\11.1sp2\quartus\bin, where 11.1sp2 is the version of Quartus.

Extra options for Altera Blaster:

-altjtag
Connect to the target system using Altera Blaster cable (USB or parallel).

4.3.4. FTDI FT4232/FT2232

JTAG debugging using a FTDI FT2232/FT4232 chip in MPSSE-JTAG-emulation mode is supported in
Linux and Windows. GRMON has support for two different back ends, one based on libftdi and the other
based on FTDI's official d2xx library.

When using Windows, GRMON will use the d2xx back end per default. FTDI’s D2XX driver must be
installed. Drivers and installation guides can be found at FTDI's website [http://www.ftdichip.com].

In Linux, the libftdi back end is used per default. The user must also have read and write permission to the de-
vice file. This can be achieved by creating a udev rules file, /etc/udev/rules.d/51-ftdi.rules,
containing the lines below and then reconnect the USB cable.

ATTR{idVendor}=="0403", ATTR{idProduct}=="6010", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6011", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6014", MODE="666"

http://www.ftdichip.com
http://www.ftdichip.com

GRMON2 User's Manual 37

 ATTR{idVendor}=="0403", ATTR{idProduct}=="cff8", MODE="666"

Extra options for FTDI:

-ftdi [libftdi|d2xx]
Connect to the target system using a JTAG cable based on a FTDI chip. Optionally a back end can be
specified. Defaults to libftdi on Linux and d2xx on Windows

-ftdifreq <div>
Set FTDI frequency divisor. The value can be in the range of 0-0xffff. The frequency will be approxi-
mately f = 12 MHz / (2 * (div + 1)). Default value of div is 0x05 (i.e. f = 1 MHz).

-ftdivid <vid>
Set the vendor ID of the FTDI device you are trying to connect to. This can be used to add support for
3rd-party FTDI based cables.

-ftdipid <pid>
Set the product ID of the FTDI device you are trying to connect to. This can be used to add support
for 3rd-party FTDI based cables.

4.3.5. Amontec JTAGkey

The Amontec JTAGkey is based on a FTDI device, therefore see Section 4.3.4, “FTDI FT4232/FT2232”
about FTDI devices on how to connect. Note that the user does not need to specify VID/PID for the Amontec
cable. The drivers and installation guide can be found at Amontec's website [http://www.amontec.com].

4.3.6. Actel FlashPro 3/3x/4

JTAG debugging using the Actel FlashPro 3/3x/4 cable is only possible for GRLIB systems implemented
on Actel devices and on Windows hosts. This also requires FlashPro 9.1 SP1 software or later to be installed
on the host computer (to be downloaded from Actel's website). Windows support is detailed at the website.
GRMON is started with the -fpro switch and is only implemented for the GRMON professional version.
Technical support is provided through Aeroflex Gaisler only via support@gaisler.com.

Extra options for Actel FlashPro:

-fpro
Connect to the target system using the Actel FlashPro cable. (Windows)

4.3.7. Digilent HS1

JTAG debugging using a Digilent JTAG HS1 cable is supported on Linux and Windows systems. Start
GRMON with the -digilent switch to use this interface.

On Windows hosts, the Digilent Adept System software must be installed on the host computer, which can
be downloaded from Digilent's website.

On Linux systems, the Digilent Adept Runtime x86 must be installed on the host computer, which can be
downloaded from Digilent's website. The Adept v2.10.2 Runtime x86 supports the Linux distributions listed
below.

CentOS 4 / Red Hat Enterprise Linux 4
CentOS 5 / Red Hat Enterprise Linux 5
openSUSE 11 / SUSE Linux Enterprise 11
Ubuntu 8.04
Ubuntu 9.10
Ubuntu 10.04
On 64-bit Linux systems it's recommended to install the 32-bit runtime using the manual instructions from
the README provided by the runtime distribution. Note that the 32-bit Digilent Adept runtime depends on
32-bit versions of FTID's libd2xx library and the libusb-1.0 library.

http://www.amontec.com
http://www.amontec.com

GRMON2 User's Manual 38

Extra options for Digilent HS1:

-digilent
Connect to the target system using the Digilent HS1 cable.

-digifreq <hz>
Set Digilent HS1 frequency in Hz. Default is 1 MHz.

4.4. USB debug link

GRMON can connect to targets equipped with the GRUSB_DCL core using the USB bus. To do so start
GRMON with the -usb switch. Both USB 1.1 and 2.0 are supported. Several target systems can be con-
nected to a single host at the same time. GRMON scans all the USB buses and claims the first free USBD-
CL interface. If the first target system encountered is already connected to another GRMON instance, the
interface cannot be claimed and the bus scan continues.

On Linux the GRMON binary must have read and write permission. This can be achieved by creating a udev
rules file, /etc/udev/rules.d/51-gaisler.rules, containing the line below and then reconnect
the USB cable.

SUBSYSTEM=="usb", ATTR{idVendor}=="1781", ATTR{idProduct}=="0AA0", MODE="666"

On Windows a driver has to be installed. The first the time the device is plugged in it should be automatically
detected as an unknown device, as seen in Figure 4.3. Follow the instructions below to install the driver.

Figure 4.3.

1. Open the device manager by writing 'mmc devmgmt.msc' in the run-field of the start menu.
2. In the device manager, find the unknown device. Right click on it to open the menu and choose 'Update
Driver Software...' as Figure 4.4 shows.

Figure 4.4.

3. In the dialog that open, the first image in Figure 4.5, choose 'Browse my computer for driver
software'.

4. In the next dialog, press the Browse button and locate the path to <grmon-win32>/share/gr-
mon/drivers, where grmon-win32 is the path to the extracted win32 folder from the the GRMON
archive. Press 'Next' to continue.

5. A warning dialog might pop-up, like the third image in Figure 4.5. Press 'Install this driver
software anyway' if it shows up.

GRMON2 User's Manual 39

6. Press 'Close' to exit the dialog. The USB DCL driver is now installed and GRMON should be able to
connect to the target system using the USB DCL connection.

Figure 4.5.

4.5. PCI debug link

If target system has a PCI interface, GRMON can connect to the system using the PCI bus. Start GR-
MON with the -pci vid:did[:instance] option and specify vendor id and device id in hexadecimal
(with or without ‘0x’ prefix). GRMON supports the Aeroflex Gaisler PCI cores included in GRLIB (pci_gr,
pci_target, pci_mtf, pcidma) and the Insilicon PCI core (pci_is).

$ grmon -pci 16e3:1e0f

The default is to use the first instance of the board. If there are more than one board with the same vendor
and device id the different boards can be selected with the instance number.

$ grmon -pci 16e3:1e0f:2

On Linux GRMON needs root privilege to be able to access PCI memory and I/O ports. This can be accom-
plished by letting the GRMON binary be owned by root (chown root grmon) and setting the ’s’ (set user
or group ID on execution) permission bit (chmod +s grmon).

On Windows a special PCI driver must installed. It is available as an installer named GRPCISetup.exe
in the folder share/grmon/pci. It is a standard Windows installer which will install everything that is
needed for PCI to work with GRMON.

Extra options for PCI:

-pci <vid:did[:instance]>
Connect to the target system through PCI. Board is identified by vendor id, device id and optionally
instance number. Requires a supported PCI core on the target system.

GRMON2 User's Manual 40

4.6. GRESB debug link

Targets equipped with a SpaceWire core with RMAP support can be debugged through the GRESB debug
link using the GRESB Ethernet to SpaceWire bridge. To do so start GRMON with the -gresb switch and
use the any of the switches below to set the needed parameters.

For further information about the GRESB bridge see the GRESB manual.

Extra options for the GRESB connection:

-gresb [<ipnum>]
Use the GRESB connection and optionally use ipnum for the target system IP number. Default is
192.168.0.50.

-link <num>
Use link linknum on the bridge. Defaults to 0.

-dna <dna>
The destination node address of the target. Defaults to 0xfe.

-sna <sna>
The SpW node address for the link used on the bridge. Defaults to 32.

-dpa <dpa1> [,<dpa2>, ... ,<dpa8>]
The destination path address. Comma separated list of addresses.

-spa <spa1> [,<spa2>, ..., <spa8>]
The source path address. Comma separated list of addresses.

-dkey <key>
The destination key used by the targets RMAP interface. Defaults to 0.

-clkdiv <div>
Divide the TX bit rate by div. If not specified, the current setting is used.

-gresbtimeout <sec>
Timeout period in seconds for RMAP replies. Defaults is 8.

-gresbretry <n>
Number of retries for each timeout. Defaults to 0.

GRMON2 User's Manual 41

5. Debug drivers

This section describes GRMON debug commands available through the TCL GRMON shell.

5.1. AMBA AHB trace buffer driver

The at command and its subcommands are used to control the AHBTRACE buffer core. It is possible to
record AHB transactions without interfering with the processor. With the commands it is possible to set up
triggers formed by an address and an address mask indicating what bits in the address that must match to set
the trigger off. When the triggering condition is matched the AHBTRACE stops the recording of the AHB
bus and the log is available for inspection using the at command. The at delay command can be used to
delay the stop of the trace recording after a triggering match.

Note that this is an stand alone AHB trace buffer it is not to be confused with the DSU AHB trace facility.
When a break point is hit the processor will not stop its execution.

The info sys command displays the size of the trace buffer in number of lines.

 ahbtrace0 Aeroflex Gaisler AMBA Trace Buffer
 AHB: FFF40000 - FFF60000
 Trace buffer size: 512 lines

5.2. DSU Debug drivers

The DSU debug drivers for the LEON processor(s) is a central part of GRMON. It handles most of the func-
tions regarding application execution, debugging, processor register access, cache access and trace buffer
handling. The most common interactions with the DSU are explained in Chapter 3, Operation. Additional
information about the configuration of the DSU and the LEON CPUs on the target system can be listed with
the command info sys.

 dsu0 Aeroflex Gaisler LEON4 Debug Support Unit
 AHB: D0000000 - E0000000
 AHB trace: 64 lines, 32-bit bus
 CPU0: win 8, hwbp 2, itrace 64, V8 mul/div, srmmu, lddel 1, GRFPU-lite
 stack pointer 0x4ffffff0
 icache 2 * 8 kB, 32 B/line lrr
 dcache 2 * 4 kB, 32 B/line lrr
 CPU1: win 8, hwbp 2, itrace 64, V8 mul/div, srmmu, lddel 1, GRFPU-lite
 stack pointer 0x4ffffff0
 icache 2 * 8 kB, 32 B/line lrr
 dcache 2 * 4 kB, 32 B/line lrr

5.2.1. Switches

Below is a list of commandline switches that affects how the DSU driver interacts with the DSU hardware.

-nb
When the -nb flag is set, the CPUs will not go into debug mode when a error trap occurs. Instead the
OS must handle the trap.

-nswb
When the -nswb flag is set, the CPUs will not go into debug mode when a software breakpoint occur.
This option is required when a native software debugger like GDB is running on the target LEON.

-dsudelay <ms>
Delay the DSU polling. Normally GRMON will poll the DSU as fast as possible.

-nic
Disable instruction cache

-ndc
Disable data cache

GRMON2 User's Manual 42

-stack <addr>
Set addr as stack pointer for applications, overriding the auto-detected value.

-mpgsz
Enable support for MMU page sizes larger then 4kB. Must be supported by hardware.

5.2.2. Commands

The driver for the debug support unit provides the commands listed in Table 5.1.

Table 5.1. DSU commands

ahb Print AHB transfer entries in the trace buffer

at Print AHB transfer entries in the trace buffer

attach Stop execution and attach GRMON to processor again

bp Add, delete or list breakpoints

bt Print backtrace

cctrl Display or set cache control register

cont Continue execution

cpu Enable, disable CPU or select current active cpu

dcache Show, enable or disable data cache

dccfg Display or set data cache configuration register

detach Resume execution with GRMON detached from processor

ep Set entry point

float Display FPU registers

forward Control I\/O forwarding

go Start execution without any initialization

hist Print AHB transfer or intruction entries in the trace buffer

icache Show, enable or disable instruction cache

iccfg Display or set instruction cache configuration register

inst Print intruction entries in the trace buffer

leon Print leon specific registers

mmu Print or set the SRMMU registers

reg Show or set integer registers.

run Reset and start execution

stack Set or show the intial stack-pointer

step Step one ore more instructions

tmode Select tracing mode between none, processor-only, AHB only or both.

va Translate a virtual address

vmem AMBA bus 32-bit virtual memory read access, list a range of addresses

vmemb AMBA bus 8-bit virtual memory read access, list a range of addresses

vmemh AMBA bus 16-bit virtual memory read access, list a range of addresses

vwmem AMBA bus 32-bit virtual memory write access

vwmemb AMBA bus 8-bit virtual memory write access

vwmemh AMBA bus 16-bit virtual memory write access

vwmems Write a string to an AMBA bus virtual memory address

walk Translate a virtual address, print translation

GRMON2 User's Manual 43

5.2.3. Tcl variables

The DSU driver exports one Tcl variable per CPU (cpuN), they allow the user to access various registers
of any CPU instead of using the standard reg, float and cpu commands. The variables are mostly intended
for Tcl scripting. See Section 3.4.11, “Multi-processor support” for more information how the cpu variable
can be used.

5.3. Ethernet controller

The GRETH debug driver provides commands to configure the GRETH 10/100/1000 Mbit/s Ethernet con-
troller core. The driver also enables the user to read and write Ethernet PHY registers. The info sys command
displays the core’s configuration settings:

 greth0 Aeroflex Gaisler GR Ethernet MAC
 AHB Master 2
 APB: C0100100 - C0100200
 IRQ: 12
 edcl ip 192.168.0.201, buffer 2 kbyte

If more than one GRETH core exists in the system, it is possible to specify which core the internal commands
should operate on. This is achieved by appending a device name parameter to the command. The device
name is formatted as greth# where the # is the GRETH device index. If the device name is omitted, the
command will operate on the first device. The device name is listed in the info sys information.

The IP address must have the numeric format when setting the EDCL IP address using the edcl command,
i.e. edcl 192.168.0.66. See command description in Appendix B, Command syntax and Ethernet
debug interface in Section 4.2, “Ethernet debug link” for more information.

5.3.1. Commands

The driver for the greth core provides the commands listed in Table 5.2.

Table 5.2. GRETH commands

edcl Print or set the EDCL ip

mdio Show PHY registers

phyaddr Set the default PHY address

wmdio Set PHY registers

5.4. GRPWM core

The GRPWM debug driver implements functions to report the available PWM modules and to query the
waveform buffer. The info sys command will display the available PWM modules.

 grpwm0 Aeroflex Gaisler PWM generator
 APB: 80010000 - 80020000
 IRQ: 13
 cnt-pwm: 3

The GRPWM core is accessed using the command grpwm, see command description in Appendix B, Com-
mand syntax for more information.

5.5. I2C

The I2C-master debug driver initializes the core’s prescaler register for operation in normal mode (100 kb/
s). The driver supplies commands that allow read and write transactions on the I2C-bus. I.a. it automatically
enables the core when a read or write command is issued.

The I2CMST core is accessed using the command i2c, see command description in Appendix B, Command
syntax for more information.

5.6. I/O Memory Management Unit

The debug driver for GRIOMMU provides commands for configuring the core, reading core status infor-
mation, diagnostic cache accesses and error injection to the core’s internal cache (if implemented). The de-

GRMON2 User's Manual 44

bug driver also has support for building, modifying and decoding Access Protection Vectors and page table
structures located in system memory.

The GRIOMMU core is accessed using the command iommu, see command description in Appendix B,
Command syntax for more information.

The info sys command displays information about available protection modes and cache configuration.

 iommu0 Aeroflex Gaisler IO Memory Management Unit
 AHB Master 4
 AHB: FF840000 - FF848000
 IRQ: 31
 Device index: 0
 Protection modes: APV and IOMMU
 msts: 9, grps: 8, accsz: 128 bits
 APV cache lines: 32, line size: 16 bytes
 cached area: 0x00000000 - 0x80000000
 IOMMU TLB entries: 32, entry size: 16 bytes
 translation mask: 0xff000000
 Core has multi-bus support

5.7. Multi-processor interrupt controller

The debug driver for IRQMP provides commands for forcing interrupts and reading core status information.
The debug driver also supports ASMP and other extension provided in the IRQ(A)MP core. The IRQMP and
IRQAMP cores are accessed using the command irq, see command description in Appendix B, Command
syntax for more information.

The info sys command displays information on the cores memory map. I.a. if extended interrupts are enabled
it shows the extended interrupt number.

 irqmp0 Aeroflex Gaisler Multi-processor Interrupt Ctrl.
 APB: FF904000 - FF908000
 EIRQ: 10

5.8. On-chip logic analyzer driver

The LOGAN debug driver contains commands to control the LOGAN on-chip logic analyzer core. It allows
to set various triggering conditions and to generate VCD waveform files from trace buffer data.

The LOGAN core is accessed using the command la, see command description in Appendix B, Command
syntax for more information.

The LOGAN driver can create a VCD waveform file using the la dump command. The file setup.logan
is used to define which part of the trace buffer belong to which signal. The file is read by the debug driver
before a VCD file is generated. An entry in the file consists of a signal name followed by its size in bits
separated by white-space. Rows not having these two entries as well as rows beginning with an # are ignored.
GRMON will look for the file in the current directory. I.e. either start GRMON from the directory where
setup.logan is located or use the Tcl command cd, in GRMON, to change directory.

Example 5.1.

#Name Size
clk 1
seq 14
edclstate 4
txdstate 5
dataout0 32
dataout1 32
dataout2 32
dataout3 32
writem 1
writel 1
nak 1
lock 1

The Example 5.1 has a total of 128 traced bits, divided into twelve signals of various widths. The first signal
in the configuration file maps to the most significant bits of the vector with the traced bits. The created VCD
file can be opened by waveform viewers such as GTKWave or Dinotrace.

GRMON2 User's Manual 45

Figure 5.1. GTKWave

5.9. Memory controllers

SRAM/SDRAM/PROM/IO memory controllers. Most of the memory controller debug drivers pro-
vides switches for timing, waitstate control and sizes. They also probes the memory during GRMON's ini-
tialization. In addition they also enables some commands. The mcfg# sets the reset value 1 of the registers.
The info sys shows the timing and amount of detected memory of each type. Supported cores: MCTRL,
SRCTRL, SSRCTRL

 mctrl0 European Space Agency LEON2 Memory Controller
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit sdram: 1 * 64 Mbyte @ 0x40000000
 col 9, cas 2, ref 7.8 us

PC133 SDRAM Controller . PC133 SDRAM debug drivers provides switches for timing. It also probes
the memory during GRMON's initialization. In addition it also enables the sdcfg1 affects, that sets the reset
value1 of the register. Supported cores: SDCTRL

DDR memory controller. The DDR memory controller debug drivers provides switches for timing.
It also performs the DDR initialization sequence and probes the memory during GRMON's initialization.
It does not enable any commands. The info sys shows the DDR timing and amount of detected memory.
Supported cores: DDRSPA

DDR2 memory controller. The DDR2 memory controller debug driver provides switches for timing.
It also performs the DDR2 initialization sequence and probes the memory during GRMON's initialization.
In addition it also enables some commands. The ddr2cfg# only affect the DDR2SPA, that sets the reset
value1 of the register. The commands ddr2skew and ddr2delay can be used to adjust the timing. The info
sys shows the DDR timing and amount of detected memory Supported cores: DDR2SPA

 ddr2spa0 Aeroflex Gaisler Single-port DDR2 controller
 AHB: 40000000 - 80000000
 AHB: FFE00100 - FFE00200
 32-bit DDR2 : 1 * 256 MB @ 0x40000000, 8 internal banks
 200 MHz, col 10, ref 7.8 us, trfc 135 ns

SPI memory controller. The SPI memory controller debug driver is affected by the common memory
commands, but provides commands spim to perform basic communication with the core. The driver also
provides functionality to read the CSD register from SD Card and a command to reinitialize SD Cards. The

1 The memory register reset value will be written when GRMON's resets the drivers, for example when run or load is called.

GRMON2 User's Manual 46

debug driver has bindings to the SPI memory device layer. These commands are accessed via spim flash.
Please see Section 3.10.2, “SPI memory device” for more information. Supported cores: SPIMCTRL

5.9.1. Switches

-mcfg1 <val>
Set the reset value for memory configuration register 1 (MCTRL, SSRCTRL)

-mcfg2<valn>
Set the reset value for memory configuration register 2 (MCTRL)

-mcfg3 <val>
Set the reset value for memory configuration register 3 (MCTRL, SSRCTRL)

-normw
Disables read-modify-write cycles for sub-word writes to 16- bit 32-bit areas with common write strobe
(no byte write strobe). (MCTRL)

ROM switches:

-romrws <n>
Set n number of wait-states for rom reads. (MCTRL, SSRCTRL)

-romwws <n>
Set n number of wait-states for rom writes. (MCTRL, SSRCTRL)

-romws <n>
Set n number of wait-states for rom reads and writes. (MCTRL, SSRCTRL)

SRAM switches:

-nosram
Disable SRAM and map SDRAM to the whole plug and play bar. (MCTRL, SSRCTRL)

-ram <kB>
Overrides the auto-probed amount of static ram banksize. Banksize is given in kilobytes. (MCTRL)

-rambanks <n>
Overrides the auto-probed number of populated ram banks. (MCTRL)

-ramrws <n>
Set n number of wait-states for ram reads. (MCTRL)

-ramwws <n>
Set n number of wait-states for ram writes. (MCTRL)

-ramws <n>
Set n number of wait-states for rom reads and writes. (MCTRL)

SDRAM switches:

-cas <cycles>
Programs SDRAM to either 2 or 3 cycles CAS latency and RAS/CAS delay. Default is 2. (MCTRL,
SDCTRL)

-ddr2cal
Run delay calibration routine on start-up before probing memory (see ddr2delay scan com-
mand).(DDR2SPA) ()

-nosdram
Disable SDRAM. (MCTRL)

GRMON2 User's Manual 47

-ref <us>
Set the refresh reload value. (MCTRL)

-regmem
Enable registered memory. (DDR2SPA)

-trcd <cycles>
Programs SDRAM to either 2 or 3 cycles RAS/CAS delay. Default is 2. (DDRSPA, DDR2SPA)

-trfc <ns>
Programs the SDRAM trfc to the specified timing. (MCTRL, DDRSPA, DDR2SPA)

-trp3
Programs the SDRAM trp timing to 3. Default is 2. (MCTRL, DDRSPA, DDR2SPA)

-twr
Programs the SDRAM twr to the specified timing. (DDR2SPA)

-sddel <value>
Set the SDCLK value. (MCTRL)

5.9.2. Commands

The driver for the Debug support unit provides the commands listed in Table 5.3.

Table 5.3. MEMCTRL commands

ddr2cfg1 Show or set the reset value of the memory register

ddr2cfg2 Show or set the reset value of the memory register

ddr2cfg3 Show or set the reset value of the memory register

ddr2cfg4 Show or set the reset value of the memory register

ddr2cfg5 Show or set the reset value of the memory register

ddr2delay Change read data input delay.

ddr2skew Change read skew.

mcfg1 Show or set reset value of the memory controller register 1

mcfg2 Show or set reset value of the memory controller register 2

mcfg3 Show or set reset value of the memory controller register 3

sdcfg1 Show or set reset value of SDRAM controller register 1

sddel Show or set the SDCLK delay

spim Commands for the SPI memory controller

5.10. PCI

The debug driver for the PCI cores are mainly useful for PCI host systems. It provides a command that
initializes the host. The initialization sets AHB to PCI memory address translation to 1:1, AHB to PCI I/O
address translation to 1:1, points BAR1 to 0x40000000 and enables PCI memory space and bus mastering,
but it will not configure target bars. To configure the target bars on the pci bus, call pci conf after the core
has been initialized. Commands for scanning the bus, disabling byte twisting and displaying information
are also provided.

The PCI cores are accessed using the command pci, see command description in Appendix B, Command
syntax for more information. Supported cores are GRPCI, GRPCI2 and PCIF.

The PCI commands have been split up into several sub commands in order for the user to have full control
over what is modified. The init command initializes the host controller, which may not be wanted when the
LEON target software has set up the PCI bus. The typical two different use cases are, GRMON configures
PCI or GRMON scan PCI to viewing the current configuration. In the former case GRMON can be used to

GRMON2 User's Manual 48

debug PCI hardware and the setup, it enables the user to set up PCI so that the CPU or GRMON can access
PCI boards over I/O, Memory and/or Configuration space and the PCI board can do DMA to the 0x40000000
AMBA address. The latter case is often used when debugging LEON PCI software, the developer may for
example want to see how Linux has configured PCI but not to alter anything that would require Linux to
reboot. Below are command sequences of the two typical use cases on the ML510 board:

grmon2> pci init

grmon2> pci conf

 PCI devices found:

 Bus 0 Slot 1 function: 0 [0x8]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5451 (M5451 PCI AC-Link Controller Audio Device)
 IRQ INTA# LINE: 0
 BAR 0: 1201 [256B]
 BAR 1: 82206000 [4kB]

 Bus 0 Slot 2 function: 0 [0x10]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x1533 (M1533/M1535/M1543 PCI to ISA Bridge [Aladdin IV/V/V+])

 Bus 0 Slot 3 function: 0 [0x18]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5457 (M5457 AC'97 Modem Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82205000 [4kB]
 BAR 1: 1101 [256B]

 Bus 0 Slot 6 function: 0 [0x30] (BRIDGE)
 Vendor id: 0x3388 (Hint Corp)
 Device id: 0x21 (HB6 Universal PCI-PCI bridge (non-transparent mode))
 Primary: 0 Secondary: 1 Subordinate: 1
 I/O: BASE: 0x0000f000, LIMIT: 0x00000fff (DISABLED)
 MEMIO: BASE: 0x82800000, LIMIT: 0x830fffff (ENABLED)
 MEM: BASE: 0x80000000, LIMIT: 0x820fffff (ENABLED)

 Bus 0 Slot 9 function: 0 [0x48] (BRIDGE)
 Vendor id: 0x104c (Texas Instruments)
 Device id: 0xac23 (PCI2250 PCI-to-PCI Bridge)
 Primary: 0 Secondary: 2 Subordinate: 2
 I/O: BASE: 0x00001000, LIMIT: 0x00001fff (ENABLED)
 MEMIO: BASE: 0x82200000, LIMIT: 0x822fffff (ENABLED)
 MEM: BASE: 0x82100000, LIMIT: 0x821fffff (ENABLED)

 Bus 0 Slot c function: 0 [0x60]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x7101 (M7101 Power Management Controller [PMU])

 Bus 0 Slot f function: 0 [0x78]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82204000 [4kB]

 Bus 1 Slot 0 function: 0 [0x100]
 Vendor id: 0x102b (Matrox Electronics Systems Ltd.)
 Device id: 0x525 (MGA G400/G450)
 IRQ INTA# LINE: 0
 BAR 0: 80000008 [32MB]
 BAR 1: 83000000 [16kB]
 BAR 2: 82800000 [8MB]
 ROM: 82000001 [128kB] (ENABLED)

 Bus 2 Slot 2 function: 0 [0x210]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTB# LINE: 0
 BAR 0: 82202000 [4kB]

 Bus 2 Slot 2 function: 1 [0x211]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTC# LINE: 0
 BAR 0: 82201000 [4kB]

 Bus 2 Slot 2 function: 2 [0x212]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTD# LINE: 0

GRMON2 User's Manual 49

 BAR 0: 82200000 [4kB]

 Bus 2 Slot 2 function: 3 [0x213]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5239 (USB 2.0 Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82203200 [256B]

 Bus 2 Slot 3 function: 0 [0x218]
 Vendor id: 0x1186 (D-Link System Inc)
 Device id: 0x4000 (DL2000-based Gigabit Ethernet)
 IRQ INTA# LINE: 0
 BAR 0: 1001 [256B]
 BAR 1: 82203000 [512B]
 ROM: 82100001 [64kB] (ENABLED)

When analyzing the system, the sub commands info and scan can be called without altering the hardware
configuration:

grmon2> pci info

 GRPCI initiator/target (in system slot):

 Bus master: yes
 Mem. space en: yes
 Latency timer: 0x0
 Byte twisting: disabled

 MMAP: 0x8
 IOMAP: 0xfff2

 BAR0: 0x00000000
 PAGE0: 0x40000001
 BAR1: 0x40000000
 PAGE1: 0x40000000

grmon2> pci scan
 Warning: PCI driver has not been initialized
 Warning: PCI driver has not been initialized

 PCI devices found:

 Bus 0 Slot 1 function: 0 [0x8]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5451 (M5451 PCI AC-Link Controller Audio Device)
 IRQ INTA# LINE: 0
 BAR 0: 1201 [256B]
 BAR 1: 82206000 [4kB]

 Bus 0 Slot 2 function: 0 [0x10]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x1533 (M1533/M1535/M1543 PCI to ISA Bridge [Aladdin IV/V/V+])

 Bus 0 Slot 3 function: 0 [0x18]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5457 (M5457 AC'97 Modem Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82205000 [4kB]
 BAR 1: 1101 [256B]

 Bus 0 Slot 6 function: 0 [0x30] (BRIDGE)
 Vendor id: 0x3388 (Hint Corp)
 Device id: 0x21 (HB6 Universal PCI-PCI bridge (non-transparent mode))
 Primary: 0 Secondary: 1 Subordinate: 1
 I/O: BASE: 0x0000f000, LIMIT: 0x00000fff (DISABLED)
 MEMIO: BASE: 0x82800000, LIMIT: 0x830fffff (ENABLED)
 MEM: BASE: 0x80000000, LIMIT: 0x820fffff (ENABLED)

 Bus 0 Slot 9 function: 0 [0x48] (BRIDGE)
 Vendor id: 0x104c (Texas Instruments)
 Device id: 0xac23 (PCI2250 PCI-to-PCI Bridge)
 Primary: 0 Secondary: 2 Subordinate: 2
 I/O: BASE: 0x00001000, LIMIT: 0x00001fff (ENABLED)
 MEMIO: BASE: 0x82200000, LIMIT: 0x822fffff (ENABLED)
 MEM: BASE: 0x82100000, LIMIT: 0x821fffff (ENABLED)

 Bus 0 Slot c function: 0 [0x60]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x7101 (M7101 Power Management Controller [PMU])

 Bus 0 Slot f function: 0 [0x78]
 Vendor id: 0x10b9 (ULi Electronics Inc.)

GRMON2 User's Manual 50

 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82204000 [4kB]

 Bus 1 Slot 0 function: 0 [0x100]
 Vendor id: 0x102b (Matrox Electronics Systems Ltd.)
 Device id: 0x525 (MGA G400/G450)
 IRQ INTA# LINE: 0
 BAR 0: 80000008 [32MB]
 BAR 1: 83000000 [16kB]
 BAR 2: 82800000 [8MB]
 ROM: 82000001 [128kB] (ENABLED)

 Bus 2 Slot 2 function: 0 [0x210]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTB# LINE: 0
 BAR 0: 82202000 [4kB]

 Bus 2 Slot 2 function: 1 [0x211]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTC# LINE: 0
 BAR 0: 82201000 [4kB]

 Bus 2 Slot 2 function: 2 [0x212]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTD# LINE: 0
 BAR 0: 82200000 [4kB]

 Bus 2 Slot 2 function: 3 [0x213]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5239 (USB 2.0 Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82203200 [256B]

 Bus 2 Slot 3 function: 0 [0x218]
 Vendor id: 0x1186 (D-Link System Inc)
 Device id: 0x4000 (DL2000-based Gigabit Ethernet)
 IRQ INTA# LINE: 0
 BAR 0: 1001 [256B]
 BAR 1: 82203000 [512B]
 ROM: 82100001 [64kB] (ENABLED)

grmon2> pci bus reg

grmon2> info sys pdev0 pdev5 pdev10
 pdev0 Bus 00 Slot 01 Func 00 [0:1:0]
 vendor: 0x10b9 ULi Electronics Inc.
 device: 0x5451 M5451 PCI AC-Link Controller Audio Device
 class: 040100 (MULTIMEDIA)
 BAR1: 00001200 - 00001300 I/O-32 [256B]
 BAR2: 82206000 - 82207000 MEMIO [4kB]
 IRQ INTA# -> IRQX
 pdev5 Bus 00 Slot 09 Func 00 [0:9:0]
 vendor: 0x104c Texas Instruments
 device: 0xac23 PCI2250 PCI-to-PCI Bridge
 class: 060400 (PCI-PCI BRIDGE)
 Primary: 0 Secondary: 2 Subordinate: 2
 I/O Window: 00001000 - 00002000
 MEMIO Window: 82200000 - 82300000
 MEM Window: 82100000 - 82200000
 pdev10 Bus 02 Slot 03 Func 00 [2:3:0]
 vendor: 0x1186 D-Link System Inc
 device: 0x4000 DL2000-based Gigabit Ethernet
 class: 020000 (ETHERNET)
 subvendor: 0x1186, subdevice: 0x4004
 BAR1: 00001000 - 00001100 I/O-32 [256B]
 BAR2: 82203000 - 82203200 MEMIO [512B]
 ROM: 82100000 - 82110000 MEM [64kB]
 IRQ INTA# -> IRQW

A configured PCI system can be registered into the GRMON device handling system similar to the on-
chip AMBA bus devices, controlled using the pci bus commands. GRMON will hold a copy of the PCI
configuration in memory until a new pci conf, pci bus unreg or pci scan is issued. The user is responsible
for updating GRMON's PCI configuration if the configuration is updated in hardware. The devices can be
inspected from info sys and Tcl variables making read and writing PCI devices configuration space easier.
The Tcl variables are named in a similar fashion to AMBA devices, for example puts $pdev0::status prints
the STATUS register of PCI device0. See pci bus reference description and Appendix C, Tcl API.

GRMON2 User's Manual 51

Only the pci info command has any effect on non-host systems.

Also note that the pci conf command can fail to configure all found devices if the PCI address space ad-
dressable by the PCI Host controller is smaller than the amount of memory needed by the devices.

The pci scan command may fail if the PCI buses (PCI-PCI bridges) haven't been enumerated correctly in
a multi-bus PCI system.

After registering the PCI bus into GRMON's device handling system commands may access device infor-
mation and Tcl may access variables (PCI configuration space registers). Accessing bad PCI regions may
lead to target deadlock where the debug-link may disconnect/hang. It is the user's responsibility to make
sure that GRMON's PCI information is correct. The PCI bus may need to be re-scanned/unregistered when
changes to the PCI configuration has been made by the target OS running on the LEON.

5.10.1. PCI Trace

The pci trace commands are supported by the cores PCITRACE, GRPCI2 and GRPCI2_TB. The commands
can be used to control the trace and viewing trace data. With the commands it is possible to set up trigger
conditions that must match to set the trigger off. When the triggering condition is matched the AHBTRACE
stops the recording of the PCI bus and the log is available for inspection using the pci trace log command.
The pci trace tdelay command can be used to delay the stop of the trace recording after a trigging match.

The info sys command displays the size of the trace buffer in number of lines.

 pcitrace0 Aeroflex Gaisler 32-bit PCI Trace Buffer
 APB: C0101000 - C0200000
 Trace buffer size: 128 lines
 pci0 Aeroflex Gaisler GRPCI2 PCI/AHB bridge
 AHB Master 5
 AHB: C0000000 - D0000000
 AHB: FFF00000 - FFF40000
 APB: 80000600 - 80000700
 IRQ: 6
 Trace buffer size: 1024 lines
 pcitrace1 Aeroflex Gaisler GRPCI2 Trace buffer
 APB: 80040000 - 80080000
 Trace buffer size: 1024 lines

5.11. SPI

The SPICTRL debug driver provides commands to configure the SPI controller core. The driver also enables
the user to perform simple data transfers. The info sys command displays the core’s FIFO depth and the
number of available slave select signals.

 spi0 Aeroflex Gaisler SPI Controller
 APB: C0100000 - C0100100
 IRQ: 23
 FIFO depth: 8, 2 slave select signals
 Maximum word length: 32 bits
 Supports automated transfers
 Supports automatic slave select
 Controller index for use in GRMON: 0

The SPICTRL core is accessed using the command spi, see command description in Appendix B, Command
syntax for more information.

The debug driver has bindings to the SPI memory device layer. These commands are accessed via spi flash.
Please see Section 3.10.2, “SPI memory device” for more information.

For information about the SPI memory controller (SPIMCTRL), see Section 5.9, “Memory controllers ”.

5.12. SVGA frame buffer

The SVGACTRL debug driver implements functions to report the available video clocks in the SVGA frame
buffer, and to display screen patters for testing. The info sys command will display the available video clocks.

GRMON2 User's Manual 52

 svga0 Aeroflex Gaisler SVGA frame buffer
 AHB Master 2
 APB: C0800000 - C0800100
 clk0: 25.00 MHz clk1: 25.00 MHz clk2: 40.00 MHz clk3: 65.00 MHz

The SVGACTRL core is accessed using the command svga, see command description in Appendix B,
Command syntax for more information.

The svga draw test_screen command will show a simple grid in the resolution specified via the format
selection. The color depth can be either 16 or 32 bits.

The svga draw file command will determine the resolution of the specified picture and select an appro-
priate format (resolution and refresh rate) based on the video clocks available to the core. The required file
format is ASCII PPM which must have a suitable amount of pixels. For instance, to draw a screen with
resolution 640x480, a PPM file which is 640 pixels wide and 480 pixels high must be used. ASCII PPM
files can be created with, for instance, the GNU Image Manipulation Program (The GIMP).

The svga custom period horizontal-active-video horizontal-front-porch hori-
zontal-sync horizontal-back-porch vertical-active-video vertical-front-
porch vertical-sync vertical-back-porch command can be used to specify a custom for-
mat. The custom format will have precedence when using the svga draw command.

GRMON2 User's Manual 53

6. Support

For Support, contact the Aeroflex Gaisler support team at support@gaisler.com.

GRMON2 User's Manual 54

Appendix A. Command index
This section lists all documented commands available in GRMON2.

Table A.1. GRMON command oveview

Command
Name

Description

ahb Print AHB transfer entries in the trace buffer

at Print AHB transfer entries in the trace buffer

attach Stop execution and attach GRMON to processor again

batch Execute batch script

bdump Dump memory to a file

bload Load a binary file

bp Add, delete or list breakpoints

bt Print backtrace

cctrl Display or set cache control register

cont Continue execution

cpu Enable, disable CPU or select current active cpu

dcache Show, enable or disable data cache

dccfg Display or set data cache configuration register

dcom Print or clear debug link statistics

ddr2cfg1 Show or set the reset value of the memory register

ddr2cfg2 Show or set the reset value of the memory register

ddr2cfg3 Show or set the reset value of the memory register

ddr2cfg4 Show or set the reset value of the memory register

ddr2cfg5 Show or set the reset value of the memory register

ddr2delay Change read data input delay.

ddr2skew Change read skew.

detach Resume execution with GRMON detached from processor

disassemble Disassemble memory

dump Dump memory to a file

dwarf print or lookup dwarf information

edcl Print or set the EDCL ip

eeload Load a file into an EEPROM

ep Set entry point

exit Exit GRMON

flash Write, erase or show information about the flash

float Display FPU registers

forward Control I\/O forwarding

gdb Controll the builtin GDB remote server

go Start execution without any initialization

grpwm Controll the GRPWM core

help Print all commands or detailed help for a specific command

GRMON2 User's Manual 55

Command
Name

Description

hist Print AHB transfer or intruction entries in the trace buffer

i2c Commands for the I2C masters

icache Show, enable or disable instruction cache

iccfg Display or set instruction cache configuration register

info Show information

inst Print intruction entries in the trace buffer

iommu Control IO memory management unit

irq Force interrupts or read IRQ(A)MP status information

la Control the LOGAN core

leon Print leon specific registers

load Load a file or print filenames of uploaded files

mcfg1 Show or set reset value of the memory controller register 1

mcfg2 Show or set reset value of the memory controller register 2

mcfg3 Show or set reset value of the memory controller register 3

mdio Show PHY registers

mem AMBA bus 32-bit memory read access, list a range of addresses

memb AMBA bus 8-bit memory read access, list a range of addresses

memh AMBA bus 16-bit memory read access, list a range of addresses

mmu Print or set the SRMMU registers

pci Control the PCI bus master

phyaddr Set the default PHY address

quit Quit the GRMON console

reg Show or set integer registers.

reset Reset drivers

run Reset and start execution

sdcfg1 Show or set reset value of SDRAM controller register 1

sddel Show or set the SDCLK delay

shell Execute shell process

silent Suppress stdout of a command

spi Commands for the SPI controller

spim Commands for the SPI memory controller

stack Set or show the intial stack-pointer

step Step one ore more instructions

svga Commands for the SVGA controller

symbols Load, print or lookup symbols

thread Show OS-threads information or backtrace

timer Show information about the timer devices

tmode Select tracing mode between none, processor-only, AHB only or both.

va Translate a virtual address

verify Verify that a file has been uploaded correctly

GRMON2 User's Manual 56

Command
Name

Description

vmem AMBA bus 32-bit virtual memory read access, list a range of addresses

vmemb AMBA bus 8-bit virtual memory read access, list a range of addresses

vmemh AMBA bus 16-bit virtual memory read access, list a range of addresses

vwmem AMBA bus 32-bit virtual memory write access

vwmemb AMBA bus 8-bit virtual memory write access

vwmemh AMBA bus 16-bit virtual memory write access

vwmems Write a string to an AMBA bus virtual memory address

walk Translate a virtual address, print translation

wmdio Set PHY registers

wmem AMBA bus 32-bit memory write access

wmemb AMBA bus 8-bit memory write access

wmemh AMBA bus 16-bit memory write access

wmems Write a string to an AMBA bus memory address

GRMON2 User's Manual 57

Appendix B. Command syntax
This section lists the syntax of all documented commands available in GRMON2.

GRMON2 User's Manual 58

1. ahb - syntax

NAME

ahb - Print AHB transfer entries in the trace buffer

SYNOPSIS

ahb ?length?
ahb subcommand ?args...?

DESCRIPTION

ahb ?length?
Print the AHB trace buffer. The ?length? entries will be printed, default is 10.

ahb force ?boolean?
Enable or disable the AHB trace buffer even when the processor is in debug mode. Default value of
the boolean is true.

ahb performance ?boolean?
Enable or disable the filter on the signals connected to the performance counters, see “LEON3 Statistics
Unit (L3STAT)” and “LEON4 Statistics Unit (L4STAT)”. Only available for DSU3 version 2 and
above, and DSU4.

ahb timer ?boolean?
Enable the timetag counter when in debug mode. Default value of the boolean is true. Only available
for DSU3 version 2 and above, and DSU4.

ahb delay cnt
If cnt is non-zero, the CPU will enter debug-mode after delay trace entries after an AHB watchpoint
was hit.

ahb filter reads ?boolean?
ahb filter writes ?boolean?
ahb filter addresses ?boolean? ?address mask?

Enable or disable filtering options if supported by the DSU core. When enabling the addresses filter,
the second AHB breakpoint register will be used to define the range of the filter. Default value of the
boolean is true. If left out, then the address and mask will be ignored. They can also be set with the
command ahb filter range. (Not available in all implementations)

ahb filter range address mask
Set the base address and mask that the AHB trace buffer will include if the address filtering is
enabled. (Only available in some DSU4 implementations).

ahb filter bwmask mask
ahb filter dwmask mask

Set which AHB bus/data watchpoints that the filter will affect.

ahb filter mmask mask
ahb filter smask mask

Set which AHB masters or slaves connected to the bus to exclude. (Only available in some DSU4
implementations)

ahb status
Print AHB trace buffer settings.

RETURN VALUE

Upon successful completion, ahb returns a list of trace buffer entries. Each entry is a sublist on the format
format: {AHB time addr data rw trans size master lock resp bp}. The data field is a sublist of

GRMON2 User's Manual 59

1,2 or 4 words with MSb first, depending on the size of AMBA bus. Detailed description about the different
fields can be found in the DSU core documentation in document grip.pdf. [http://gaisler.com/products/gr-
lib/grip.pdf]

The other subcommands have no return value.

EXAMPLE

Print 10 rows

grmon2> ahb
 TIME ADDRESS D[127:96] D[95:64] D[63:32] D[31:0] TYPE ...
 266718 FF900004 00000084 00000084 00000084 00000084 read ...
 266727 FF900000 0000000D 0000000D 0000000D 0000000D write ...
 266760 000085C0 C2042054 80A06000 02800003 01000000 read ...
 266781 000085D0 C2260000 81C7E008 91E80008 9DE3BF98 read ...
 266812 0000B440 00000000 00000000 00000000 00000000 read ...
 266833 0000B450 00000000 00000000 00000000 00000000 read ...
 266899 00002640 02800005 01000000 C216600C 82106040 read ...
 266920 00002650 C236600C 40001CBD 90100011 1080062E read ...
 266986 00000800 91D02000 01000000 01000000 01000000 read ...
 267007 00000810 91D02000 01000000 01000000 01000000 read ...

TCL returns:
{AHB 266718 0xFF900004 {0x00000084 0x00000084 0x00000084 0x00000084} R
0 2 2 0 0 0 0} {AHB 266727 0xFF900000 {0x0000000D 0x0000000D 0x0000000D
0x0000000D} W 0 2 2 0 0 0 0} {AHB 266760 0x000085C0 {0xC2042054 0x80A06000
0x02800003 0x01000000} R 0 2 4 1 0 0 0} {AHB 266781 0x000085D0 ...

Print 2 rows

grmon2> ahb 2
 TIME ADDRESS D[127:96] D[95:64] D[63:32] D[31:0] TYPE ...
 266986 00000800 91D02000 01000000 01000000 01000000 read ...
 267007 00000810 91D02000 01000000 01000000 01000000 read ...

TCL returns:
{AHB 266986 0x00000800 {0x91D02000 0x01000000 0x01000000 0x01000000} R
0 2 4 1 0 0 0} {AHB 267007 0x00000810 {0x91D02000 0x01000000 0x01000000
0x01000000} R 0 3 4 1 0 0 0}

SEE ALSO

Section 3.4.8, “Using the trace buffer”
tmode

http://gaisler.com/products/grlib/grip.pdf
http://gaisler.com/products/grlib/grip.pdf
http://gaisler.com/products/grlib/grip.pdf

GRMON2 User's Manual 60

2. at - syntax

NAME

at - Print ahb transfer entries in the trace buffer

SYNOPSIS

at ?length?
at subcommand ?args...?

DESCRIPTION

at ?length? ?devname?
Print the AHB trace buffer. The ?length? entries will be printed, default is 10.

at bp1 ?options? ?address mask? ?devname?
at bp2 ?options? ?address mask? ?devname?

Sets trace buffer breakpoint to address and mask. Available options are -read or -write.

at bsel ?bus? ?devname?
Selects bus to trace (not available in all implementations)

at delay ?cnt? ?devname?
Delay the stops the trace buffer recording after match.

at disable ?devname?
Stops the trace buffer recording

at enable ?devname?
Arms the trace buffer and starts recording.

at filter reads ?boolean? ?devname?
at filter writes ?boolean? ?devname?
at filter addresses ?boolean? ?address mask? ?devname?

Enable or disable filtering options if supported by the core. When enabling the addresses filter, the
second AHB breakpoint register will be used to define the range of the filter. Default value of the
boolean is true. If left out, then the address and mask will be ignored. They can also be set with the
command at filter range.

at filter range ?address mask? ?devname?
Set the base address and mask that the AHB trace buffer will include if the address filtering is
enabled.

at filter mmask mask ?devname?
at filter smask mask ?devname?

Set which AHB masters or slaves connected to the bus to exclude. (Only available in some DSU4
implementations)

at log ?devname?
Print the whole AHB trace buffer.

at status ?devname?
Print AHB trace buffer settings.

RETURN VALUE

Upon successful completion, at returns a list of trace buffer entries , on the same format as the command
ahb. Each entry is a sublist on the format format: {AHB time addr data rw trans size master
lock resp irq bp}. The data field is a sublist of 1,2 or 4 words with MSb first, depending on the size

GRMON2 User's Manual 61

of AMBA bus. Detailed description about the different fields can be found in the DSU core documentation
in document grip.pdf. [http://gaisler.com/products/grlib/grip.pdf]

The other subcommands have no return value.

EXAMPLE

Print 10 rows

grmon2> at
 TIME ADDRESS D[127:96] D[95:64] D[63:32] D[31:0] TYPE ...
 266718 FF900004 00000084 00000084 00000084 00000084 read ...
 266727 FF900000 0000000D 0000000D 0000000D 0000000D write ...
 266760 000085C0 C2042054 80A06000 02800003 01000000 read ...
 266781 000085D0 C2260000 81C7E008 91E80008 9DE3BF98 read ...
 266812 0000B440 00000000 00000000 00000000 00000000 read ...
 266833 0000B450 00000000 00000000 00000000 00000000 read ...
 266899 00002640 02800005 01000000 C216600C 82106040 read ...
 266920 00002650 C236600C 40001CBD 90100011 1080062E read ...
 266986 00000800 91D02000 01000000 01000000 01000000 read ...
 267007 00000810 91D02000 01000000 01000000 01000000 read ...

TCL returns:
{AHB 266718 0xFF900004 {0x00000084 0x00000084 0x00000084 0x00000084} R 0
2 2 0 0 0 0 0} {AHB 266727 0xFF900000 {0x0000000D 0x0000000D 0x0000000D
0x0000000D} W 0 2 2 0 0 0 0 0} {AHB 266760 0x000085C0 {0xC2042054
0x80A06000 0x02800003 0x01000000} R 0 2 4 1 0 0 0 0} {AHB 266781
0x000085D0 ...

Print 2 rows

grmon2> at 2
 TIME ADDRESS D[127:96] D[95:64] D[63:32] D[31:0] TYPE ...
 266986 00000800 91D02000 01000000 01000000 01000000 read ...
 267007 00000810 91D02000 01000000 01000000 01000000 read ...

TCL returns:
{AHB 266986 0x00000800 {0x91D02000 0x01000000 0x01000000 0x01000000} R 0
2 4 1 0 0 0 0} {at 267007 0x00000810 {0x91D02000 0x01000000 0x01000000
0x01000000} R 0 3 4 1 0 0 0 0}

SEE ALSO

Section 3.4.8, “Using the trace buffer”
tmode

http://gaisler.com/products/grlib/grip.pdf
http://gaisler.com/products/grlib/grip.pdf

GRMON2 User's Manual 62

3. attach - syntax

attach - Stop execution and attach GRMON to processor again

SYNOPSIS

attach

DESCRIPTION

attach
This command will stop the execution on all CPUs that was started by the command detach and attach
GRMON again.

RETURN VALUE

Command attach has no return value.

GRMON2 User's Manual 63

4. batch - syntax

NAME

batch - Execute a batch script

SYNOPSIS

batch ?options? filename ?args...?

DESCRIPTION

batch
Execute a TCL script. The batch is similar to the TCL command source, except that the batch command
sets up the variables argv0, argv and argc in the global namespace. While executing the scrip, argv0 will
contain the script filename, argv will contain a list of all the arguments that appear after the filename
and argc will be the length of argv.

OPTIONS

-echo
Echo all commands/procedures that the TCL interpreter calls.

-prefix ?string?
Print a prefix on each row when echoing commands. Has no effect unless -echo is also set.

RETURN VALUE

Command batch has no return value.

GRMON2 User's Manual 64

5. bdump - syntax

NAME

bdump - Dump memory to a file.

SYNOPSIS

bdump address length ?filename?

DESCRIPTION

The bdump command may be used to store memory contents a binary file. It's an alias for 'dump -binary'.

bdump address length ?filename?
Dumps length bytes, starting at address, to a file in binary format. The default name of the file
is "grmon-dump.bin"

RETURN VALUE

Command bdump has no return value.

EXAMPLE

Dump 32kB of data from address 0x40000000
grmon2> bdump 0x40000000 32768

GRMON2 User's Manual 65

6. bload - syntax

NAME

bload - Load a binary file

SYNOPSIS

bload ?options...? filename ?address? ?cpu#?

DESCRIPTION

The bload command may be used to upload a binary file to the system. It's an alias for 'load -binary'. When
a file is loaded, GRMON will reset the memory controllers registers first.

bload ?options...? filename ?address? ?cpu#?
The load command may be used to upload the file specified by filename. If the address argument
is present, then binary files will be stored at this address, if left out then they will be placed at the base
address of the detected RAM. The cpu# argument can be used to specify which CPU it belongs to.
The options is specified below.

OPTIONS

-delay ms
The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the maximum block size is 4 bytes.

-bsize bytes
The -bsize option may be used to specify the size blocks of data in bytes that will be written. Sizes
that are not even words may require a JTAG based debug link to work properly. See Chapter 4: “Debug
link” for more information.

-debug
If the -debug option is given the DWARF debug information is read in.

-wprot
If the -wprot option is given then write protection on the core will be disabled

RETURN VALUE

Command bload returns a guessed entry point.

EXAMPLE

Load and then verify a binary data file at a 16MBytes offset into the main memory starting at 0x40000000.

grmon2> bload release/ramfs.cpio.gz 0x41000000
grmon2> verify release/ramfs.cpio.gz 0x41000000

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”

GRMON2 User's Manual 66

7. bp - syntax

NAME

bp - Add, delete or list breakpoints

SYNOPSIS

bp ?address? ?cpu#?
bp type ?options? address ?mask? ?cpu#?
bp delete ?index?

DESCRIPTION

The bp command may be used to list, add or delete all kinds of breakpoints. The address parameter that
is specified when creating a breakpoint can either be an address or a symbol. The mask parameter can be
used to break on a range of addresses. If omitted, the default value is 0xfffffffc (i.e. a single address).

When adding a breakpoint a cpu# may optionally be specified to associate the breakpoint with a CPU.
The CPU index will be used to translate symbols and hardware breakpoints/watchpoints will be set to the
specified CPU.

bp ?address? ?cpu#?
When omitting the address parameter this command will list breakpoints. If the address parameter is
specified, it will create a software breakpoint.

bp soft address ?cpu#?
Create a software breakpoint.

bp hard address ?mask? ?cpu#?
Create a hardware breakpoint.

bp watch ?options? address ?mask? ?cpu#?
Create a hardware watchpoint. The options -read/-write can be used to make it watch only reads
or writes, by default it will watch both reads and writes.

bp bus ?options? address ?mask? ?cpu#?
Create an AMBA-bus watchpoint. The options -read/-write can be used to make it watch only
reads or writes, by default it will watch both reads and writes.

bp data ?options? value ?mask? ?cpu#?
Create an AMBA data watchpoint. The value and mask parameters may be up to 128 bits, but number
of bits used depends on width of the bus on the system. Valid options are -addr and -invert. If -
addr is specified, then also -read or -write are valid. See below for a description of the options.

bp delete ?index?
When omitting the index all breakpoints will be deleted. If the index is specified, then that breakpoint
will be deleted. Listing all breakpoints will show the indexes of the breakpoints.

OPTIONS

-read
This option will enable a watchpoint to only watch loads at the specified address. The -read and -
write are mutual exclusive.

-write
This option will enable a watchpoint to only watch stores at the specified address. The -read and -
write are mutual exclusive.

-addr address mask
This option will combine an AMBA data watchpoint with a a bus watchpoint so it will only trigger if
a value is read accessed from a certain address range.

GRMON2 User's Manual 67

-invert
The AMBA data watchpoint will trigger of value is NOT set.

--
End of options. This might be needed to set if value the first parameter after the options is negative.

RETURN VALUE

Command bp returns an breakpoint id when adding a new breakpoint. Otherwise it has no return value.

EXAMPLE

Create a software breakpoint at the symbol main:
grmon2> bp soft main

Create a AMBA bus watchpoint that watches loads in the address range of 0x40000000 to 0x400000FF:
grmon2> bp bus 0x40000000 -read -mask 0xFFFFFF00

SEE ALSO

Section 3.4.4, “Inserting breakpoints and watchpoints”

GRMON2 User's Manual 68

8. bt - syntax

NAME

bt - Print backtrace

SYNOPSIS

bt ?cpu#?

DESCRIPTION

bt ?cpu#?
Print backtrace on current active CPU, optionally specify which CPU to show.

RETURN VALUE

Upon successful completion bt returns a list of tuples, where each tuple consist of a PC- and SP-register
values.

EXAMPLE

Show backtrace on current active CPU
grmon2> bt

TCL returns:
{1073746404 1342177032} {1073746020 1342177136} {1073781172 1342177200}

Show backtrace on CPU 1
grmon2> bt cpu1

TCL returns:
{1073746404 1342177032} {1073746020 1342177136} {1073781172 1342177200}

SEE ALSO

Section 3.4.6, “Backtracing function calls”

GRMON2 User's Manual 69

9. cctrl - syntax

NAME

cctrl - Display or set cache control register

SYNOPSIS

cctrl ?value? ?cpu#?
cctrl flush ?cpu#?

DESCRIPTION

cctrl ?value? ?cpu#?
Display or set cache control register

cctrl flush ?cpu#?
Flushes both instruction and data cache

RETURN VALUE

Upon successful completion cctrl will return the value of the cache control register.

SEE ALSO

-nic and -ndc switches described in Section 5.2.1, “Switches”

SEE ALSO

Section 3.4.14, “CPU cache support”

GRMON2 User's Manual 70

10. cont - syntax

NAME

cont - Continue execution

SYNOPSIS

cont ?options?

DESCRIPTION

cont ?options?
Continue execution.

OPTIONS

-noret
Do not evaluate the return value. Then this options is set, no return value will be set.

RETURN VALUE

Upon successful completion run returns a list of signals, one per CPU. Possible signal values are SIGBUS,
SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM or SIGTRAP. If a CPU is disabled, then a empty string
will be returned instead of a signal value.

EXAMPLE

Continue execution from current PC
grmon2> cont

SEE ALSO

Section 3.4.3, “Running applications”

GRMON2 User's Manual 71

11. cpu - syntax

cpu - Enable, disable CPU or select current active CPU

SYNOPSIS

cpu
cpu enable cpuid
cpu enable cpuid
cpu active cpuid

DESCRIPTION

Control processors in LEON3 multi-processor (MP) systems.

cpu
Without parameters, the cpu command prints the processor status.

cpu enable cpuid
cpu disable cpuid

Enable/disable the specified CPU.

cpu active cpuid
Set current active CPU

RETURN VALUE

Upon successful completion cpu returns the active CPU and a list of booleans, one per CPU, describing if
they are enabled or disabled.

The sub commands has no return value.

EXAMPLE

Set current active to CPU 1
grmon2> cpu active 1

Print processor status in a two-processor system when CPU 1 is active and disabled.
grmon2> cpu

TCL returns:
1 {1 0}

SEE ALSO

Section 3.4.11, “Multi-processor support”

GRMON2 User's Manual 72

12. dcache - syntax

NAME

dcache - Show, enable or disable data cache

SYNOPSIS

dcache ?boolean? ?cpu#?
dcache flush ?cpu#?
dcache way windex ?lindex? ?cpu#?

DESCRIPTION

In all forms of the dcache command, the optional parameter ?cpu#? specifies which CPU to operate on.
The active CPU will be used if parameter is omitted.

dcache ?boolean? ?cpu#?
If ?boolean? is not given then show the content of all ways. If ?boolean? is present, then enable
or disable the data cache.

dcache flush ?cpu#?
Flushes the data cache

dcache way windex ?lindex? ?cpu#?
Show the contents of specified way windex or optionally a specific line ?lindex?.

RETURN VALUE

Command dcache diag returns a list of all inconsistent entries. Each element of the list contains CPU id,
way id, line id, word id, physical address, cached data and the data from the memory.

The other dcache commands have no return value.

SEE ALSO

Section 3.4.14, “CPU cache support”
???
icache

GRMON2 User's Manual 73

13. dccfg - syntax

NAME

dccfg - Display or set data cache configuration register

SYNOPSIS

dccfg ?value? ?cpu#?

DESCRIPTION

dccfg ?value? ?cpu#?
Display or set data cache configuration register for the active CPU. GRMON will not keep track of this
register value and will not reinitialize the register when starting or resuming software execution.

RETURN VALUE

Upon successful completion dccfg will return the value of the data cache configuration register.

SEE ALSO

-nic and -ndc switches described in Section 5.2.1, “Switches”

SEE ALSO

Section 3.4.14, “CPU cache support”

GRMON2 User's Manual 74

14. dcom - syntax

NAME

dcom - Print or clear debug link statistics

SYNOPSIS

dcom
dcom clear

DESCRIPTION

dcom
dcom clear

Print debug link statistics.
Clear debug link statistics.

RETURN VALUE

Upon successful completion dcom has no return value.

GRMON2 User's Manual 75

15. ddr2cfg1 - syntax

ddr2cfg1 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg1 ?value?

DESCRIPTION

ddr2cfg1 ?value?
Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg1 returns a the value of the register.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 76

16. ddr2cfg2 - syntax

ddr2cfg2 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg2 ?value?

DESCRIPTION

ddr2cfg2 ?value?
Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg2 returns a the value of the register.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 77

17. ddr2cfg3 - syntax

ddr2cfg3 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg3 ?value?

DESCRIPTION

ddr2cfg3 ?value?
Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg3 returns a the value of the register.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 78

18. ddr2cfg4 - syntax

ddr2cfg4 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg4 ?value?

DESCRIPTION

ddr2cfg4 ?value?
Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg4 returns a the value of the register.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 79

19. ddr2cfg5 - syntax

ddr2cfg5 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg5 ?value?

DESCRIPTION

ddr2cfg5 ?value?
Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg5 returns a the value of the register.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 80

20. ddr2delay - syntax

ddr2delay - Change read data input delay

SYNOPSIS

ddr2delay ?subcommand? ?args...?

DESCRIPTION

ddr2delay inc ?steps?
ddr2delay dec ?steps?
ddr2delay ?value?

Use inc to increment the delay with one tap-delay for all data bytes. Use dec to decrement all delays.
A value can be specified to calibrate each data byte separately. The value is written to the 16 LSB
of the DDR2 control register 3.

ddr2delay reset
Set the delay to the default value.

ddr2delay scan
The scan subcommand will run a calibration routine that searches over all tap delays and read delay
values to find working settings. Supports only Xilinx Virtex currently

The scan may overwrite beginning of memory.

RETURN VALUE

Command ddr2delay has no return value.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 81

21. ddr2skew - syntax

ddr2skew - Change read skew.

SYNOPSIS

ddr2skew ?subcommand? ?args...?

DESCRIPTION

ddr2skew inc ?steps?
ddr2skew dec ?steps?

Increment/decrement the delay with one step. Commands inc and dec can optionally be given the num-
ber of steps to increment/decrement as an argument.

ddr2skew reset
Set the skew to the default value.

RETURN VALUE

Command ddr2skew has no return value.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 82

GRMON2 User's Manual 83

22. detach - syntax

detach - Resume execution with GRMON detached from processor

SYNOPSIS

detach

DESCRIPTION

detach
This command will detach GRMON and resume execution on all CPUs.

RETURN VALUE

Command detach has no return value.

GRMON2 User's Manual 84

23. disassemble - syntax

disassemble - Disassemble memory

SYNOPSIS

disassemble ?address? ?length? ?cpu#?
disassemble -r start stop ?cpu#?

DESCRIPTION

disassemble ?address? ?length? ?cpu#?
Disassemble memory. If length is left out it defaults to 16 and the address defaults to current PC value.
Symbols may be used as address.

disassemble -r start stop ?cpu#?
Disassemble a range of instructions between address start and stop, including start and excluding stop.

RETURN VALUE

Command disassemble has no return value.

SEE ALSO

Section 3.4.7, “Displaying memory contents”

GRMON2 User's Manual 85

24. dump - syntax

NAME

dump - Dump memory to a file.

SYNOPSIS

dump ?options...? address length ?filename?

DESCRIPTION

dump ?options...? address length ?filename?
Dumps length bytes, starting at address, to a file in Motorola SREC format. The default name of
the file is "grmon-dump.srec"

OPTIONS

-binary
The -binary option can be used to store data to a binary file

-append
Set the -append option to append the dumped data to the end of the file. The default is to truncate the
file to zero length before storing the data into the file.

RETURN VALUE

Command dump has no return value.

EXAMPLE

Dump 32kB of data from address 0x40000000
grmon2> dump 0x40000000 32768

GRMON2 User's Manual 86

25. dwarf - syntax

NAME

dwarf - print or lookup DWARF debug information

SYNOPSIS

dwarf subcommand ?arg?

DESCRIPTION

The dwarf command can be used to retrieve line information of a file.

dwarf addr2line addr ?cpu#?
This command will lookup the filename and line number for a given address.

dwarf clear ?cpu#?
Remove all dwarf debug information to the active CPU or a specific CPU.

RETURN VALUE

Upon successful completion dwarf addr2line will return a list where the first element is the filename and
the second element is the line number.

EXAMPLE

Retrieve the line information for address 0xf0014000.
grmon2> dwarf addr2line 0xf0014000

SEE ALSO

load

GRMON2 User's Manual 87

26. edcl - syntax

NAME

edcl - Print or set the EDCL ip

SYNOPSIS

edcl ?ip? ?greth#?

DESCRIPTION

edcl ?ip? ?greth#?
If an ip-address is supplied then it will be set, otherwise the command will print the current EDCL ip.
The EDCL will be disabled if the ip-address is set to zero and enabled if set to a normal address. If more
than one device exists in the system, the dev# can be used to select device, default is dev0.

RETURN VALUE

Command edcl has no return value.

EXAMPLE

Set ip-address 192.168.0.123
grmon2> edcl 192.168.0.123

SEE ALSO

Section 5.3, “Ethernet controller”

GRMON2 User's Manual 88

27. eeload - syntax

NAME

eeload - Load a file into an EEPROM

SYNOPSIS

eeload ?options...? filename ?cpu#?

DESCRIPTION

The eeload command may be used to upload a file to a EEPROM. It's an alias for 'load -delay 1 -bsize 4 -
wprot'. When a file is loaded, GRMON will reset the memory controllers registers first.

eeload ?options...? filename ?address? ?cpu#?
The load command may be used to upload the file specified by filename. It will also try to disable
write protection on the memory core. If the address argument is present, then binary files will be
stored at this address, if left out then they will be placed at the base address of the detected RAM. The
cpu# argument can be used to specify which CPU it belongs to. The options is specified below.

OPTIONS

-binary
The -binary option can be used to force GRMON to interpret the file as a binary file.

-bsize bytes
The -bsize option may be used to specify the size blocks of data in bytes that will be written. Valid
value are 1, 2 or 4. Sizes 1 and 2 may require a JTAG based debug link to work properly See Chapter 4:
“Debug link” more information.

-debug
If the -debug option is given the DWARF debug information is read in.

RETURN VALUE

Command eeload returns the entry point.

EXAMPLE

Load and then verify a hello_world application

grmon2> eeload ../hello_world/hello_world
grmon2> verify ../hello_world/hello_world

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”

GRMON2 User's Manual 89

GRMON2 User's Manual 90

GRMON2 User's Manual 91

28. ep - syntax

NAME

ep - Set entry point

SYNOPSIS

ep ?cpu#?
ep ?--? value ?cpu#?
ep disable ?cpu#?

DESCRIPTION

ep ?cpu#?
Show current active CPUs entry point, or the CPU specified by cpu#.

ep ?--? value ?cpu#?
Set the current active CPUs entry point, or the CPU specified by cpu#. The only option available is '--'
and it marks the end of options. It should be used if a symbol name is in conflict with a subcommand
(i.e. a symbol called "disable").

ep disable ?cpu#?
Remove the entry point from the current active CPU or the the CPU specified by cpu#.

RETURN VALUE

Upon successful completion ep returns a list of entry points, one for each CPU. If cpu# is specified, then
only the entry point for that CPU will be returned.

EXAMPLE

Set current active CPUs entry point to 0x40000000
grmon2> ep 0x40000000

SEE ALSO

Section 3.4.11, “Multi-processor support”

GRMON2 User's Manual 92

29. exit - syntax

NAME

exit - Exit the GRMON2 application

SYNOPSIS

exit ?code?

DESCRIPTION

exit ?code?
Exit the GRMON2 application. GRMON will return 0 or the code specified.

RETURN VALUE

Command exit has no return value.

EXAMPLE

Exit the GRMON2 application with return code 1.
grmon2> exit 1

GRMON2 User's Manual 93

30. flash - syntax

NAME

flash - Write, erase or show information about the flash

SYNOPSIS

flash
flash blank all
flash blank start ?stop?
flash burst ?boolean?
flash erase all
flash erase start ?stop?
flash load ?options...? filename
flash lock all
flash lock start ?stop?
flash lockdown all
flash lockdown start ?stop?
flash query
flash status
flash unlock all
flash unlock start ?stop?
flash wbuf length
flash write address data

DESCRIPTION

GRMON supports programming of CFI compatible flash PROM attached to the external memory bus of
LEON3 systems. Flash programming is only supported if the target system contains one of the following
memory controllers MCTRL, FTMCTRL, FTSRCTRL or SSRCTRL. The PROM bus width can be 8-, 16-
or 32-bit. It is imperative that the prom width in the MCFG1 register correctly reflects the width of the
external prom. To program 8-bit and 16-bit PROMs, the target system must also have at least one working
SRAM or SDRAM bank.

The sub commands erase, lock, lockdown and unlock works on memory blocks (the subcommand blank
have the same parameters, but operates on addresses). These commands operate on the block that the start
address belong. If the stop parameter is also given the commands will operate on all the blocks between
and including the blocks that the start and stop belongs to. I.a the keyword 'all' can be given instead of
the start address, then the command will operate on the whole memory.

flash
Print the on-board flash memory configuration

flash blank all
flash blank start ?stop?

Check that the flash memory is blank, i.e. can be re-programmed. See description above about the
parameters.

flash burst ?boolean?
Enable or disable flash burst write. Disabling the burst will decrease performance and requires either that
a cpu is available in the system or that a JTAG debuglink is used. This feature is only has effect when a
8-bit or 16-bit Intel style flash memory that is connected to a memory controller that supports bursting.

flash erase all
flash erase start ?stop?

Erase a flash block. See description above about the parameters.

flash load ?options...? filename
Program the flash memory with the contents file. The -binary option can be used to force GRMON
to interpret the file as a binary file.

GRMON2 User's Manual 94

flash lock all
flash lock start ?stop?

Lock a flash block. See description above about the parameters.

flash lockdown all
flash lockdown start ?stop?

Lockdown a flash block. Work only on Intel-style devices which supports lock-down. See description
above about the parameters.

flash query
Print the flash query registers

flash status
Print the flash lock status register

flash unlock all
flash unlock start ?stop?

Unlock a flash block. See description above about the parameters.

flash wbuf length
Limit the CFI auto-detected write buffer length. Zero disables the write buffer command and will per-
form single-word access only. -1 will reset to auto-detected value.

flash write address data
Write a 32-bit data word to the flash at address addr.

RETURN VALUE

Command flash has no return value.

EXAMPLE

A typical command sequence to erase and re-program a flash memory could be:

grmon2> flash unlock all
grmon2> flash erase all
grmon2> flash load file.prom
grmon2> flash lock all

SEE ALSO

Section 3.10.1, “CFI compatible Flash PROM”

GRMON2 User's Manual 95

31. float - syntax

NAME

float - Display FPU registers

SYNOPSIS

float

DESCRIPTION

float
Display FPU registers

RETURN VALUE

Upon successful completion float returns 2 lists. The first list contains the values when the registers repre-
sents floats, and the second list contain the double-values.

SEE ALSO

Section 3.4.5, “Displaying processor registers”

GRMON2 User's Manual 96

32. forward - syntax

NAME

forward - Control I/O forwarding

SYNOPSIS

forward
forward list
forward enable devname
forward disable devname

DESCRIPTION

forward
forward list

List all enabled devices is the current shell.

forward enable devname
Enable I/O forwarding for a device.

forward disable devname
Disable I/O forwarding for a device.

RETURN VALUE

Upon successful completion forward has no return value.

EXAMPLE

Enable I/O forwarding
grmon2> forward enable uart0

GRMON2 User's Manual 97

33. gdb - syntax

NAME

gdb - Control the built in GDB remote server

SYNOPSIS

gdb ?port?
gdb stop
gdb status

DESCRIPTION

gdb ?port?
Start the built in GDB remote server, optionally listen to the specified port. Default port is 2222.

gdb stop
Stop the built in GDB remote server.

gdb status
Print status

RETURN VALUE

Only the command 'gdb status' has a return value. Upon successful completion gdb status returns a tuple,
where the first value represents the status (0 stopped, 1 connected, 2 waiting for connection) and the second
value is the port number.

SEE ALSO

Section 3.7, “GDB interface”
Section 3.2, “Starting GRMON”

GRMON2 User's Manual 98

34. go - syntax

go - Start execution without any initialization

SYNOPSIS

go ?options? ?address? ?count?

DESCRIPTION

go ?options? ?address? ?count?
This command will start the executing instruction on the active CPU, without resetting any drivers.
When omitting the address parameter this command will start execution at the entry point from the
last loaded application. If the count parameter is set then the CPU will run the specified number of
instructions. Note that the count parameter is only supported by the DSU4.

OPTIONS

-noret
Do not evaluate the return value. Then this options is set, no return value will be set.

RETURN VALUE

Upon successful completion run returns a list of signals, one per CPU. Possible signal values are SIGBUS,
SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM or SIGTRAP. If a CPU is disabled, then a empty string
will be returned instead of a signal value.

EXAMPLE

Execute instructions starting at 0x40000000.
grmon2> go 0x40000000

SEE ALSO

Section 3.4.3, “Running applications”

GRMON2 User's Manual 99

GRMON2 User's Manual 100

GRMON2 User's Manual 101

35. grpwm - syntax

NAME

grpwm - Control GRPWM core

SYNOPSIS

grpwm subcommand ?args...?

DESCRIPTION

grpwm info ?devname?
Displays information about the GRPWM core

grpwm wave ?devname?
Displays the waveform table

RETURN VALUE

Command grpwm wave returns a list of wave data.

The other grpwm commands have no return value.

GRMON2 User's Manual 102

GRMON2 User's Manual 103

36. help - syntax

NAME

help - Print all GRMON commands or detailed help for a specific command

SYNOPSIS

help ?command?

DESCRIPTION

help ?command?
When omitting the command parameter this command will list commands. If the command parameter
is specified, it will print a long detailed description of the command.

RETURN VALUE

Command help has no return value.

EXAMPLE

List all commands:
grmon2> help

Show detailed help of command 'mem':
grmon2> help mem

GRMON2 User's Manual 104

37. hist - syntax

NAME

hist - Print AHB transfers or instruction entries in the trace buffer

SYNOPSIS

hist ?length? ?cpu#?

DESCRIPTION

hist ?length?
Print the hist trace buffer. The ?length? entries will be printed, default is 10. Use cpu# to select cpu.

RETURN VALUE

Upon successful completion, inst returns a list of mixed AHB and instruction trace buffer entries, sorted
after time. The first value in each entry is either the literal string AHB or INST indicating the type of entry.
For more information about the entry values, see return values described for commands ahb and inst.

EXAMPLE

Print 10 rows

grmon2> hist
 TIME ADDRESS INSTRUCTIONS/AHB SIGNALS RESULT/DATA
 266951 000021D4 restore %o0, %o0 [0000000D]
 266954 000019E4 mov 0, %g1 [00000000]
 266955 000019E8 mov %g1, %i0 [00000000]
 266956 000019EC ret [000019EC]
 266957 000019F0 restore [00000000]
 266960 0000106C call 0x00009904 [0000106C]
 266961 00001070 nop [00000000]
 266962 00009904 mov 1, %g1 [00000001]
 266963 00009908 ta 0x0 [TRAP]
 266986 00000800 AHB read mst=0 size=4 [91D02000 01000000 01000000 0100]

TCL returns:
{INST 266951 0x000021D4 0x91E80008 0x0000000D 0 0 0} {INST 266954
0x000019E4 0x82102000 0x00000000 0 0 0} {INST 266955 0x000019E8 0xB0100001
0x00000000 0 0 0} {INST 266956 0x000019EC ...

Print 2 rows

grmon2> hist 2
 TIME ADDRESS INSTRUCTIONS/AHB SIGNALS RESULT/DATA
 266963 00009908 ta 0x0 [TRAP]
 266986 00000800 AHB read mst=0 size=4 [91D02000 01000000 01000000 0100]

TCL returns:
{INST 266963 0x00009908 0x91D02000 0x00000000 0 1 0} {AHB 266986
0x00000800 {0x91D02000 0x01000000 0x01000000 0x01000000} R 0 2 4 1 0 0 0}

SEE ALSO

Section 3.4.8, “Using the trace buffer”

GRMON2 User's Manual 105

38. i2c - syntax

NAME

i2c - Commands for the I2C masters

SYNOPSIS

i2c subcommand ?args...?
i2c index subcommand ?args...?

DESCRIPTION

This command provides functions to control the SPICTRL core. If more than one core exists in the system,
then the index of the core to control should be specified after the i2c command (before the subcommand).
The 'info sys' command lists the device indexes.

i2c bitrate rate
Initializes the prescaler register. Valid keywords for the parameter rate are normal, fast or his-
peed.

i2c disable
i2c enable

Enable/Disable the core

i2c read i2caddr ?addr? ?cnt?
Performs cnt sequential reads starting at memory location addr from slave with i2caddr. Default
value of cnt is 1. If only i2caddr is specified, then a simple read will be performed.

i2c scan
Scans the bus for devices.

i2c status
Displays some status information about the core and the bus.

i2c write i2caddr ?addr? data
Writes data to memory location addr on slave with address i2caddr. If only i2caddr and data
is specified, then a simple write will be performed.

Commands to interact with DVI transmitters:

i2c dvi devices
List supported devices.

i2c dvi delay direction
Change delay applied to clock before latching data. Valid keywords for direction are inc or dec.

i2c dvi init_l4itx_dvi ?idf?
i2c dvi init_l4itx_vga ?idf?

Initializes Chrontel CH7301C DVI transmitter with values that are appropriate for the GR-LEON4-
ITX board with DVI/VGA output. The optional idf value selects the multiplexed data input format,
default is IDF 2.

i2c dvi init_ml50x_dvi ?idf?
i2c dvi init_ml50x_vga ?idf?

Initializes Chrontel CH7301C DVI transmitter with values that are appropriate for a ML50x board with
a" standard LEON/GRLIB template design for DVI/VGA output. The optional idf value selects the
multiplexed data input format, default is IDF 2.

i2c dvi setdev devnr
Set DVI transmitter type. See command i2c dvi devices to list valid values of the parameter devnr.

GRMON2 User's Manual 106

i2c dvi showreg
Show DVI transmitter registers

RETURN VALUE

Upon successful completion i2c read returns a list of values read. The i2c dvi showreg return a list of tuples,
where the first element is the register address and the second element is the value.

The other sub commands has no return value.

GRMON2 User's Manual 107

39. icache - syntax

NAME

icache - Show, enable or disable instruction cache

SYNOPSIS

icache ?boolean? ?cpu#?
icache flush ?cpu#?
icache way windex ?lindex?

DESCRIPTION

icache ?boolean? ?cpu#?
If not arguments are given then show the contents of all ways. If the boolean is present, then enable
or disable the instruction cache.

icache flush ?cpu#?
Flushes the instruction cache

icache way windex ?lindex? ?cpu#?
Show the contents of specified way or optionally a specific line.

RETURN VALUE

Command icache diag returns a list of all inconsistent entries. Each element of the list contains CPU id,
way id, line id, word id, physical address, cached data and the data from the memory.

The other icache commands has no return value.

SEE ALSO

Section 3.4.14, “CPU cache support”

GRMON2 User's Manual 108

40. iccfg - syntax

NAME

iccfg - Display or set instruction cache configuration register

SYNOPSIS

iccfg ?value? ?cpu#?

DESCRIPTION

iccfg ?value? ?cpu#?
Display or set instruction cache configuration register for the active CPU. GRMON will not keep track
of this register value and will not reinitialize the register when starting or resuming software execution.

RETURN VALUE

Upon successful completion iccfg will return the value of the instruction cache configuration register.

SEE ALSO

-nic and -ndc switches described in Section 5.2.1, “Switches”

SEE ALSO

Section 3.4.14, “CPU cache support”

GRMON2 User's Manual 109

41. info - syntax

NAME

info - GRMON2 extends the TCL command info with some subcommands to show information about the
system.

SYNOPSIS

info subcommand ?args...?

DESCRIPTION

info drivers
List all available device-drivers

info mkprom2
List the most basic mkprom2 commandline switches. GRMON will print flags to use the first GPTI-
MER and IRQMP controller and it will use the same UART for output as GRMON (see Section 3.9,
“Forwarding application console I/O”). I.a. it will produce switches for all memory controllers found.
In case that there exist more the one controller it's up to the user make sure that only switches belonging
to one controller are used.

info reg ?options? ?dev?
Show system registers. If a device name is passed to the command, then only the registers belonging
to that device is printed. The device name can be suffixed with colon and a register name to only print
the specified register.

If option -v is specified, then GRMON will print the field names and values of each registers. If a
debug driver doesn't support this feature, then the register value is printed instead.

Setting -l will print the name of the registers, that can be used to access the registers via TCL variables.
It also returns a list of all the register names.

Enabling -all will print all registers. Normally only a subset is printed. This option may print a lot of
registers. I could also cause read accesses to FIFOs.

info sys ?options? ?dev ...?
Show system configuration. If one or more device names are passed to the command, then only the
information about those devices are printed.

RETURN VALUE

info drivers has no return value.

info mkprom2 returns a list of switches.

The command info reg returns a list of all registers if the -l is specified. If both options -l and -v have
been entered it returns a list where each element is a list of the register name and the name of the registers
fields. Otherwise it has no return value.

Upon successful completion info sys returns a list of all device names.

For other info subcommands, see TCL documentation.

EXAMPLE

Show all devices in the system

grmon2> info sys
 ahbjtag0 Aeroflex Gaisler JTAG Debug Link
 AHB Master 0

GRMON2 User's Manual 110

 adev1 Aeroflex Gaisler EDCL master interface
 AHB Master 2
 ...

Show only the DSU

grmon2> info sys dsu0
 dsu0 Aeroflex Gaisler LEON4 Debug Support Unit
 AHB: E0000000 - E4000000
 AHB trace: 256 lines, 128-bit bus
 CPU0: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x07fffff0
 icache 4 * 4 kB, 32 B/line lru
 dcache 4 * 4 kB, 32 B/line lru
 CPU1: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x07fffff0
 icache 4 * 4 kB, 32 B/line lru
 dcache 4 * 4 kB, 32 B/line lru

Show detailed information on status register of uart0.

grmon2> info reg -v uart0::status
 Generic UART
 0xff900004 UART Status register 0x00000086
 31:26 rcnt 0x0 Rx FIFO count
 25:20 tcnt 0x0 Tx FIFO count
 10 rf 0x0 Rx FIFO full
 ...

SEE ALSO

Section 3.4.1, “Examining the hardware configuration”

GRMON2 User's Manual 111

42. inst - syntax

NAME

inst - Print AHB transfer or instruction entries in the trace buffer

SYNOPSIS

inst ?length?
inst subcommand ?args...?

DESCRIPTION

inst ?length? ?cpu#?
Print the inst trace buffer. The ?length? entries will be printed, default is 10. Use cpu# to select single
cpu.

inst filter ?flt? ?cpu#?
Print/set the instruction trace buffer filter. See DSU manual for values of flt. (Only available in some
DSU4 implementations). Use cpu# to set filter select a single cpu.

RETURN VALUE

Upon successful completion, inst returns a list of trace buffer entries. Each entry is a sublist on the format for-
mat: {INST time addr inst result trap em mc}. Detailed description about the different fields can
be found in the DSU core documentation in document grip.pdf [http://gaisler.com/products/grlib/grip.pdf]

The other subcommands have no return value.

EXAMPLE

Print 10 rows

grmon2> inst
 TIME ADDRESS INSTRUCTION RESULT
 266951 000021D4 restore %o0, %o0 [0000000D]
 266954 000019E4 mov 0, %g1 [00000000]
 266955 000019E8 mov %g1, %i0 [00000000]
 266956 000019EC ret [000019EC]
 266957 000019F0 restore [00000000]
 266960 0000106C call 0x00009904 [0000106C]
 266961 00001070 nop [00000000]
 266962 00009904 mov 1, %g1 [00000001]
 266963 00009908 ta 0x0 [TRAP]
 267009 00000800 ta 0x0 [TRAP]

TCL returns:
{INST 266951 0x000021D4 0x91E80008 0x0000000D 0 0 0} {INST 266954
0x000019E4 0x82102000 0x00000000 0 0 0} {INST 266955 0x000019E8 0xB0100001
0x00000000 0 0 0} {INST 266956 0x000019EC ...

Print 2 rows

grmon2> inst 2
 TIME ADDRESS INSTRUCTION RESULT
 266951 000021D4 restore %o0, %o0 [0000000D]
 266954 000019E4 mov 0, %g1 [00000000]

TCL returns:
{INST 266951 0x000021D4 0x91E80008 0x0000000D 0 0 0} {INST 266954
0x000019E4 0x82102000 0x00000000 0 0 0}

SEE ALSO

Section 3.4.8, “Using the trace buffer”

http://gaisler.com/products/grlib/grip.pdf
http://gaisler.com/products/grlib/grip.pdf

GRMON2 User's Manual 112

43. iommu - syntax

NAME

iommu - Control IO memory management unit

SYNOPSIS

iommu subcommand ?args?
iommu index subcommand ?args?

DESCRIPTION

This command provides functions to control the GRIOMMU core. If more than one core exists in the system,
then the index of the core to control should be specified after the iommu command (before the subcommand).
The 'info sys' command lists the controller indexes.

iommu apv allow base start stop
Modify existing APV at base allowing access to the address range start - stop

iommu apv build base prot
Create APV starting at base with default bit value prot

iommu apv decode base
Decode APV starting at base

iommu apv deny base start stop
Modify existing APV at base denying access to the address range start - stop

iommu cache addr addr grp
Displays cached information for I/O address addr in group grp

iommu cache errinj addr dt ?byte?
Inject data/tag parity error at set address addr, data byte byte. The parameter dt should be either
'tag' or 'data'

iommu cache flush
Invalidate all entries in cache

iommu cache show line ?count?
Shows information about count line starting at line

iommu cache write addr data0 ... dataN tag
Write full cache line including tag at set address addr, i.e. the number of data words depends on the
size of the cache line. See example below.

iommu disable
iommu enable

Disables/enable the core

iommu group ?grp? ?base passthrough active?
Show/set information about group(s). When no parameters are given, information about all groups will
be shown. If the index grp is given then only that group will be shown. When all parameters are set,
the fields will be assigned to the group.

iommu info
Displays information about IOMMU configuration

iommu mstbmap ?mst? ?grp?
Show/set information about master->group assignments. When no parameters are given, information
about all masters will be shown. If the index mst is given then only that master will be shown. When
all parameters are set, master mst will be assigned to group grp

GRMON2 User's Manual 113

iommu mstbmap ?mst? ?ahb?
Show/set information about master->AHB interface assignments. When no parameters are given, infor-
mation about all masters will be shown. If the index mst is given then only that master will be shown.
When all parameters are set, master mst will be assigned to AHB interface ahb

iommu pagetable build base writeable valid
Create page table starting at base with all writable fields set to writeable and all valid fields set
to valid. 1:1 map starting at physical address 0.

iommu pagetable lookup base ioaddr
Lookup specified IO address in page table starting at base.

iommu pagetable modify base ioaddr phyaddr writeable valid
Modify existing PT at base, translate ioaddr to phyaddr, writeable, valid

iommu status
Displays core status information

RETURN VALUE

Upon successful completion iommu apv docode returns a list of triples, where each triple contains start,
stop and protection bit.

Command iommu cache addr returns a tuple, containing valid and protection bits.

Command iommu cache show returns a list of entries. Each entry contains line address, tag and the cached
data words.

The other subcommands have no return value.

EXAMPLE

Show info on a system with one core
grmon2> iommu info

Show info of the second core in a system with multiple cores
grmon2> iommu 1 info

Writes set address 0x23 with the 128-bit cache line 0x000000008F000000FFFFFFFF00000000 and tag 0x1
(valid line)
grmon2> iommu cache write 0x23 0x0 0x8F000000 0xFFFFFFFF 0x0 0x1

GRMON2 User's Manual 114

44. irq - syntax

NAME

irq - Force interrupts or read IRQ(A)MP status information

SYNOPSIS

irq subcommand args...

DESCRIPTION

This command provides functions to force interrupts and reading IRQMP status information. The command
also support the ASMP extension provided in the IRQ(A)MP core.

irq boot ?mask?
Boot CPUs specified by mask (for IRQ(A)MP)

irq ctrl ?index?
Show/select controller register interface to use (for IRQ(A)MP)

irq force irq
Force interrupt irq

irq reg
Display some of the core registers

irq routing
Decode controller routing (for IRQ(A)MP)

irq tstamp
Show time stamp registers (for IRQ(A)MP)

irq wdog
Decode Watchdog control register (for IRQ(A)MP)

RETURN VALUE

Command irq has no return value.

GRMON2 User's Manual 115

GRMON2 User's Manual 116

GRMON2 User's Manual 117

GRMON2 User's Manual 118

45. la - syntax

NAME

la - Control the LOGAN core

SYNOPSIS

la
la subcommand ?args...?

DESCRIPTION

The LOGAN debug driver contains commands to control the LOGAN on-chip logic analyzer core. It allows
to set various triggering conditions, and to generate VCD waveform files from trace buffer data. All logic
analyzer commands are prefixed with la.

la
la status

Reports status of LOGAN.

la arm
Arms the LOGAN. Begins the operation of the analyzer and sampling starts.

la count ?value?
Set/displays the trigger counter. The value should be between zero and depth-1 and specifies how
many samples that should be taken after the triggering event.

la div ?value?
Sets/displays the sample frequency divider register. If you specify e.g. “la div 5” the logic analyzer will
only sample a value every 5th clock cycle.

la dump ?filename?
This dumps the trace buffer in VCD format to the file specified (default is log.vcd).

la mask trigl bit ?value?
Sets/displays the specified bit in the mask of the specified trig level to 0/1.

la page ?value?
Sets/prints the page register of the LOGAN. Normally the user doesn’t have to be concerned with this
because dump and view sets the page automatically. Only useful if accessing the trace buffer manually
via the GRMON mem command.

la pat trigl bit ?value?
Sets/displays the specified bit in the pattern of the specified trig level to 0/1.

la pm ?trigl? ?pattern mask?
Sets/displays the complete pattern and mask of the specified trig level. If not fully specified the input
is zero-padded from the left. Decimal notation only possible for widths less than or equal to 64 bits.

la qual ?bit value?
Sets/displays which bit in the sampled pattern that will be used as qualifier and what value it shall have
for a sample to be stored.

la reset
Stop the operation of the LOGAN. Logic Analyzer returns to idle state.

la trigctrl ?trigl? ?count cond?
Sets/displays the match counter and the trigger condition (1 = trig on equal, 0 = trig on not equal) for
the specified trig level.

GRMON2 User's Manual 119

la view start stop ?filename?
Prints the specified range of the trace buffer in list format. If no filename is specified the commands
prints to the screen.

SEE ALSO

Section 5.8, “On-chip logic analyzer driver”

GRMON2 User's Manual 120

46. leon - syntax

NAME

leon - Print leon specific registers

SYNOPSIS

leon

DESCRIPTION

leon
Print leon specific registers

GRMON2 User's Manual 121

47. load - syntax

NAME

load - Load a file or print filenames of uploaded files.

SYNOPSIS

load ?options...? filename ?address? ?cpu#?
load subcommand ?arg?

DESCRIPTION

The load command may be used to upload a file to the system. It can also be used to list all files that have
been loaded. When a file is loaded, GRMON will reset the memory controllers registers first.

To avoid overwriting the image file loaded, one must must make sure that DMA is not active to the address
range(s) of the image. Drivers can be reset using the reset command prior to loading.

load ?options...? filename ?address? ?cpu#?
The load command may be used to upload the file specified by filename. If the address argument
is present, then binary files will be stored at this address, if left out then they will be placed at the base
address of the detected RAM. The cpu# argument can be used to specify which CPU it belongs to.
The options is specified below.

load show ?cpu#?
This command will list which files that have been loaded to the CPU:s. If the cpu# argument is spec-
ified, then only that CPU will be listed.

OPTIONS

-binary
The -binary option can be used to force GRMON to interpret the file as a binary file.

-delay ms
The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the maximum block size is 4 bytes.

-bsize bytes
The -bsize option may be used to specify the size blocks of data in bytes that will be written. Sizes
that are not even words may require a JTAG based debug link to work properly. See Chapter 4: “Debug
link” more information.

-debug
If the -debug option is given the DWARF debug information is read in.

-nmcr
If the -nmcr (No Memory Controller Reinitialize) option is given then the memory controller(s) are
not reinitialized. Without the option set all memory controllers that data is loaded to are reinitialized.

-wprot
If the -wprot option is given then write protection on the core will be disabled

RETURN VALUE

Command load returns the entry point.

EXAMPLE

Load and then verify a hello_world application

grmon2> load ../hello_world/hello_world

GRMON2 User's Manual 122

grmon2> verify ../hello_world/hello_world

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”

GRMON2 User's Manual 123

48. mcfg1 - syntax

mcfg1 - Show or set reset value of the memory controller register 1

SYNOPSIS

mcfg1 ?value?

DESCRIPTION

mcfg1 ?value?
Set the reset value of the memory register. If value is left out, then the reset value will be printed.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 124

49. mcfg2 - syntax

mcfg2 - Show or set reset value of the memory controller register 2

SYNOPSIS

mcfg2 ?value?

DESCRIPTION

mcfg2 ?value?
Set the reset value of the memory register. If value is left out, then the reset value will be printed.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 125

50. mcfg3 - syntax

mcfg3 - Show or set reset value of the memory controller register 3

SYNOPSIS

mcfg3 ?value?

DESCRIPTION

mcfg3 ?value?
Set the reset value of the memory register. If value is left out, then the reset value will be printed.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 126

51. mdio - syntax

NAME

mdio - Show PHY registers

SYNOPSIS

mdio paddr raddr ?greth#?

DESCRIPTION

mdio paddr raddr ?greth#?
Show value of PHY address paddr and register raddr. If more than one device exists in the system,
the greth# can be used to select device, default is dev0. The command tries to disable the EDCL
duplex detection if enabled.

SEE ALSO

Section 5.3, “Ethernet controller”

GRMON2 User's Manual 127

52. mem - syntax

NAME

mem - AMBA bus 32-bit memory read access, list a range of addresses

SYNOPSIS

mem ?-options? address ?length?

DESCRIPTION

mem ?-options? address ?length?
Do an AMBA bus 32-bit read access at address and print the the data. The optional length parameter
should specified in bytes and the default size is 64 bytes (16 words).

OPTIONS

-ascii
If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.

-bsize bytes
The -bsize option may be used to specify the size blocks of data in bytes that will be read between
each print to the screen. Setting a high value may increase performance but cause a less smooth printout
when using a slow debug link.

-cstr
If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-hex
Give the -hex flag to make the Tcl return values hex strings. The numbers are always 2, 4 or 8 characters
wide strings regardless of the actual integer value. The numbers are printed with the 0x prefix.

-x
Give the -base16 flag to make the Tcl return values hex strings. The numbers are always 2, 4 or 8
characters wide strings regardless of the actual integer value. The numbers are printed without 0x prefix.

RETURN VALUE

Upon successful completion mem returns a list of the requested 32-bit words. Some options changes the
result value, see options for more information.

EXAMPLE

Read 4 words from address 0x40000000:
grmon2> mem 0x40000000 16

TCL returns:
1073741824 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”

GRMON2 User's Manual 128

53. memb - syntax

NAME

memb - AMBA bus 8-bit memory read access, list a range of addresses

SYNOPSIS

memb ?options? address ?length?

DESCRIPTION

memb ?options? address ?length?
Do an AMBA bus 8-bit read access at address and print the the data. The optional length parameter
should specified in bytes and the default size is 64 bytes.

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and
then parse out the unaligned data.

OPTIONS

-ascii
If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.

-cstr
If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

RETURN VALUE

Upon successful completion memb returns a list of the requested 8-bit words. Some options changes the
result value, see options for more information.

EXAMPLE

Read 4 bytes from address 0x40000000:
grmon2> memb 0x40000000 4

TCL returns:
64 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”

GRMON2 User's Manual 129

54. memh - syntax

NAME

memh - AMBA bus 16-bit memory read access, list a range of addresses

SYNOPSIS

memh ?options? address ?length?

DESCRIPTION

memh ?options? address ?length?
Do an AMBA bus 16-bit read access at address and print the the data. The optional length parameter
should specified in bytes and the default size is 64bytes (32 words).

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and
then parse out the unaligned data.

OPTIONS

-ascii
If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.

-cstr
If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

RETURN VALUE

Upon successful completion memh returns a list of the requested 16-bit words. Some options changes the
result value, see options for more information.

EXAMPLE

Read 4 words (8 bytes) from address 0x40000000:
grmon2> memh 0x40000000 8

TCL returns:
16384 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”

GRMON2 User's Manual 130

GRMON2 User's Manual 131

55. mmu - syntax

NAME

mmu - Print or set the SRMMU registers

SYNOPSIS

mmu ?cpu#?
mmu subcommand ?args...? ?cpu#?

DESCRIPTION

mmu ?cpu#?
Print the SRMMU registers

mmu mctrl ?value? ?cpu#?
Set the MMU control register

mmu ctxptr ?value? ?cpu#?
Set the context pointer register

mmu ctx value? ?cpu#?
Set the context register

mmu va ctx? ?cpu#?
Translate a virtual address. The command will use the MMU from the current active CPU and the cpu#
can be used to select a different CPU.

mmu walk ctx? ?cpu#?
Translate a virtual address and print translation. The command will use the MMU from the current
active CPU and the cpu# can be used to select a different CPU.

mmu table ctx? ?cpu#?
Print table, optionally specify context. The command will use the MMU from the current active CPU
and the cpu# can be used to select a different CPU.

RETURN VALUE

The commands mmu returns a list of the MMU registers.

The commands mmu va and mmu walk returns the translated address.

The command mmu table returns a list of ranges, where each range has the following format:
{vaddr_start vaddr_end paddr_start paddr_end access pages

EXAMPLE

Print MMU registers

grmon2> mmu
 mctrl: 00904001 ctx: 00000001 ctxptr: 00622000 fsr: 000002DC far: 9CFB9000

TCL returns:
9453569 1 401920 732 -1661235200

Print MMU table

grmon2> puts [mmu table]
 MMU Table for CTX1 for CPU0
 0x00000000-0x00000fff -> 0x00000000-0x00000fff crwxrwx [1 page]
 0x00001000-0x0061ffff -> 0x00001000-0x0061ffff crwx--- [1567 pages]
 0x00620000-0x00620fff -> 0x00620000-0x00620fff -r-xr-x [1 page]
 0x00621000-0x00621fff -> 0x00621000-0x00621fff crwx--- [1 page]

GRMON2 User's Manual 132

 ...

TCL returns:
{0x00000000 0x00000fff 0x00000000 0x00000fff crwxrwx 1} {0x00001000
0x0061ffff 0x00001000 0x0061ffff crwx--- 1567} {0x00620000 0x00620fff
0x00620000 0x00620fff -r-xr-x 1} {0x00621000 0x00621fff 0x00621000
0x00621fff crwx--- 1} ...

SEE ALSO

Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 133

GRMON2 User's Manual 134

56. pci - syntax

NAME

pci - Control the PCI bus master

SYNOPSIS

pci subcommand ?args...?

DESCRIPTION

The PCI debug drivers are mainly useful for PCI host systems. The pci init command initializes the host's
target BAR1 to point to RAM (PCI address 0x40000000 -> AHB address 0x4000000) and enables PCI
memory space and bus mastering. Commands are provided for initializing the bus, scanning the bus, config-
uring the found resources, disabling byte twisting and displaying information. Note that on non-host systems
only the info command has any effect.

The pci scan command can be used to print the current configuration of the PCI bus. If a OS has initialized
the PCI core and the PCI bus (at least enumerated all PCI buses) the scan utility can be used to see how the OS
has configured the PCI address space. Note that scanning a multi-bus system that has not been enumerated
will fail.

The pci conf command can fail to configure all found devices if the PCI address space addressable by the
host controller is smaller than the amount of memory needed by the devices.

A configured PCI system can be registered into the GRMON device handling system similar to the on-
chip AMBA bus devices, controlled using the pci bus commands. GRMON will hold a copy of the PCI
configuration in memory until a new pci conf, pci bus unreg or pci scan is issued. The user is responsible
for updating GRMON's PCI configuration if the configuration is updated in hardware. The devices can be
inspected from info sys and Tcl variables making read and writing PCI devices configuration space easier.
The Tcl variables are named in a similar fashion to AMBA devices, for example puts $pdev0::status prints
the STATUS register of PCI device0. See pci bus reference description below and the Tcl API description
in the manual.

pci bt ?boolean?
Enable/Disable the byte twisting (if supported by host controller)

pci bus reg
Register a previously configured PCI bus into the GRMON device handling system. If the PCI bus has
not been configured previously the pci conf is automatically called first (similar to pci conf -reg).

pci bus unreg
Unregister (remove) a previously registered PCI bus from the GRMON device handling system.

pci cfg8 deviceid offset
pci cfg16 deviceid offset
pci cfg32 deviceid offset

Read a 8-, 16- or 32-bit value from configuration space. The device ID selects which PCI device/function
is address during the configuration access. The offset must must be located with the device's space and
be aligned to access type. Three formats are allowed to specify the deviceid: 1. bus:slot:func,
2. device name (pdev#), 3. host. It's allowed to skip the bus index, i.e. only specifying slot:func, it
will then default to bus index 0. The ID numbers are specified in hex. If "host" is given the Host Bridge
Controller itself will be queried (if supported by Host Bridge). A device name (for example "pdev0")
may also be used to identify a device found from the info sys command output.

pci conf ?-reg?
Enumerate all PCI buses, configures the BARs of all devices and enables PCI-PCI bridges where need-
ed. If -reg is given the configured PCI bus is registered into GRMON device handling system similar
to pci bus reg, see above.

GRMON2 User's Manual 135

pci init
Initializes the host controller as described above

pci info
Displays information about the host controller

pci io8 addr value
pci io16 addr value
pci io32 addr value

Write a 8-, 16- or 32-bit value to I/O space.

pci scan ?-reg?
Scans all PCI slots for available devices and their current configuration are printed on the terminal. The
scan does not alter the values, however during probing some registers modified by rewritten with the
original value. This command is typically used to look at the reset values (after pci init is called) or for
inspecting how the Operating System has set PCI up (pci init not needed). Note that PCI buses are not
enumerated during scanning, in multi-bus systems secondary buses may therefore not be accessible. If
-reg is given the configured PCI bus is registered into GRMON device handling system similar to pci
bus reg, see above.

pci wcfg8 deviceid offset value
pci wcfg16 deviceid offset value
pci wcfg32 deviceid offset value

Write a 8-, 16- or 32-bit value to configuration space. The device ID selects which PCI device/function
is address during the configuration access. The offset must must be located with the device's space and
be aligned to access type. Three formats are allowed to specify the deviceid: 1. bus:slot:func,
2. device name (pdev#), 3. host. It's allowed to skip the bus index, i.e. only specifying slot:func, it
will then default to bus index 0. The ID numbers are specified in hex. If "host" is given the Host Bridge
Controller itself will be queried (if supported by Host Bridge). A device name (for example "pdev0")
may also be used to identify a device found from the info sys command output.

pci wio8 addr value
pci wio16 addr value
pci wio32 addr value

Write a 8-, 16- or 32-bit value to I/O space.

PCI Trace commands:

pci trace
Reports current trace buffer settings and status

pci trace address pattern
Get/set the address pattern register.

pci trace amask pattern
Get/set the address mask register.

pci trace arm
Arms the trace buffer and starts sampling.

pci trace log ?length? ?offset?
Prints the trace buffer data. Offset is relative the trigger point.

pci trace sig pattern
Get/set the signal pattern register.

pci trace smask pattern
Get/set the signal mask register.

pci trace start
Arms the trace buffer and starts sampling.

GRMON2 User's Manual 136

pci trace state
Prints the state of the PCI bus.

pci trace stop
Stops the trace buffer sampling.

pci trace tcount value
Get/set the number of matching trigger patterns before disarm

pci trace tdelay value
Get/set number of extra cycles to sample after disarm.

RETURN VALUE

Upon successful completion most pci commands have no return value.

The read commands return the read value. The write commands have no return value.

When the commands pci trace address, pci trace amask, pci trace sig, pci trace smask, pci trace tcount
and pci trace tdelay are used to read values, they return their values.

The pci trace log command returns a list of triples, where the triple contains the address, a list of signals
and buffer index.

Command pci trace state returns a tuple of the address and a list of signals.

EXAMPLE

Initialize host controller and configure the PCI bus

grmon2> pci init
grmon2> pci conf

Inspect a PCI bus that has already been setup
grmon2> pci scan

SEE ALSO

Section 5.10, “PCI”

GRMON2 User's Manual 137

GRMON2 User's Manual 138

57. phyaddr - syntax

NAME

phyaddr - Set the default PHY address

SYNOPSIS

phyaddr adress ?greth#?

DESCRIPTION

phyaddr adress ?greth#?
Set the default PHY address to address. If more than one device exists in the system, the greth#
can be used to select device, default is greth0.

EXAMPLE

Set PHY address to 1
grmon2> phyaddr 1

SEE ALSO

Section 5.3, “Ethernet controller”

GRMON2 User's Manual 139

GRMON2 User's Manual 140

58. quit - syntax

NAME

quit - Exit the GRMON2 console

SYNOPSIS

quit

DESCRIPTION

quit
When using the command line version (cli) of GRMON2, this command will be the same as 'exit 0'.
In the GUI version it will close down a single console window. Use 'exit' to close down the entire
application when using the GUI version of GRMON2.

EXAMPLE

Exit the GRMON2 console.
grmon2> quit

GRMON2 User's Manual 141

59. reg - syntax

reg - Show or set integer registers

SYNOPSIS

reg ?name ...? ?name value ...?

DESCRIPTION

reg ?name ...? ?name value ...? ?cpu#?
Show or set integer registers of the current CPU, or the CPU specified by cpu#. If no register arguments
are given then the command will print the current window and the special purpose registers. The register
arguments can to both set and show each individual register. If a register name is followed by a value,
it will be set else it will only be shown.

Valid window register names are:

Registers
r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23,
r24, r25, r26, r27, r28, r29, r30, r31

Global registers
g0, g1, g2, g3, g4, g5, g6, g7

Current window in registers
i0, i1, i2, i3, i4, i5, i6, i7

Current window local registers
l0, l1, l2, l3, l4, l5, l6, l7

Current window out registers
o0, o1, o2, o3, o4, o5, o6, o7

Special purpose registers
sp, fp

Windows (N is the number of implemented windows)
w0, w1 ... wN

Single register from a window
w1l3 w1o3 w2i5 etc.

In addition the following non-window related registers are also valid:

Floating point registers
f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23,
f24, f25, f26, f27, f28, f29, f30, f31

Floating point registers (double precision)
d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15,

Special purpose registers
psr, tbr, wim, y, pc, npc, fsr

Application specific registers
asr16, asr17, asr18

GRMON2 User's Manual 142

RETURN VALUE

Upon successful completion, command reg returns a list of the requested register values. When register
windows are requested, then nested list of all registers will be returned. If a float/double is requested, then
a tuple of the decimal and the binary value is returned.

EXAMPLE

Display the current window and special purpose registers
grmon2> reg

TCL returns:
{0 0}
-213905184 2 1073741824 0 1073741824 1073741828

Display the g0, l3 in window 2, f1, pc and w1.
grmon2> reg g0 w2l3 f1 pc w1

TCL returns:
0 0 {0.0 0} 1073741824 {0 0
0 0 0 0 0 0 0 0 0 0 0}

Set register g1 to the value 2 and display register g2
grmon2> reg g1 2 g2

TCL returns:
2 0

SEE ALSO

Section 3.4.5, “Displaying processor registers”

GRMON2 User's Manual 143

60. reset - syntax

NAME

reset - Reset drivers

SYNOPSIS

reset

DESCRIPTION

The reset will give all core drivers an opportunity to reset themselves into a known state. For example will
the memory controllers reset it's registers to their default value and some drivers will turn off DMA. It is in
many cases crucial to disable DMA before loading a new binary image since DMA can overwrite the loaded
image and destroy the loaded Operating System.

EXAMPLE

Reset drivers
grmon2> reset

GRMON2 User's Manual 144

61. run - syntax

run - Reset and start execution

SYNOPSIS

run ?options? ?address?

DESCRIPTION

run ?options? ?address?
This command will reset all drivers (see reset for more information) and start the executing instructions
on the active CPU. When omitting the address parameter this command will start execution at the entry
point of the last loaded application.

OPTIONS

-noret
Do not evaluate the return value. When this options is set, no return value will be set.

RETURN VALUE

Upon successful completion run returns a list of signals, one per CPU. Possible signal values are SIGBUS,
SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM or SIGTRAP. If a CPU is disabled, then an empty string
will be returned instead of a signal value.

EXAMPLE

Execute instructions starting at the entry point of the last loaded file.
grmon2> run

SEE ALSO

Section 3.4.3, “Running applications”
reset

GRMON2 User's Manual 145

GRMON2 User's Manual 146

62. sdcfg1 - syntax

sdcfg1 - Show or set reset value of SDRAM controller register 1

SYNOPSIS

sdcfg1 ?value?

DESCRIPTION

sdcfg1 ?value?
Set the reset value of the memory register. If value is left out, then the reset value will be printed.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 147

63. sddel - syntax

sddel - Show or set the SDCLK delay

SYNOPSIS

sddel ?value?

DESCRIPTION

sddel ?value?
Set the SDCLK delay value.

SEE ALSO

Section 5.9, “Memory controllers ”

GRMON2 User's Manual 148

64. shell - syntax

NAME

shell - Execute a shell command

SYNOPSIS

shell

DESCRIPTION

shell
Execute a command in the host system shell. The grmon shell command is just an alias for the TCL
command exec, wrapped with puts, i.e. its equivalent to puts [exec ...]. For more information
see documentation about the exec command (http://www.tcl.tk/man/tcl8.5/TclCmd/exec.htm).

EXAMPLE

List all files in the current working directory (Linux)
grmon2> shell ls

List all files in the current working directory (Windows)
grmon2> shell dir

GRMON2 User's Manual 149

65. silent - syntax

NAME

silent - Suppress stdout of a command

SYNOPSIS

silent command ?args...?

DESCRIPTION

silent command ?args...?
The silent command be put in front of other GRMON commands to suppress their output. This can be
useful to remove unnecessary output when scripting.

EXAMPLE

Suppress the memory print and print the TCL result instead.
grmon2> puts [silent mem 0x40000000]

GRMON2 User's Manual 150

66. spi - syntax

NAME

spi - Commands for the SPI controller

SYNOPSIS

spi subcommand ?args...?
spi index subcommand ?args...?

DESCRIPTION

This command provides functions to control the SPICTRL core. If more than one core exists in the system,
then the index of the core to control should be specified after the spi command (before the subcommand).
The 'info sys' command lists the device indexes.

spi aslvsel value
Set automatic slave select register

spi disable
spi enable

Enable/Disable core

spi rx
Read receive register

spi selftest
Test core in loop mode

spi set ?field ...?
Sets specified field(s) in Mode register.

Available fields: cpol, cpha, div16, len value, amen, loop, ms, pm value, tw, asel, fact, od, tac, rev,
aseldel value, tto, igsel, cite

spi slvsel value
Set slave select register

spi status
Displays core status information

spi tx data
Writes data to transmit register. GRMON automatically aligns the data

spi unset ?field ...?
Sets specified field(s) in Mode register.

Available fields: cpol, cpha, div16, amen, loop, ms, tw, asel, fact, od, tac, rev, tto, igsel, cite

Commands for automated transfers:

spi am cfg ?option ...?
Set AM configuration register.

Available fields: seq, strict, ovtb, ovdb

spi am per value
Set AM period register to value.

GRMON2 User's Manual 151

spi am act
spi am deact

Start/stop automated transfers.

spi am extact
Enable external activation of AM transfers

spi am poll count
Poll for count transfers

SPI Flash commands:

spi flash
Prints a list of available commands

spi flash help
Displays command list or additional information about a specific command.

spi flash detect
Try to detect type of memory device

spi flash dump address length ?filename?
Dumps length bytes, starting at address of the SPI-device (i.e. not AMBA address), to a file. The
default name of the file is "grmon-spiflash-dump.srec"

spi flash erase
Erase performs a bulk erase clearing the whole device.

spi flash fast
Enables or disables FAST READ command (memory device may not support this).

spi flash load ?options...? filename ?address?
Loads the contents in the file filename to the memory device. If the address is present, then binary
files will be stored at the address of the SPI-device (i.e. not AMBA address), otherwise binary files
will be written to the beginning of the device.

The only available option is '-binary', which forces GRMON to interpret the file as binary file.

spi flash select ?index?
Select memory device. If index is not specified, a list of the supported devices is displayed.

spi flash set pagesize address_bytes wren wrdi rdsr wrsr read fast_read pp se be
Sets a custom memory device configuration. Issue flash set to see a list of the required parameters.

spi flash show
Shows current memory device configuration

spi flash ssval ?value?
Sets slave value to be used with the SPICTRL core. When GRMON wants to select the memory device
it will write this value to the slave select register. When the device is deselected, GRMON will write
all ones to the slave select register. Example: Set slave select line 0 to low, all other lines high when
selecting a device
grmon2> spi flash ssval 0xfffffffe

Note: This value is not used when communicating via the SPIMCTRL core, i.e. it is only valid for spi
flash.

spi flash status
Displays device specific information

spi flash strict ?boolean?
Enable/Disable strict communication mode. Enable if programming fails. Strict communication mode
may be necessary when using very fast debug links or for SPI implementations with a slow SPI clock

GRMON2 User's Manual 152

spi flash verify ?options...? filename ?address?
Verifies that data in the file filename matches data in memory device. If the address is present,
then binary files will be compared with data at the address of the SPI-device (i.e. not AMBA address),
otherwise binary files will be compared against data at the beginning of the device.

The -binary option forces GRMON to interpret the file as binary file.

The -max option can be used to force GRMON to stop verifying when num errors have been found.

When the -errors option is specified, the verify returns a list of all errors instead of number of er-
rors. Each element of the list is a sublist whose format depends on the first item if the sublist. Possi-
ble errors can be detected are memory verify error (MEM), read error (READ) or an unknown error
(UNKNOWN). The formats of the sublists are: MEM address read-value expected-value
, READ address num-failed-addresses , UNKNOWN address

Upon successful completion verify returns the number of error detected. If the -errors has been
given, it returns a list of errors instead.

spi flash wrdi
spi flash wren

Issue write disable/enable instruction to the device.

EXAMPLE

Set AM configuration register
grmon2> spi am cfg strict ovdb

Set AM period register
grmon2> spi am per 1000

Poll queue 10 times
grmon2> spi am poll 10

Set fields in Mode register
grmon2> spi set ms cpha len 7 rev

Unset fields in Mode register
grmon2> spi unset ms cpha rev

SEE ALSO

Section 3.10.2, “SPI memory device”
Section 5.9, “Memory controllers ”

GRMON2 User's Manual 153

67. spim - syntax

NAME

spim - Commands for the SPI memory controller

SYNOPSIS

spim subcommand ?args...?
spim index subcommand ?args...?

DESCRIPTION

This command provides functions to control the SPICTRL core. If more than one core exists in the system,
then the index of the core to control should be specified after the spim command (before the subcommand).
The 'info sys' command lists the device indexes.

spim altscaler
Toggle the usage of alternate scaler to enable or disable.

spim reset
Core reset

spim status
Displays core status information

spim tx data
Shift a byte to the memory device

SD Card specific commands:

spim sd csd
Displays and decodes CSD register

spim sd reinit
Reinitialize card

SPI Flash commands:

spim flash
Prints a list of available commands

spim flash help
Displays command list or additional information about a specific command.

spim flash detect
Try to detect type of memory device

spim flash dump address length ?filename?
Dumps length bytes, starting at address of the SPI-device (i.e. not AMBA address), to a file. The
default name of the file is "grmon-spiflash-dump.srec"

spim flash erase
Erase performs a bulk erase clearing the whole device.

spim flash fast
Enables or disables FAST READ command (memory device may not support this).

spim flash load ?options...? filename ?address?
Loads the contents in the file filename to the memory device. If the address is present, then binary
files will be stored at the address of the SPI-device (i.e. not AMBA address), otherwise binary files
will be written to the beginning of the device.

GRMON2 User's Manual 154

The only available option is '-binary', which forces GRMON to interpret the file as binary file.

spim flash select ?index?
Select memory device. If index is not specified, a list of the supported devices is displayed.

spim flash set pagesize address_bytes wren wrdi rdsr wrsr read fast_read pp se be
Sets a custom memory device configuration. Issue flash set to see a list of the required parameters.

spim flash show
Shows current memory device configuration

spim flash ssval ?value?
Sets slave value to be used with the SPICTRL core. When GRMON wants to select the memory device
it will write this value to the slave select register. When the device is deselected, GRMON will write
all ones to the slave select register. Example: Set slave select line 0 to low, all other lines high when
selecting a device
grmon2> spi flash ssval 0xfffffffe

Note: This value is not used when communicating via the SPIMCTRL core, i.e. it is only valid for spi
flash.

spim flash status
Displays device specific information

spim flash strict ?boolean?
Enable/Disable strict communication mode. Enable if programming fails. Strict communication mode
may be necessary when using very fast debug links or for SPI implementations with a slow SPI clock

spim flash verify ?options...? filename ?address?
Verifies that data in the file filename matches data in memory device. If the address is present,
then binary files will be compared with data at the address of the SPI-device (i.e. not AMBA address),
otherwise binary files will be compared against data at the beginning of the device.

The -binary options forces GRMON to interpret the file as binary file.

The -max option can be used to force GRMON to stop verifying when num errors have been found.

When the -errors option is specified, the verify returns a list of all errors instead of number of er-
rors. Each element of the list is a sublist whose format depends on the first item if the sublist. Possi-
ble errors can be detected are memory verify error (MEM), read error (READ) or an unknown error
(UNKNOWN). The formats of the sublists are: MEM address read-value expected-value
, READ address num-failed-addresses , UNKNOWN address

Upon successful completion verify returns the number of error detected. If the -errors has been
given, it returns a list of errors instead.

spim flash wrdi
spim flash wren

Issue write disable/enable instruction to the device.

SEE ALSO

Section 3.10.2, “SPI memory device”
Section 5.9, “Memory controllers ”

GRMON2 User's Manual 155

GRMON2 User's Manual 156

68. stack - syntax

NAME

stack - Set or show the initial stack-pointer.

SYNOPSIS

stack ?cpu#?
stack address ?cpu#?

DESCRIPTION

stack ?cpu#?
Show current active CPUs initial stack-pointer, or the CPU specified by cpu#.

stack address ?cpu#?
Set the current active CPUs initial stack-pointer, or the CPU specified by cpu#.

RETURN VALUE

Upon successful completion stack returns a list of initial stack-pointer addresses, one per CPU.

EXAMPLE

Set current active CPUs initial stack-pointer to 0x4FFFFFF0
grmon2> stack 0x4FFFFFF0

SEE ALSO

Section 5.2.1, “Switches”
Section 3.4.11, “Multi-processor support”

GRMON2 User's Manual 157

69. step - syntax

step - Step one ore more instructions

SYNOPSIS

step ?nsteps? ?cpu#?

DESCRIPTION

step ?nsteps? ?cpu#?
Step one or more instructions on all CPU:s. If cpu# is set, then only the specified CPU index will be
stepped.
When single-stepping over a conditional or unconditional branch with the annul bit set, and if the delay
instruction is effectively annulled, the delay instruction itself and the instruction thereafter are stepped
over in the same go. That means that three instructions are executed by one single step command in
this particular case.

EXAMPLE

Step 10 instructions
grmon2> step 10

GRMON2 User's Manual 158

70. svga - syntax

NAME

svga - Commands for the SVGA controller

SYNOPSIS

svga subcommand ?args...?
svga index subcommand ?args...?

DESCRIPTION

This command provides functions to control the SVGACTRL core. If more than one core exists in the system,
then the index of the core to control should be specified after the svga command (before the subcommand).
The 'info sys' command lists the device indexes.

svga custom ?period horizontal_active_video horizontal_front_porch
horizontal_sync horizontal_back_porch vertical_active_video
vertical_front_porch vertical_sync vertical_back_porch?

The svga custom command can be used to specify a custom format. The custom format will have
precedence when using the svga draw command. If no parameters are given, then is will print the
current custom format.

svga draw file bitdepth
The svga draw command will determine the resolution of the specified picture and select an appropriate
format (resolution and refresh rate) based on the video clocks available to the core. The required file
format is ASCII PPM which must have a suitable amount of pixels. For instance, to draw a screen with
resolution 640x480, a PPM file which is 640 pixels wide and 480 pixels high must be used. ASCII PPM
files can be created with, for instance, the GNU Image Manipulation Program (The GIMP). The color
depth can be either 16 or 32 bits.

svga draw test_screen fmt bitdepth
The svga draw test_screen command will show a simple grid in the resolution specified via the format
fmt selection (see svga formats to list all available formats). The color depth can be either 16 or 32 bits.

svga frame ?adress?
Show or set start address of framebuffer memory

svga formats
Show available display formats

svga formatsdetailed
Show detailed view of available display formats

EXAMPLE

Draw a 1024x768, 60Hz test image
grmon2> svga draw test_screen 12 32

GRMON2 User's Manual 159

71. symbols - syntax

NAME

symbols - Load, print or lookup symbols

SYNOPSIS

symbols ?options? ?filename? ?cpu#?
symbols subcommand ?arg?

DESCRIPTION

The symbols command is used to load symbols from an object file. It can also be used to print all loaded
symbols or to lookup the address of a specified symbol.

symbols ?options? ?filename? ?cpu#?
Load the symbols from filename. If cpu# argument is omitted, then the symbols will be associated
with the active CPU.

Options:

-debug Read in DWARF debug information

symbols clear ?cpu#?
Remove all symbols associated with the active CPU or a specific CPU.

symbols list ?options? ?cpu#?
This command lists loaded symbols. If no options are given, then all local and global functions and
objects are listed. The optional argument cpu# can be used to limit the listing for a specific CPU.

Options:

-global List global symbols

-local List local symbols

-func List functions

-object List objects

-all List all symbols

symbols lookup symbol ?cpu#?
Lookup the address of the specified symbol using the symbol table of the active CPU. If cpu# is speci-
fied, then it will only look in the symbol table associated with that CPU.

symbols lookup address ?cpu#?
Lookup symbol for the specified address using the symbol table of the active CPU. If cpu# is specified,
then it will only look in the symbol table associated with that CPU. At most one symbol is looked up.

RETURN VALUE

Upon successful completion symbols list will return a list of all symbols and their attributes.

Nothing will be returned when loading or clearing.

Command symbols lookup will return the corresponding address or symbol.

EXAMPLE

Load the symbols in the file hello.
grmon2> symbols hello

GRMON2 User's Manual 160

List symbols.
grmon2> symbols list

List all loaded symbols.
grmon2> symbols list -all

List all function symbols.
grmon2> symbols list -func -local -global

List all symbols that begins with the letter m
grmon2> puts [lsearch -index {3} -subindices -all -inline [symbols list]
m*]

SEE ALSO

Section 3.6, “Symbolic debug information”

GRMON2 User's Manual 161

72. thread - syntax

NAME

thread - Show OS-threads information or backtrace

SYNOPSIS

thread info ?cpu#?
thread bt id ?cpu#?

DESCRIPTION

The thread command may be used to list all threads or to show backtrace of a specified thread. Note that the
only OS:s supported by GRMON2 are RTEMS, eCos and VxWorks.

thread info ?cpu#?
List information about the threads. This should be used to get the id:s for the thread bt command.

thread bt id ?cpu#?
Show backtrace of the thread specified by id. The command thread info can be used find the available
id:s.

RETURN VALUE

Upon successful completion, thread info returns a list of threads. Each entry is a sublist on the format
format: {id name current pc sp }. See table below for a detailed description.

Name Description

id OS specific identification number

name Name of the thread

current Boolean describing if the thread is the current running thread.

pc Program counter

sp Stack pointer

cpu Value greater or equal to 0 means that the thread is executing on CPU. Negative value
indicates that the thread is idle.

The thread current command returns information about the current thread only, using the format described
for the return value of the command thread info above.

The other subcommands have no return value.

EXAMPLE

List all threads

grmon2> thread info
 NAME TYPE ID PRIO TIME (h:m:s) ENTRY POINT PC ...
 * Int. internal 0x09010001 255 0:0:0.000000000 0x4000a5b4 <+0xFFF...
 TA1 classic 0x0a010002 1 0:0:0.064709999 Test_task 0x40016ab8 <_Threa...
 TA2 classic 0x0a010003 1 0:0:0.061212000 Test_task 0x40016ab8 <_Threa...
 TA3 classic 0x0a010004 1 0:0:0.060206998 Test_task 0x40016ab8 <_Threa...

TCL returns:
{151060481 Int. 1 1073784244 0} {167837698 {TA1 } 0 1073834680 0}
{167837699 {TA2 } 0 1073834680 0} {167837700 {TA3 } 0 1073834680 0}

SEE ALSO

Section 3.8, “Thread support”
Section 3.7.6, “GDB Thread support”

GRMON2 User's Manual 162

73. timer - syntax

timer - Show information about the timer devices

SYNOPSIS

timer ?devname?
timer reg ?devname?

DESCRIPTION

timer ?devname?
This command will show information about the timer device. Optionally which device to show infor-
mation about can be specified. Device names are listed in 'info sys'.

timer reg ?devname?
This command will get the timers register. Optionally which device to get can be specified. Device
names are listed in 'info sys'.

EXAMPLE

Execute instructions starting at 0x40000000.
grmon2> timer 0x40000000

GRMON2 User's Manual 163

74. tmode - syntax

tmode - Select tracing mode between none, processor-only, AHB only or both.

SYNOPSIS

tmode
tmode none
tmode both
tmode ahb boolean
tmode proc ?boolean? ?cpu#?
tmode break delay

DESCRIPTION

tmode
Print the current tracing mode

tmode none
Disable tracing

tmode both
Enable both AHB and instruction tracing

tmode ahb ?boolean?
Enable or disable AHB transfer tracing

tmode proc ?boolean? ?cpu#?
Enable or disable instruction tracing. Use cpu# to toggle a single cpu.

tmode break delay
If delay is non-zero, the CPU will enter debug-mode after delay trace entries after an AHB watchpoint
was hit.

EXAMPLE

Disable AHB transfer tracing
grmon2> tmode ahb disable

SEE ALSO

Section 3.4.8, “Using the trace buffer”

GRMON2 User's Manual 164

GRMON2 User's Manual 165

GRMON2 User's Manual 166

75. va - syntax

NAME

va - Translate a virtual address

SYNOPSIS

va address ?cpu#?

DESCRIPTION

va address ?cpu#?
Translate a virtual address. The command will use the MMU from the current active CPU and the cpu#
can be used to select a different CPU.

RETURN VALUE

Command va returns the translated address.

SEE ALSO

Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 167

76. verify - syntax

NAME

verify - Verify that a file has been uploaded correctly.

SYNOPSIS

verify ?options...? filename ?address?

DESCRIPTION

verify ?options...? filename ?address?
Verify that the file filename has been uploaded correctly. If the address argument is present, then
binary files will be compared against data at this address, if left out then they will be compared to data
at the base address of the detected RAM.

RETURN VALUE

Upon successful completion verify returns the number of error detected. If the -errors has been given,
it returns a list of errors instead.

OPTIONS

-binary
The -binary option can be used to force GRMON to interpret the file as a binary file.

-max num
The -max option can be used to force GRMON to stop verifying when num errors have been found.

-errors
When the -errors option is specified, the verify returns a list of all errors instead of number of er-
rors. Each element of the list is a sublist whose format depends on the first item if the sublist. Possi-
ble errors can be detected are memory verify error (MEM), read error (READ) or an unknown error
(UNKNOWN). The formats of the sublists are: MEM address read-value expected-value
, READ address num-failed-addresses , UNKNOWN address

EXAMPLE

Load and then verify a hello_world application

grmon2> load ../hello_world/hello_world
grmon2> verify ../hello_world/hello_world

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”
bload
eeload
load

GRMON2 User's Manual 168

77. vmem - syntax

NAME

vmem - AMBA bus 32-bit virtual memory read access, list a range of addresses

SYNOPSIS

vmem ?-ascii? address ?length?

DESCRIPTION

vmem ?-ascii? address ?length?
GRMON will translate address to a physical address, do an AMBA bus read 32-bit read access and
print the data. The optional length parameter should specified in bytes and the default size is 64 bytes
(16 words). If no MMU exists or if it is turned off, this command will behave like the command vwmem

OPTIONS

-ascii
If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.

-cstr
If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

RETURN VALUE

Upon successful completion vmem returns a list of the requested 32-bit words. Some options changes the
result value, see options for more information.

EXAMPLE

Read 4 words from address 0x40000000:
grmon2> vmem 0x40000000 16

TCL returns:
1073741824 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 169

78. vmemb - syntax

NAME

vmemb - AMBA bus 8-bit virtual memory read access, list a range of addresses

SYNOPSIS

vmemb ?-ascii? address ?length?

DESCRIPTION

vmemb ?-ascii? address ?length?
GRMON will translate address to a physical address, do an AMBA bus read 8-bit read access and
print the data. The optional length parameter should specified in bytes and the default size is 64 bytes.
If no MMU exists or if it is turned off, this command will behave like the command vwmemb

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and
then parse out the unaligned data.

OPTIONS

-ascii
If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.

-cstr
If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

RETURN VALUE

Upon successful completion vmemb returns a list of the requested 8-bit words. Some options changes the
result value, see options for more information.

EXAMPLE

Read 4 bytes from address 0x40000000:
grmon2> vmemb 0x40000000 4

TCL returns:
64 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 170

79. vmemh - syntax

NAME

vmemh - AMBA bus 16-bit virtual memory read access, list a range of addresses

SYNOPSIS

vmemh ?-ascii? address ?length?

DESCRIPTION

vmemh ?-ascii? address ?length?
GRMON will translate address to a physical address, do an AMBA bus read 16-bit read access and
print the data. The optional length parameter should specified in bytes and the default size is 64 bytes (32
words). If no MMU exists or if it is turned off, this command will behave like the command vwmemh

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and
then parse out the unaligned data.

OPTIONS

-ascii
If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.

-cstr
If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

RETURN VALUE

Upon successful completion vmemh returns a list of the requested 16-bit words. Some options changes the
result value, see options for more information.

EXAMPLE

Read 4 words (8 bytes) from address 0x40000000:
grmon2> vmemh 0x40000000 8

TCL returns:
16384 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 171

80. vwmem - syntax

NAME

vwmem - AMBA bus 32-bit virtual memory write access

SYNOPSIS

vwmem address data ?...?

DESCRIPTION

vwmem address data ?...?
Do an AMBA write access. GRMON will translate address to a physical address and write the 32-
bit value specified by data. If more than one data word has been specified, they will be stored at
consecutive physical addresses. If no MMU exists or if it is turned off, this command will behave like
the command vwmem

RETURN VALUE

vwmem has no return value.

EXAMPLE

Write 0xABCD1234 to address 0x40000000 and to 0x40000004:
grmon2> vwmem 0x40000000 0xABCD1234 0xABCD1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 172

81. vwmemb - syntax

NAME

vwmemb - AMBA bus 8-bit virtual memory write access

SYNOPSIS

vwmemb address data ?...?

DESCRIPTION

vwmemb address data ?...?
Do an AMBA write access. GRMON will translate address to a physical address and write the 8-
bit value specified by data. If more than one data word has been specified, they will be stored at
consecutive physical addresses. If no MMU exists or if it is turned off, this command will behave like
the command vwmemb

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

RETURN VALUE

vwmemb has no return value.

EXAMPLE

Write 0xAB to address 0x40000000 and 0xCD to 0x40000004:
grmon2> vwmemb 0x40000000 0xAB 0xCD

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 173

82. vwmemh - syntax

NAME

vwmemh - AMBA bus 16-bit virtual memory write access

SYNOPSIS

vwmemh address data ?...?

DESCRIPTION

vwmemh address data ?...?
Do an AMBA write access. GRMON will translate address to a physical address and write the 16-
bit value specified by data. If more than one data word has been specified, they will be stored at
consecutive physical addresses. If no MMU exists or if it is turned off, this command will behave like
the command vwmemh

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

RETURN VALUE

vwmemh has no return value.

EXAMPLE

Write 0xABCD to address 0x40000000 and 0x1234 to 0x40000004:
grmon2> vwmemh 0x40000000 0xABCD 0x1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 174

83. vwmems - syntax

NAME

vwmems - Write a string to an AMBA bus virtual memory address

SYNOPSIS

vwmems address data

DESCRIPTION

vwmems address data
Do an AMBA write access. GRMON will translate address to a physical address and write the string
value specified by data, including the terminating NULL-character. If no MMU exists or if it is turned
off, this command will behave like the command vwmems'

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

RETURN VALUE

vwmems has no return value.

EXAMPLE

Write "Hello World" to address 0x40000000-0x4000000C:
grmon2> vwmems 0x40000000 "Hello World"

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 175

84. walk - syntax

NAME

walk - Translate a virtual address, print translation

SYNOPSIS

walk address ?cpu#?

DESCRIPTION

walk address ?cpu#?
Translate a virtual address and print translation. The command will use the MMU from the current
active CPU and the cpu# can be used to select a different CPU.

RETURN VALUE

Command walk returns the translated address.

SEE ALSO

Section 3.4.13, “Memory Management Unit (MMU) support”

GRMON2 User's Manual 176

GRMON2 User's Manual 177

85. wmdio - syntax

NAME

wmdio - Set PHY registers

SYNOPSIS

wmdio paddr raddr value ?greth#?

DESCRIPTION

wmdio paddr raddr value ?greth#?
Set value of PHY address paddr and register raddr. If more than one device exists in the system,
the greth# can be used to select device, default is greth0. The command tries to disable the EDCL
duplex detection if enabled.

SEE ALSO

Section 5.3, “Ethernet controller”

GRMON2 User's Manual 178

86. wmem - syntax

NAME

wmem - AMBA bus 32-bit memory write access

SYNOPSIS

wmem address data ?...?

DESCRIPTION

wmem address data ?...?
Do an AMBA write access. The 32-bit value specified by data will be written to address. If more
than one data word has been specified, they will be stored at consecutive addresses.

RETURN VALUE

wmem has no return value.

EXAMPLE

Write 0xABCD1234 to address 0x40000000 and to 0x40000004:
grmon2> wmem 0x40000000 0xABCD1234 0xABCD1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”

GRMON2 User's Manual 179

87. wmemb - syntax

NAME

wmemb - AMBA bus 8-bit memory write access

SYNOPSIS

wmemb address data ?...?

DESCRIPTION

wmemb address data ?...?
Do an AMBA write access. The 8-bit value specified by data will be written to address. If more
than one data word has been specified, they will be stored at consecutive addresses.

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

RETURN VALUE

wmemb has no return value.

EXAMPLE

Write 0xAB to address 0x40000000 and 0xBC to 0x40000001:
grmon2> wmemb 0x40000000 0xAB 0xBC

SEE ALSO

Section 3.4.7, “Displaying memory contents”

GRMON2 User's Manual 180

88. wmemh - syntax

NAME

wmemh - AMBA bus 16-bit memory write access

SYNOPSIS

wmemh address data ?...?

DESCRIPTION

wmemh address data ?...?
Do an AMBA write access. The 16-bit value specified by data will be written to address. If more
than one data word has been specified, they will be stored at consecutive addresses.

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

RETURN VALUE

wmemh has no return value.

EXAMPLE

Write 0xABCD to address 0x40000000 and 0x1234 to 0x40000002:
grmon2> wmem 0x40000000 0xABCD 0x1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”

GRMON2 User's Manual 181

89. wmems - syntax

NAME

wmems - Write a string to an AMBA bus memory address

SYNOPSIS

wmems address data

DESCRIPTION

wmems address data
Write the string value specified by data, including the terminating NULL-character, to address.

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

RETURN VALUE

wmems has no return value.

EXAMPLE

Write "Hello World" to address 0x40000000-0x4000000C:
grmon2> wmems 0x40000000 "Hello World"

SEE ALSO

Section 3.4.7, “Displaying memory contents”

GRMON2 User's Manual 182

Appendix C. Tcl API
1. Device names

All GRLIB cores are assigned a unique adevN name, where N is a unique number. The debug driver con-
trolling the core also provides an alias which is easier to remember. For example the name mctrl0 will
point to the first MCTRL regardless in which order the AMBA Plug and Play is assigned, thus the name
will be consistent between different chips. The names of the cores are listed in the output of the GRMON
command info sys.

PCI devices can also be registered into GRMON's device handling system using one of the pci conf -reg,
pci scan -reg or pci bus reg commands. The devices are handled similar to GRLIB devices, however their
base name is pdevN.

It is possible to specify one or more device names as an argument to the GRMON commands info sys and
info reg to show information about those devices only. For info reg a register name can also be specified
by appending the register name to the device name separated by colon. Register names are the same as
described in Section 2, “Variables”.

For each device in a GRLIB system, a namespace will be created. The name of the namespace will be the
same as the name of the device. Inside the namespace Plug and Play information is available as variables.
Most debug drivers also provide direct access to APB or AHB registers through variables in the namespace.
See Section 2, “Variables” for more details about variables.

Below is an example of how the first MCTRL is named and how the APB register base address is found
using Plug and Play information from the GRMON mctrl0 variable. The eleventh PCI device (a network
card) is also listed using the unique name pdev10.

grmon2> info sys mctrl0
 mctrl0 Aeroflex Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us
grmon2> info sys pdev10
 pdev10 Bus 02 Slot 03 Func 00 [2:3:0]
 vendor: 0x1186 D-Link System Inc
 device: 0x4000 DL2000-based Gigabit Ethernet
 class: 020000 (ETHERNET)
 subvendor: 0x1186, subdevice: 0x4004
 BAR1: 00001000 - 00001100 I/O-32 [256B]
 BAR2: 82203000 - 82203200 MEMIO [512B]
 ROM: 82100000 - 82110000 MEM [64kB]
 IRQ INTA# -> IRQW

2. Variables

GRMON provides variables that can be used in scripts. A list of the variables can be found below.

grmon_version
The version number of GRMON

grmon::settings::suppress_output
Setting this to one will block all output to the terminal from GRMON's commands.

grmon::settings::echo_result
If setting this to one, then the result of a command will always be printed in the terminal.

grmon::interrupt
This variable will be set to 1 when a user issues an interrupt (i.e. pressing Ctrl-C from the commandline),
it's always set to zero before a commands sequence is issued. It can be used to abort user defined
commands.

GRMON2 User's Manual 183

It is also possible to write this variable from inside hooks and procedures. E.g. writing a 1 from a exec
hook will abort the execution

<devname#>1::pnp::device
<devname#>1::pnp::vendor
<devname#>1::pnp::mst::custom0
<devname#>1::pnp::mst::custom1
<devname#>1::pnp::mst::custom2
<devname#>1::pnp::mst::irq
<devname#>1::pnp::mst::idx
<devname#>1::pnp::ahb::0::start
<devname#>1::pnp::ahb::0::mask
<devname#>1::pnp::ahb::0::type
<devname#>1::pnp::ahb::custom0
<devname#>1::pnp::ahb::custom1
<devname#>1::pnp::ahb::custom2
<devname#>1::pnp::ahb::irq
<devname#>1::pnp::ahb::idx
<devname#>1::pnp::apb::start
<devname#>1::pnp::apb::mask
<devname#>1::pnp::apb::irq
<devname#>1::pnp::apb::idx

The AMBA Plug and Play information is available for each AMBA device. If a device has an AHB
Master (mst), AHB Slave (ahb) or APB slave (apb) interface, then the corresponding variables will be
created.

1Replace with device name.

GRMON2 User's Manual 184

<devname#>1::vendor
<devname#>1::device
<devname#>1::command
<devname#>1::status
<devname#>1::revision
<devname#>1::ccode
<devname#>1::csize
<devname#>1::tlat
<devname#>1::htype
<devname#>1::bist
<devname#>1::bar0
<devname#>1::bar1
<devname#>1::bar2
<devname#>1::bar3
<devname#>1::bar4
<devname#>1::bar5
<devname#>1::cardbus
<devname#>1::subven
<devname#>1::subdev
<devname#>1::rombar
<devname#>1::pri
<devname#>1::sec
<devname#>1::sord
<devname#>1::sec_tlat
<devname#>1::io_base
<devname#>1::io_lim
<devname#>1::secsts
<devname#>1::memio_base
<devname#>1::memio_lim
<devname#>1::mem_base
<devname#>1::mem_lim
<devname#>1::mem_base_up
<devname#>1::mem_lim_up
<devname#>1::io_base_up
<devname#>1::io_lim_up
<devname#>1::capptr
<devname#>1::res0
<devname#>1::res1
<devname#>1::rombar
<devname#>1::iline
<devname#>1::ipin
<devname#>1::min_gnt
<devname#>1::max_lat
<devname#>1::bridge_ctrl

If the PCI bus has been registered into the GRMON's device handling system the PCI Plug and Play
configuration space registers will be accessible from the Tcl variables listed above. Depending on the
PCI header layout (standard or bridge) some of the variables list will not be available. Some of the
read-only registers such as DEVICE and VENDOR are stored in GRMON's memory, accessing such
variables will not generate PCI configuration accesses.

<devname#>1::<regname>2
<devname#>1::<regname>2::<fldname>3

Many devices exposes their registers, and register fields, as variables. When writing these variables, the
registers on the target system will also be written.

grmon2> info sys

2Replace with a register name
3Replace with a register field name

GRMON2 User's Manual 185

...
 mctrl0 Aeroflex Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us
...
grmon2> puts [format 0x%x $mctrl0:: [TAB-COMPLETION]
mctrl0::mcfg1 mctrl0::mcfg2 mctrl0::mcfg3 mctrl0::pnp::
mctrl0::mcfg1:: mctrl0::mcfg2:: mctrl0::mcfg3::
grmon2> puts [format 0x%x $mctrl0::pnp:: [TAB-COMPLETION]
mctrl0::pnp::ahb:: mctrl0::pnp::device mctrl0::pnp::ver
mctrl0::pnp::apb:: mctrl0::pnp::vendor
grmon2> puts [format 0x%x $mctrl0::pnp::apb:: [TAB-COMPLETION]
mctrl0::pnp::apb::irq mctrl0::pnp::apb::mask mctrl0::pnp::apb::start
grmon2> puts [format 0x%x $mctrl0::pnp::apb::start]
 0x80000000

3. User defined commands

User defined commands can be implemented as Tcl procedures, and then loaded into all shells. See the
documentation of the proc command [http://www.tcl.tk/man/tcl8.5/TclCmd/proc.htm] on the Tcl website
for more information.

http://www.tcl.tk/man/tcl8.5/TclCmd/proc.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/proc.htm

GRMON2 User's Manual 186

Appendix D. License key installation
1. Installing HASP HL Device Driver

GRMON is licensed using a HASP HL USB hardware key. Before use, a device driver for the key must
be installed. The latest drivers can be found at SafeNet website [http://www3.safenet-inc.com/support/hasp/
enduser.aspx#latestDD]. The installation is described below.

1.1. On a Windows NT/2000/XP host

The HASP device driver is installed using the installer HASPUserSetup.exe located in drivers/hasp/
win32/ directory on the GRMON CD. It will automatically install the required files. See readme.html in the
folder for more details.

Administrator privileges are required to install the HASP device driver.

1.2. On a Linux host

The Linux HASP driver consists of aksusbd daemon. It is contained in the drivers/hasp/linux/
on the GRMON CD. The driver comes in form of RPM packages for Redhat and SUSE Linux distributions
and DEB package for Ubuntu. The packages are located in drivers/hasp/rpm/ or drivers/hasp/
deb/. See readme.html in the folder for more installation details.

The driver daemon can then be started by re-booting or executing:

/etc/rc.d/init.d/aksusbd start

All described actions should be executed as root.

http://www3.safenet-inc.com/support/hasp/enduser.aspx#latestDD
http://www3.safenet-inc.com/support/hasp/enduser.aspx#latestDD
http://www3.safenet-inc.com/support/hasp/enduser.aspx#latestDD

GRMON2 User's Manual 187

Appendix E. Appending environment
variables
1. Windows

Open the environment variables dialog by following the steps below:

Windows 7

1. Select Computer from the Start menu
2. Choose System Properties from the context menu
3. Click on Advanced system settings
4. Select Advanced tab
5. Click on Environment Variables button

Windows XP

1. Select Control Panel from the Start menu
2. Open System
3. Select Advanced tab
4. Click on Environment Variables button

Variables listed under User variables will only affect the current user and System variables
will affect all users. Select the desired variable and press Edit to edit the variable value. If the variable
does not exist, a new can be created by pressing the button New.

To append the PATH, find the variable under System variables or User variables (if the user variable does
not exist, then create a new) and press Edit. At the end of the value string, append a single semicolon (;)
as a separator and then append the desired path, e.g. ;C:\my\path\to\append

2. Linux

Use the export <name>=<value> command to set an environment variable. The paths in the variables PATH
or LD_LIBRARY_PATH should be separated with a single colon (:).

To append a path to PATH or LD_LIBRARY_PATH, add the path to the end of the variable. See example
below.

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/my/path/to/appand

GRMON2 User's Manual 188

Appendix F. Compatibility
Breakpoints

Tcl has a native command called break, that terminates loops, which conflicts the the GRMON1 com-
mand break. Therefore break, hbreak, watch and bwatch has been replaces by the command bp.

Cache flushing
Tcl has a native command called flush, that flushed channels, which conflicts the the GRMON1 com-
mand flush. Therefore flush has been replaced by the command cctrl flush. In addition the command
icache flush can be used to flush the instruction cache and the command dcache flush can be used to
flush the data cache .

Case sensitivity
GRMON2 command interpreter is case sensitive whereas GRMON1 is insensitive. This is because Tcl
is case sensitive.

-eth -ip
-ip flag is not longer required for the Ethernet debug link, i.e. it is enough with -eth 192.168.0.51.

	GRMON2 User's Manual
	Table of Contents
	1. Introduction
	1.1. Overview
	1.2. Supported platforms and system requirements
	1.3. Obtaining GRMON
	1.4. Installation
	1.5. License
	1.6. GRMON Evaluation version
	1.7. Problem reports

	2. Debugging concept
	2.1. Overview
	2.2. Target initialization
	2.3. Memory register reset values

	3. Operation
	3.1. Overview
	3.2. Starting GRMON
	3.2.1. Debug link options
	3.2.2. Debug driver options
	3.2.3. General options

	3.3. GRMON command-line interface (CLI)
	3.4. Common debug operations
	3.4.1. Examining the hardware configuration
	3.4.2. Uploading application and data to target memory
	3.4.3. Running applications
	3.4.4. Inserting breakpoints and watchpoints
	3.4.5. Displaying processor registers
	3.4.6. Backtracing function calls
	3.4.7. Displaying memory contents
	3.4.8. Using the trace buffer
	3.4.9. Profiling
	3.4.10. Attaching to a target system without initialization
	3.4.11. Multi-processor support
	3.4.12. Stack and entry point
	3.4.13. Memory Management Unit (MMU) support
	3.4.14. CPU cache support

	3.5. Tcl integration
	3.5.1. Shells
	3.5.2. Commands
	3.5.3. API
	3.5.4. Links

	3.6. Symbolic debug information
	3.6.1. Multi-processor symbolic debug information

	3.7. GDB interface
	3.7.1. Connecting GDB to GRMON
	3.7.2. Executing GRMON commands from GDB
	3.7.3. Running applications from GDB
	3.7.4. Running SMP applications from GDB
	3.7.5. Running AMP applications from GDB
	3.7.6. GDB Thread support
	3.7.7. Virtual memory
	3.7.8. Specific GDB optimization
	3.7.9. Limitations of GDB interface

	3.8. Thread support
	3.8.1. GRMON thread commands

	3.9. Forwarding application console I/O
	3.9.1. UART debug mode

	3.10. FLASH programming
	3.10.1. CFI compatible Flash PROM
	3.10.2. SPI memory device

	4. Debug link
	4.1. Serial debug link
	4.2. Ethernet debug link
	4.3. JTAG debug link
	4.3.1. Xilinx parallel cable III/IV
	4.3.2. Xilinx Platform USB cable
	4.3.3. Altera USB Blaster or Byte Blaster
	4.3.4. FTDI FT4232/FT2232
	4.3.5. Amontec JTAGkey
	4.3.6. Actel FlashPro 3/3x/4
	4.3.7. Digilent HS1

	4.4. USB debug link
	4.5. PCI debug link
	4.6. GRESB debug link

	5. Debug drivers
	5.1. AMBA AHB trace buffer driver
	5.2. DSU Debug drivers
	5.2.1. Switches
	5.2.2. Commands
	5.2.3. Tcl variables

	5.3. Ethernet controller
	5.3.1. Commands

	5.4. GRPWM core
	5.5. I2C
	5.6. I/O Memory Management Unit
	5.7. Multi-processor interrupt controller
	5.8. On-chip logic analyzer driver
	5.9. Memory controllers
	5.9.1. Switches
	5.9.2. Commands

	5.10. PCI
	5.10.1. PCI Trace

	5.11. SPI
	5.12. SVGA frame buffer

	6. Support
	Appendix A. Command index
	Appendix B. Command syntax
	1. ahb - syntax
	2. at - syntax
	3. attach - syntax
	4. batch - syntax
	5. bdump - syntax
	6. bload - syntax
	7. bp - syntax
	8. bt - syntax
	9. cctrl - syntax
	10. cont - syntax
	11. cpu - syntax
	12. dcache - syntax
	13. dccfg - syntax
	14. dcom - syntax
	15. ddr2cfg1 - syntax
	16. ddr2cfg2 - syntax
	17. ddr2cfg3 - syntax
	18. ddr2cfg4 - syntax
	19. ddr2cfg5 - syntax
	20. ddr2delay - syntax
	21. ddr2skew - syntax
	22. detach - syntax
	23. disassemble - syntax
	24. dump - syntax
	25. dwarf - syntax
	26. edcl - syntax
	27. eeload - syntax
	28. ep - syntax
	29. exit - syntax
	30. flash - syntax
	31. float - syntax
	32. forward - syntax
	33. gdb - syntax
	34. go - syntax
	35. grpwm - syntax
	36. help - syntax
	37. hist - syntax
	38. i2c - syntax
	39. icache - syntax
	40. iccfg - syntax
	41. info - syntax
	42. inst - syntax
	43. iommu - syntax
	44. irq - syntax
	45. la - syntax
	46. leon - syntax
	47. load - syntax
	48. mcfg1 - syntax
	49. mcfg2 - syntax
	50. mcfg3 - syntax
	51. mdio - syntax
	52. mem - syntax
	53. memb - syntax
	54. memh - syntax
	55. mmu - syntax
	56. pci - syntax
	57. phyaddr - syntax
	58. quit - syntax
	59. reg - syntax
	60. reset - syntax
	61. run - syntax
	62. sdcfg1 - syntax
	63. sddel - syntax
	64. shell - syntax
	65. silent - syntax
	66. spi - syntax
	67. spim - syntax
	68. stack - syntax
	69. step - syntax
	70. svga - syntax
	71. symbols - syntax
	72. thread - syntax
	73. timer - syntax
	74. tmode - syntax
	75. va - syntax
	76. verify - syntax
	77. vmem - syntax
	78. vmemb - syntax
	79. vmemh - syntax
	80. vwmem - syntax
	81. vwmemb - syntax
	82. vwmemh - syntax
	83. vwmems - syntax
	84. walk - syntax
	85. wmdio - syntax
	86. wmem - syntax
	87. wmemb - syntax
	88. wmemh - syntax
	89. wmems - syntax

	Appendix C. Tcl API
	1. Device names
	2. Variables
	3. User defined commands

	Appendix D. License key installation
	1. Installing HASP HL Device Driver
	1.1. On a Windows NT/2000/XP host
	1.2. On a Linux host

	Appendix E. Appending environment variables
	1. Windows
	2. Linux

	Appendix F. Compatibility

