

GAISLER

LEON/GRLIB
Configuration and Development Guide

April 2014

Copyright Aeroflex Gaisler, 2014

1

Table of contents

1 Introduction..3
1.1 Overview ... 3

1.2 Other Resources .. 3

1.3 Licensing ... 4

2 System Design Guidelines ...5
2.1 Introduction ... 5

2.2 Minimal System .. 5

2.3 Memory Map... 6
2.3.1 Overview... 6
2.3.2 Typical LEON/GRLIB Memory Map... 6
2.3.3 Memory Map in Systems That Need 2 GiB Memory Area.................................. 7
2.3.4 AHB I/O Area and GRLIB Plug&Play Areas .. 7

2.4 Interrupt Assignments ... 8
2.4.1 Overview... 8
2.4.2 Linux 2.6... 8
2.4.3 RTEMS ... 8
2.4.4 VxWorks ... 9

2.5 Device Specific Identification ... 9

3 LEON design information..10
3.1 Introduction ... 10

3.2 General Recommendations ... 10
3.2.1 SPARC V9 CASA... 10
3.2.2 Data Cache Snooping.. 10
3.2.3 V7 and FPU... 10

3.3 LEON Example Configurations .. 10
3.3.1 Overview... 10
3.3.2 Minimal LEON Configuration.. 11
3.3.3 General Purpose LEON Configuration... 12
3.3.4 High Performance LEON Configuration .. 13

4 Multiple Buses and Clock Domains ..14
4.1 Introduction ... 14

4.2 Creating Multi-Bus Systems ... 14
4.2.1 Overview... 14
4.2.2 GRLIB Facilities... 14
4.2.3 GRLIB AMBA Plug&Play in Multi-Bus Systems ... 14
4.2.4 Buses in Different Clock Domains ... 15
4.2.5 Single AHB Bus Example .. 15
4.2.6 Multi-Bus System Example .. 16

4.3 LEON3 Double-Clocking ... 16
4.3.1 Overview... 16
4.3.2 LEON3-CLK2X Template Design ... 16
4.3.3 Clocking.. 17
4.3.4 Multicycle Paths.. 18
4.3.5 Dynamic Clock Switching .. 20
4.3.6 Configuration .. 20

4.4 Clock gating .. 20

2

4.4.1 Overview... 20
4.4.2 LEON clock gating ... 21

5 Core specific design recommendations..23
5.1 Overview ... 23

5.2 AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU).. 23

5.3 SVGA Controller (SVGACTRL) .. 23

6 GRLIB AMBA Test Framework..24
6.1 Overview ... 24

6.2 AT AHB Master .. 24
6.2.1 Description.. 24
6.2.2 Initialization and Instantiation .. 24
6.2.3 Simple Accesses.. 25

6.3 AT AHB Slave... 26
6.3.1 Description.. 26
6.3.2 Initialization and Instantiation .. 27
6.3.3 Controlling AT_AHB_SLV... 29

6.4 AT AHB Controller ... 30
6.4.1 Description.. 30
6.4.2 Usage... 30

7 Support...32

3

1 Introduction

1.1 Overview

The GRLIB IP Library is an integrated set of reusable IP cores, designed forsystem-on-chip(SoC)
development. The IP cores are centered around a common on-chip bus, and use a coherent method
for simulation and synthesis. The library is vendor independent, with support for different CAD
tools and target technologies. A unique plug&play method is used to configure and connect the IP
cores without the need to modify any global resources.

The LEON3 and LEON4 processors are synthesisable VHDL models of 32-bit processor compli-
ant with the SPARC V8 architecture. The models are highly configurable and particularly suitable
for SoC designs. Both LEON3 and LEON4 are distributed as integrated parts of the GRLIB IP
Library.

This configuration and development guide is intended to aid designers when developing systems
based on LEON/GRLIB. The guide complements the GRLIB IP Library User’s Manual and the
GRLIB IP Core User’s Manual. While the IP Library user’s manual is suited for RTL designs and
the IP Core user’s manual is suited for instantiation and usage of specific cores, this guide aims to
help designers make decisions in the specification stage.

1.2 Other Resources

There are several documents that together describe the GRLIB IP Library and Aeroflex Gaisler’s
IP cores:

• GRLIB IP Library User’s Manual (grlib.pdf) - Main GRLIB document that describes the
library infrastructure, organization, tool support and on-chip bus.

• GRLIB IP Core User’s Manual (grip.pdf) - Describes specific IP cores provided with the
GRLIB IP library. Also specifices which cores that are included in each type of GRLIB distri-
bution.

• GRLIB FT-FPGA User’s Manual (grlib-ft-fpga.pdf) - Describes the FT-FPGA version of the
GRLIB IP library, intended to implement the LEON3FT system on Actel and Xilinx FPGAs.
The document is an addendum to the GRLIB IP Library User’s Manual. This document is
only available in the FT-FPGA distributions of GRLIB.

• GRLIB FT-FPGA Virtex5-QV Add-on User’s Manual (grlib-ft-fpga-xqr5v.pdf) - Describes
functionality of the Virtex5-QV add-on package to the FT-FPGA version of the GRLIP IP
library, intended to implement LEON3FT systems on Xilinx Virtex-5QV FPGAs. The docu-
ment should be read as an addendum to the ‘GRLIB IP Library User’s Manual’ and to the
GRLIB FT-FPGA User’s Manual. This document is only available as part of the add-on pack-
age for FT-FPGA.

• LEON/GRLIB Configuration and Development Guide (guide.pdf) - This configuration and
development guide is intended to aid designers when developing systems based on LEON/
GRLIB. The guide complements the GRLIB IP Library User’s Manual and the GRLIB IP
Core User’s Manual. While the IP Library user’s manual is suited for RTL designs and the IP
Core user’s manual is suited for instantiation and usage of specific cores, this guide aims to
help designers make decisions in the specification stage.

• SpaceWire IP Cores User’s Manual (spacewire.pdf) - Contains documentation for SpaceWire
IP cores such as the SpaceWire router and GRSPW2_PHY that is not included in the GRLIB
IP Core User’s Manual. Typically not included in GRLIB distributions.

4

• CCSDS/ECSS Spacecraft Data Handling IP Core User’s Manual (tmtc.pdf) - Contains IP core
documentation for spacecraft data handling IP cores that is not present in the GRLIB IP Core
User’s Manual. Document delivered together with TM/TC IP cores.

1.3 Licensing

The main infrastructure of GRLIB is released in open-source under the GNU GPL license. This
means that designs based on the GPL version of GRLIB must be distributed in full source code
under the same license. For commercial applications where source-code distribution is not desir-
able or possible, Aeroflex Gaisler offers low-cost commercial IP licenses. Contact
sales@gaisler.com for more information or visit http://www.gaisler.com.

Some of the cores mentioned in this document (such as LEON4 and the AHB bridges) are only
available in the commercial versions of GRLIB.

http://www.gaisler.com

5

2 System Design Guidelines

2.1 Introduction

The design and partitioning of a system strongly depends on the intended use for the system. The
sections below make general recommendations based on the components available in GRLIB.

2.2 Minimal System

A minimal LEON/GRLIB system consists of the following IP cores:

In addition to the cores described above it is recommended to include a LEON Debug Support
Unit (DSU) and a debug communication link to be able to control the processor and inspect the
system via the GRMON Debug Monitor. GRLIB contains several debug communication link
(DCL) cores. All DCL cores are controlled over an external link to make accesses on an on-chip
AHB bus. Examples of DCL cores are the AHBJTAG, AHBUART and USBDCL cores.

In order for the processor to be able to communicate with the outside world, an 8-bit UART and a
General Purpose I/O port is also typically included in a LEON design.

With the above considerations the recommended minimal LEON/GRLIB system also includes the
following cores:

TABLE 1. Minimal LEON system

Core Description

CLKGEN Clock generator

RSTGEN Reset generator. Generating a glitch free on-chip system reset signal.

AHBCTRL AHB arbiter/controller.

APBCTRL AHB/APB bridge/controller. Must be included in order to interface
peripheral cores such as interrupt controller and timer unit.

LEON3/4 LEON3/4 processor

IRQMP Interrupt controller

GPTIMER General Purpose Timer Unit

MEMCTRL Memory controller providing access to (P)ROM and RAM. The
GRLIB IP Library contains several memory controllers. It is also possi-
ble to include on-chip ROM and RAM by using the AHBROM and
AHBRAM IP cores.

TABLE 2. Additional recommended cores for minimal LEON system

Core Description

DSU3/4 LEON Debug Support Unit

AHBJTAG/
AHBUART/
USBDCL/
GRETH

Debug communication link. AHBJTAG provides an external JTAG
link. Other examples include AHBUART (serial UART), USBDCL
(USB), GRETH (Ethernet debug communication link is available as
part of Ethernet MAC core).

APBUART 8-bit UART

GRGPIO General Purpose I/O Port

6

2.3 Memory Map

2.3.1 Overview

Most LEON systems use a memory map where ROM (boot PROM) is mapped at address
0x00000000 and RAM is mapped at address 0x40000000. Traditionally the AHB/APB bridge has
been mapped at 0x80000000 and peripherals such as timer, interrupt controller and UART have
been placed at fixed offsets in the APB address space. Table 3 shows the base addresses histori-
cally used in LEON systems.

Some software may not read all peripheral core base addresses from plug&play and instead
assume that some peripherals are mapped at these fixed offsets. One of the affected software pack-
ages is the BCC toolchain, where the -qambapp switch must be given in order for the produced
software to find the UART, timer and interrupt controller in case these peripherals are not mapped
at the addresses given in table 3.

The traditional memory map described above does not fit all systems. In particular one or several
large memory area (>= 1 GiB) may be difficult to place as the standard AHB decoder in GRLIB
constrains the base address of a memory area based on the memory area size. Other reasons
include that the use of AHB-to-AHB bridges that limit how the memory areas can be arranged. As
a result of this, there are several LEON/GRLIB designs with different memory maps. In order to
ease software development, this document contains some recommendations on how memory maps
should be arranged. Section 2.3.2 shows a traditional LEON/GRLIB memory map and section
2.3.3 contains recommendations on how to arrange memory maps that contains large memory
areas.

2.3.2 Typical LEON/GRLIB Memory Map

In order to use toolchains and other software distributed by Aeroflex Gaisler, some constraints in
the system’s memory map should be observed. A typical LEON3 system has the following mem-
ory map:

TABLE 3. Peripheral base addresses, legacy systems

Base address Description

0x80000000 LEON2 memory controller

0x80000100 Generic UART (APBUART)

0x80000200 Multi-processor interrupt controller (IRQMP)

0x80000300 Modular timer unit (GPTIMER)

TABLE 4. Typical LEON3 memory map

Base address Description

0x00000000 PROM

0x40000000 RAM base address. Some systems place SRAM at address 0x40000000
and SDRAM at base address 0x60000000. When SRAM is disabled the
memory controller may automatically adjust the SDRAM base address
to 0x40000000.

0x80000000 Base address of first AHB/APB bridge connecting interrupt controller,
UART(s) and timer unit.

0x90000000 Debug Support Unit register interface

7

The most important areas in the table above are base addresses for ROM and RAM. The default
linker scripts make assumptions on the locations of these areas. Also, software that makes use of
the GRLIB AMBA plug’n’play areas often assume the main plug’n’play area to be located at
0xFFFFF000. The information in this area is used by software to dynamically find the addresses of
all peripherals in the system.

The location of the first AHB/APB bridge (0x80000000 in the table above) is generally of less
importance. Some legacy software may assume that the bridge is located at the specified address.

The typical memory map given above constrains the maximum size of a memory area in the
design. The GRLIB infrastructure requires that memory areas are binary aligned according to their
size. This means that a 2 GiB memory area must start on address 0x00000000 or address
0x80000000. In order to accommodate memory areas of 2 GiB some systems use variations of the
memory map as shown in table 5.

2.3.3 Memory Map in Systems That Need 2 GiB Memory Area

The memory map in table 5 allows a 2 GiB memory map in the address range 0x00000000 -
0x7FFFFFFF and is supported by the toolchains supplied by Aeroflex Gaisler by giving an extra
switch (see the toolchain and OS documentation for details). Note that the default start address for
a LEON processor is 0x0. If the memory map above is used, the reset start address should be
changed to 0xC0000000.

Existing LEON systems use variations of the above memory map. The main difficulties that can
arise from different memory maps is that the RAM and ROM areas may collide in linker scripts
and boot loaders. It is therefore recommended that RAM is always mapped at 0x40000000 or
0x00000000 and that ROM (boot PROM area) is mapped at 0x00000000 or 0xC0000000.

Special switches may be required when building the application if RAM is mapped at
0x00000000. See toolchain documentation for details.

2.3.4 AHB I/O Area and GRLIB Plug&Play Areas

It is recommended that the default addresses are used for AHB I/O areas (determined by generic
on AHBCTRL) and GRLIB AMBA plug&play areas (determined via generics on AHBCTRL and
APBCTRL). Software scanning routines will assume that one play&play area is located at
0xFFFFF000.

0xFFF00000 AHB I/O area (if used by any core)

0xFFFFF000 Plug’n’play area (always located within AHB I/O area)

TABLE 5. Memory map accomodating 2 GiB main memory area

Base address Description

0x00000000 RAM

0x80000000 Other large area, for instance PCI bridge mapping PCI memory

0xC0000000 PROM / Memory mapped IO

0xD0000000 AHB/APB bridge

0xE0000000 Debug Support Unit register interface

0xFFF00000 AHB I/O area (if used by any core)

0xFFFFF000 Plug’n’play area (always located within AHB I/O area)

TABLE 4. Typical LEON3 memory map

Base address Description

8

It is possible to place the AHB I/O area and the AHB plug&play area so that it shadows another
AHB area. As an example a PCI core can be mapped at address 0xC0000000 - 0xFFFFFFFF while
the plug&play area is still reachable at offset 0xFFFFF000. While such memory maps are per-
fectly valid and useful for many systems it generally not recommended to let the AHB I/O or
plug&play area shadow another area as software drivers may not recognize that some of the mem-
ory area assigned to a core is essentially unreachable.

2.4 Interrupt Assignments

2.4.1 Overview

The LEON processor and interrupt controller provides 15 interrupt lines in the default configura-
tion. Interrupt 15 is non-maskable, which leaves 14 interrupts usable for peripheral cores. The
multiprocessor interrupt controllers (IRQMP and IRQ(A)MP cores) can be extended to provide 16
additional interrupts, called extended interrupts.

The GRLIB interrupt infrastructure allows any number of cores to share the same interrupt line.
Note, however, that sharing interrupts requires that the software drivers can handle shared inter-
rupts. Also, the time required to serve an interrupt request may be significantly prolonged if soft-
ware needs to check a large number of registers in order to determine if a peripheral asserted an
interrupt.

Some operating systems place additional constraints on interrupt assignments. The subsections
below describe the requirements of each OS. The basic rules to follow in order to be able to run the
maximum amount of software can be summarized with:

1. If possible, have one dedicated interrupt for each interrupt source (no shared interrupts).
2. Configure the timer unit (GPTIMER) to have dedicated interrupts for each timer
3. Place the timer interrupts within the range 2 - 12
4. Leave interrupts lines 13 - 15 unused

The subsections below dealing with operating systems may become outdated due to changes in the
operating systems. If in doubt, please consult the OS documentation or contact Aeroflex Gaisler
for the latest information.

2.4.2 Linux 2.6

Interrupt 15 is used for cross-calls. Interrupt 13 is the default selection for inter-processor-inter-
rupts (IPI). The interrupt line to be used for IPI can be selected when building the kernel and can-
not be shared with peripherals.

Linux also requires that the first timer on the general purpose timer unit (GPTIMER) has a dedi-
cated interrupt. For SMP operation the second timer must also have a dedicated interrupt line allo-
cated.

2.4.3 RTEMS

RTEMS supports extended interrupts. Interrupt 14 is used for cross-CPU messaging in AMP sys-
tems. This interrupt is defined in leon.h: LEON3_MP_IRQ, cannot be a shared interrupt and must
be in the range 1 .. 14.

RTEMS SMP is at the time of writing not finished and requirements are not known.

Timer 0 of GPTIMER 0 is the system clock timer, however RTEMS can be used without a timer.
There are two cases depending on which RTEMS distribution that is used:

Classical/official RTEMS BSP: GPTIMER0.timer0 must have separate IRQ and the interrupt must
be in the range 1 .. 14.

“Driver manager BSP” (RCC LEON3/4 BSP): Can handle both separate and shared IRQs on
GPTIMER, interrupt can be in the range 1 .. 31 (no limitations).

9

2.4.4 VxWorks

VxWorks makes use of interrupt 14 for inter-processor-interrupts (IPI). This interrupt should not
be shared with peripherals.

2.5 Device Specific Identification

GRLIB systems have two identifiers in the system’s plug&play area that can be used to distinguish
a particular device: The GRLIB build ID and the GRLIB System Device ID. The GRLIB build ID
is set globally for the full library and the device ID is set per design via the AHBCTRL VHDL
genericdevid(refer to the AHBCTRL section in GRLIB IP Core User’s Manual, grip.pdf). This
VHDL generic should be set to a unique value for all new designs. The filelib/grlib/amba/
devices.vhdlists device IDs, under the commentgrlib system device id’s,used for some existing
designs. It is recommended that customer designs use an ID larger than 16#0a00#. Please contact
Aeroflex Gaisler support if you wish to have you device ID added to the listing indevices.vhd.

Communication interfaces may have additional vendor and device identifiers. This is, for instance,
the case for JTAG, PCI and USB. For the USB debug link it is recommended that users keep the
Aeroflex Gaisler IDs so that GRMON may properly detected the debug link. For all other identifi-
ers the implementers of a device should use their own IDs as assigned by the appropriate organisa-
tions. Re-use of Aeroflex Gaisler’s vendor/manufacturer ID may prevent the device from fully
functioning together with software and debug tools.

10

3 LEON design information

3.1 Introduction

The sections below contain recommendations on how to configure the LEON processors depend-
ing on system requirements.

3.2 General Recommendations

3.2.1 SPARC V9 CASA

The LEON4 processor and later revisions of the LEON3 processor contain support for the SPARC
V9 CASA instruction. It is recommended that all new LEON3 implementations include support
for CASA (this is a strict requirement if the system will run WindRiver VxWorks in SMP).

3.2.2 Data Cache Snooping

To keep the data cache synchronized with external memory, cache snooping can be enabled. When
enabled, the data cache monitors write accesses on the AHB bus to cacheable locations. If another
AHB master writes to a cacheable location that is currently cached in the date cache, the corre-
sponding cache line is marked as invalid.

Data cache snooping is of high importance for SMP systems and, in general, both simplifies and
increases performance in systems with multiple masters. Note that the processor(s) snoop on the
bus to which they are directly connected. In a system with multiple AHB buses, snooping will only
work on the bus to which the processors are connected. Snooping will not provide cache coher-
ency if, for instance, there are masters connected between a Level-2 cache and memory, while the
processors are located in front of the Level-2 cache.

If the processor(s) is implemented with a memory management unit (MMU), then extra physical
tags must be enabled.

3.2.3 V7 and FPU

When the LEON is implemented with an FPU it should also include hardware support for multiply
and divide (SPARC V8 MUL/DIV selected with the LEON VHDL genericv8). Otherwise a
SPARC V7 processor with FPU will be obtained and this configuration may not be supported by
prebuilt packages and toolchains.

3.3 LEON Example Configurations

3.3.1 Overview

The subsections below show three different example configurations for LEON processors; a mini-
mal configuration used to target low area and high frequency, a typical configuration with all fea-
tures enabled, and a high-performance configuration where the requirements on processing
performance outweigh area and power considerations.

Each section contains a table with recommended values for some of the LEON processor VHDL
generics. If you are using thexconfig GUI to configure the processor then please not that the
VHDL generic names do not directly correspond to the configuration options in the GUI. The
descriptions of the configuration settings should provide enough information to do appropriate
configuration selection also viaxconfig. The xconfig tool also has support to initialize the proces-
sor configuration with values from the three example configurations described in the sections
below. See the configuration help text inxconfig for the optionForce values from example config-
uration in theProcessor sub menu for additional information.

11

Also note that all listed configuration options do not apply to all LEON processors. For instance,
the LEON3 processor has a VHDL generic called bp that controls the inclusion of branch predica-
tion, while the LEON4 processor is always implemented with support for branch prediction.

3.3.2 Minimal LEON Configuration

This LEON configuration is aimed at resource constrained systems where the area requirements of
the processor core needs to be minimized. Note that using an area minimized configuration may
not necessarily reduce the system’s performance since it may be possible to achieve a higher oper-
ating frequency by reducing the amount of logic in the processor core.

Table 6 below shows recommended values for some of the LEON processor VHDL generics to
attain a minimal configuration in terms of area.

TABLE 6. Minimal LEON processor configuration

VHDL
generic

Recommended
value Description

dsu 0 Some area can be saved by removing the Debug Support Unit
(DSU). However, this unit can prove to be invaluable at least dur-
ing the software development phase.

fpu 0 Disable floating-point unit

v8 0 Do not include support for SPARC V8 MUL/DIV instructions

mac 0 Do not include support for SPARC V8e SMAC/UMAC

nwp 0 Disable hardware watchpoints

icen / dcen 1 Include processor caches

isets / dsets 1 Direct mapped instruction and data cache

irepl / drepl 2 Random replacement policy for both instruction and data cache

isetsize /
dsetsize

- The size of the caches does not significantly affect the required
logic. Choose cache size according to application requirements
and amount of RAM available on target device.

dnsoop 0 Disable data cache snooping (see section 3.2.2)

mmuen 0 Disable memory management unit (MMU). Note: May be required
depending on software applications.

lddel 1 1-cycle load delay

tbuf 0 Disable instruction trace buffer (NOTE: Including the instruction
trace buffer may be of high value during software development and
debug).

pwd 1 Power-down implementation. Choose 2 if frequency target is not
met.

smp 0 Disable SMP support. If the processor core should be used in an
SMP configuration then see the GRIP documentation on how to set
the SMP generic. If SMP is enabled then thedsnoop VHDL
generic should also be set accordingly.

bp 0 Disable branch prediction

12

3.3.3 General Purpose LEON Configuration

This LEON configuration is aimed for general purpose processing balancing performance against
area and power requirements.

TABLE 7. General purpose LEON processor configuration

VHDL
generic

Recommended
value Description

dsu 1 Include support for the LEON Debug Support Unit (DSU)

fpu - Include floating-point unit based on application requirements. A
floating-point unit is highly recommended for most systems.
LEON processors can primarily interface the GRFPU or GRFPU-
lite floating point unit. The GRFPU is a high-performance pipe-
lined FPU with high area requirements. GRFPU-lite provides a
balanced option with high acceleration of floating-point computa-
tions combined with lower area requirements compared to
GRFPU.

v8 2 Include support for SPARC V8 MUL/DIV instructions using a 5-
cycle multiplier. Note that if the target technology has multiplier
blocks a single-cycle multiplier (v8 generic set to 1) may provide
lower area and higher performance.

mac 0 Do not include support for SPARC V8e SMAC/UMAC instruc-
tions.

nwp 2 Include two hardware watchpoints

icen / dcen 1 Include processor caches.

isets / dsets 2 Implement instruction and data caches with two ways

irepl / drepl 2 Random replacement policy for both instruction and data cache, or
possibly LRU replacement (irepl/drepl set to 0).

isetsize /
dsetsize

- The size of the caches does not significantly affect the required
logic. Choose cache size according to application requirements
and amount of RAM available on target device.

dnsoop 6 Enable snooping with extra physical tags (see section 3.2.2)

mmuen 1 Enable memory management unit (MMU)

itlbnum /
dtlbnum

8 Use eight entries each for the instruction and data MMU transla-
tion look-a-side buffers

tlb_type 2 Use separate translation look-a-side buffers (TLB) with fast write
for data and instruction.

tlb_rep 0 Use LRU TLB replacement

lddel 1 Use 1-cycle load delay

tbuf 4 Use 4 KiB instruction trace buffer.

pwd 2 Timing efficient power-down implementation.

smp 0 Disable SMP support. If the processor core should be used in an
SMP configuration then see the GRIP documentation on how to set
the SMP generic.

bp 1 Enable branch prediction

13

3.3.4 High Performance LEON Configuration

This LEON configuration is aimed at high performance processing where the needs for computa-
tional speed outweighs area and power requirements.

In order to reduce the effects of memory latency, a Level-2 cache is recommended for high-perfor-
mance systems. This is of particular interest in multiprocessor systems.

TABLE 8. High-performance LEON processor configuration

VHDL
generic

Recommended
value Description

dsu 1 Include support for the LEON Debug Support Unit (DSU)

fpu 1 - 7 Use GRFPU floating-point unit. Select (FP) multiplier depending
on target technology. For FPGA this would typically be inferred
(1) or technology specific (4). For ASIC DesignWare multiplier (2)
or Module Generator (3).

v8 16#32# Include support for SPARC V8 MUL/DIV instructions using a
32x32 pipelined multiplier. Note that if the target technology has
multiplier blocks a single-cycle multiplier (v8 generic set to 1)
may provide lower area and higher performance.

mac 0 Do not include support for SPARC V8e SMAC/UMAC instruc-
tions

nwp 4 Include support for four hardware watchpoints

icen / dcen 1 Include processor caches.

isets / dsets 2 Implement instruction and data caches with two ways

irepl / drepl 0 Least-Recently-Used replacement policy for instruction and data
caches.

isetsize /
dsetsize

- The size of the caches does not significantly affect the required
logic. Choose cache size according to application requirements
and amount of RAM available on target device.

dnsoop 6 Enable snooping with extra physical tags (see section 3.2.2)

mmuen 1 Enable memory management unit (MMU)

itlbnum /
dtlbnum

16 Use sixteen entries each for the instruction and data MMU transla-
tion look-a-side buffers

tlb_type 2 Use separate translation look-a-side buffers (TLB) with fast write
for data and instruction.

tlb_rep 0 Use LRU TLB replacement

lddel 1 Use 1-cycle load delay

tbuf 4 Use 4 KiB instruction trace buffer.

pwd 2 Timing efficient power-down implementation.

smp > 0 Enable SMP support. If the processor core should be used in an
SMP configuration then see the GRIP documentation on how to set
the SMP generic. Note that several processor entities must be
instantiated. This configuration option only enables support for
SMP, it does not instantiate several processor cores.

bp 1 Enable branch prediction

14

4 Multiple Buses and Clock Domains

4.1 Introduction

This section describes some techniques that can be used with GRLIB to create more complex sys-
tem architectures with multiple buses and/or clock domains.

Peripheral IP cores that need to work at a separate clock domain usually have their own clocking
and synchronization built in. This is not explained here, see the core-specific documentation.

4.2 Creating Multi-Bus Systems

4.2.1 Overview

The on-chip bus may become a bottle neck in systems where the processors and peripherals all
share the same bus. The fact that all IP cores are connected together may also introduce high loads
in the system, which can lead to timing issues at implementation. These issues can be solved by
partitioning the system into several AHB buses.

4.2.2 GRLIB Facilities

In order to partition the system into multiple buses, the general-purpose AHB bridge IP cores
AHBBRIDGE (uni-directional) and AHB2AHB (bi-directional) are included in GRLIB. There are
also special-purpose cores, such as the IOMMU and L2-cache, that have bridge functionality built
into them.

4.2.3 GRLIB AMBA Plug&Play in Multi-Bus Systems

Software and debug monitors such as GRMON can detect all IP cores connected to the on-chip
bus(es) by scanning the plug&play configuration area. The format and function of this area is
described in the GRLIB User’s Manual and in the GRLIB IP Core User’s Manual documentation
for the AHB controller (AHBCTRL) and AHB/APB bridge (APBCTRL).

In multi-bus systems, each bus will have its own AMBA plug&play configuration area and soft-
ware must be able to access all plug&play areas In order for software able to discover all peripher-
als in a system. The same applies for the GRMON debug monitor, to discover all peripherals the
debug communication link master interface must be connected to a bus from where it can access
all plug&play areas (as well as memory where peripheral registers are mapped).

The plug&play scanning routines discover the presence of multiple AHB buses when it discovers
the slave interface a core such as the Level-2 cache or AHB/AHB bridge (AHB2AHB, AHB-
BRIDGE). Upon discovery of a bridge the routine will typically look in the user defined register of
the bridge’s plug&play information to get the base address of the AHB I/O and plug&play area of
the second bus. Excatly how the base address of the plug&play information is communicated to
the scanning routine is specific for each core. The Level-2 cache and AHB/AHB bridges store this
address in user defined register 1 of the core’s AHB slave interface plug&play information. A
value of zero in this register signals to software that plug&play scanning should not be done for the
second bus behind the bridge.

When software discovers a bridge to a new bus, scanning should commence using the new
plug&play area address (depth-first scanning) and once the new plug&play area has been handled
scanning should continue on the current bus.

Note that for plug&play scanning to work, all plug&play areas must be accessible from the AHB
master that performs the scan. This means that any bridge between AHB buses must have a win-
dow that allows the plug&play area on the other side of the bridge to be accessed. System software
and debug tools by default start scanning for a plug&play area at the top of AMBA memory space.
it is important that the plug&play area located in this address has pointers so that all other
plug&play areas in the system can be discovered. For instance, the default plug&play area address
shouldnot be occupied by the plug&play area of a bus that isonly connected to the rest of the sys-

15

tem via the AHB master interface side of a Level-2 cache or uni-directional bridge. This is because
the extra information at the AHB master interface does not contain the base address for the
plug&play area of the bus on the AHB slave interface side of the bridge. As a result of this,
plug&play scanning routines will only find one bus in the system.

4.2.4 Buses in Different Clock Domains

In order to work around timing issues, or to reduce power consumption, it can make sense to parti-
tion the design also into several clock domains. The AHB/AHB bridges (AHB2AHB, AHB-
BRIDGE and GRIOMMU) allows connecting buses with differing operating frequencies together.

The bus clocks on each side of the bridge need to have a frequency ratio relationship and fixed
phase relation. This avoids the need to resynchronize signals on chip which would cause a perfor-
mance penalty.

If you want to run everything except the processor at half speed, a more efficient solution than
using bridges is to use the LEON double clocking support explained in section 4.3.

4.2.5 Single AHB Bus Example

A typical LEON/GRLIB design is shown in the figure below. The design is centered around one
AMBA AHB bus and also has a AMBA APB bus that connects some of the peripheral cores via an
AHB/APB bridge.

Building the system around one AHB bus has advantages in that it simplifies system design.

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

8/32-bits memory bus

USBLEON3
Serial

Dbg Link

AHB
Controller

Memory
Controller

AHB/APB
Bridge

I/O port UART

16-bit I/O

JTAG
Dbg Link

RS232 JTAG

RS232

Spacewire
Link

LVDS

WDOG

Ethernet
MAC

PHY

PS/2 VGA

VideoPS/2 IF
DAC

CAN 2.0
Link

CAN

SDRAMPROM I/O

USB PHY

port

16

4.2.6 Multi-Bus System Example

One example (shown above) of when a multi-bus system resolves bus contention is when a SVGA
controller (SVGACTRL core) is used. The SVGA controller continuously reads a frame buffer
located in external memory. This constant data fetching can consume a significant amount of the
available bus bandwidth, particularly in systems with relatively low system frequencies. The
impact of the SVGA controller bus traffic can be removed by placing the SVGA controller and a
dedicated memory controller on a separate bus. The processor can still access the frame buffer
through and uni-directional bridge.

4.3 LEON3 Double-Clocking

4.3.1 Overview

To avoid critical timing paths in large AHB systems, it is possible to clock the LEON3 processor
core at an inter multiple of the AHB clock. This will allow the processor to reach higher perfor-
mance while executing out of the caches. This chapter will describe how to implement a LEON3
double-clocked system using the LEON3-CLK2X template design as an example.

The LEON3 CPU core be clocked at a multiple of the the clock speed of the AMBA AHB bus.
When clocked at double AHB clock frequency, all CPU core parts including integer unit and
caches will operate at double AHB clock frequency while the AHB bus access is performed at the
slower AHB clock frequency. The two clocks have to be synchronous and a multicycle paths
between the two clock domains have to be defined at synthesis tool level. Separate components
(leon3s2x, leon3x, leon3ft2x) are provided for the double clocked core. Double clocked versions
of DSU (dsu3_2x) and MP interrupt controller (irqmp2x) are used in a double clocked LEON3
system. An AHB clock qualifier signal (clken input) is used to identify end of AHB cycle. The
AHB qualifier signal is generated in CPU clock domain and is high during the last CPU clock
cycle under AHB clock low-phase.

4.3.2 LEON3-CLK2X Template Design

The LEON3-CLK2X design is a multi frequency design based on double-clocked LEON3 CPU
core. The LEON3 CPU core and DSU run at multiple AHB frequency internally, while the AHB
bus and other AHB components are clocked by the slower AHB clock. Double clocked version of

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

LEON3
Serial

Dbg Link
AHB

Controller

Memory
Controller

AHB/APB
Bridge

I/O port UART

JTAG
Dbg Link

RS232 JTAG

Spacewire
Link

LVDS

Ethernet
MAC

PHY

PS/2 SVGA

CAN 2.0
Link

CAN

AHB2AHB
Bridge

Memory
Controller

AHB
Controller

(SVGA) AMBA AHB

17

the interrupt controller is used, synchronizing interrupt level signals between the CPU and the
interrupt controller.

The design can be configured to support different ratios between CPU and AHB clock such as 2x,
3x or 4x. If dynamic clock switching is enabled, an glitch-free clock multiplexer selecting between
the fast CPU clock and the slower AHB clock is used to dynamically change frequency of the CPU
core (by writing to an APB register).

4.3.3 Clocking

The design uses two synchronous clocks, AHB clock and CPU clock. For Xilinx and Altera tech-
nologies the clocks are provided by theclkgenmodule, for ASIC technologies a custom clock gen-
eration circuit providing two synchronous clocks with low skew has to be provided.

An AHB clock qualifier signal, identifying end of an AHB clock cycle is necessary for correct
operation of the double-clocked cores. The AHB clock qualifier signal (HCLKEN), indicating end
of an AHB clock cycle, is provided by theqmodmodule. The signal is generated in CPU clock
domain and is active during the last CPU clock cycle during low-phase of the AHB clock. Figure 1
shows timing for CPU and AHB clock signals (CPUCLK, HCLK) and AHB clock qualifier signal
(HCLKEN) for clock ratios 2x and 3x.

Figure 1.Timing diagram for CPUCLK, HCLK and HCLKEN

CPUCLK

HCLK

HCLKEN

CPUCLK

HCLK

HCLKEN

18

4.3.4 Multicycle Paths

Paths going through both CPU and AHB clock domains have propagation time of one AHB clock
cycle, and should be marked as multicycle paths with following exceptions:

Sample DC script defining multicycle paths and exceptions is provided in the design directory
(dblclk.dc).

Figure 2 shows synchronization of AHB signals starting in HCLK clock domain and ending in
CPUCLK domain (inside the double clocked cores LEON3S2X and DSU3_2X). These AHB sig-
nals are captured by registers in CPUCLK domain at the end of AHB clock cycle, allowing propa-
gation time of 2 or more CPUCLK cycles (one HCLK cycle). The end of the AHB clock cycle is
indicated by the AHB clock qualifier signal HCLKEN. One of the inputs of the AND gate in figure
below is connected to the clock qualifier signal HCLKEN ensuring that the value of the signal
AHBI is latched into R2 at the end of AHB cycle (HCLKEN = ‘1’). The value of signal AHBI is
not valid in the CPUCLK clock domain if the qualifier signal HCLKEN is low. In this case, the
AND gate will be closed and the value of the signal AHBI will not propagate to register R2.

Start point Through End point Propagation time

leon3s2x core

CPUCLK ahbi CPUCLK N CPUCLK

CPUCLK ahbsi CPUCLK N CPUCLK

CPUCLK ahbso CPUCLK N CPUCLK

HCLK irqi CPUCLK 1 CPUCLK

CPUCLK irqo HCLK 1 CPUCLK

CPUCLK u0_0/p0/c0/sync0/r[*]
(register)

1 CPUCLK

dsu3_2x core

CPUCLK ahbmi CPUCLK N CPUCLK

CPUCLK ahbsi CPUCLK N CPUCLK

dsui CPUCLK 1 CPUCLK

r[*] (register) rh[*] (register) 1 CPUCLK

irqmp2x core

r2[*] (register) r[*] (register) 1 CPUCLK

* N is ratio between CPU and AHB clock frequency (2, 3, ...)

19

Synchronization of AHB signals going from the double clocked cores to the AHB clock domain is
shown if figure 3. The AND gate is open when CPU (or DSU) performs an AHB access (AHBEN
= ‘1’). When the AND gate is open, the signal AHBO will be stable during the whole AHB cycle
and its value propagates to the HCLK clock domain (AHB bus). When CPU does not perform
AHB access (CLKEN = ‘1’) the AND gate is closed (AHBEN = ‘0’) disabling propagation of sig-
nal AHBO to the HCLK clock domain.

Figure 2.Synchronization between HCLK and CPUCLK clock domains

 CPUCLK

HCLK
HCLKEN

D Q D Q

HCLK

D Q

AHBI

 CPUCLK

CPUCLK
Clock Domain Clock Domain

R1 R2

LEON3S2X

Figure 3.Synchronization between CPUCLK and HCLK clock domains

 HCLK

CPUCLK
AHBEN

D Q

D Q

CPUCLK

D Q

AHBO

 HCLK

HCLK
Clock Domain Clock Domain

R1

R2

 LEON3S2X

20

The AND gates in figures 2 and 3 are 2-input clock AND gates. Synthesis tool should not optimize
these AND gates. Sample DC-script puts ‘don’t-touch’ attribute on these cells to prevent optimiza-
tion.

The multicycle constraints for the GRLIB double clocked cores are typically defined by start clock
domain, intermediate points and end clock domain. Although FPGA synthesis tools provide sup-
port for multicycle paths, they do not provide or have limited support for this type of multicycle
constraints (start clock domain, intermediate points, end clock domain). This limitation results in
over-constrained FPGA designs (multicycle paths become single cycle) which are fully functional
and suitable for FPGA prototyping.

4.3.5 Dynamic Clock Switching

An optional clock multiplexer switching between the CPU and AHB clocks and providing clock
for double-clocked cores can be enabled. The clock multiplexer is used to dynamically change fre-
quency of the CPU core, e.g. CPU can run at lower AHB frequency during periods with low CPU
load and at twice the AHB frequency during periods with high CPU load.

The clock switching is controlled by writing to theqmodmodules APB register (default address
0x80000400), bit 0: writing ‘1’ will switch to the CPU clock and writing ‘0’ will switch to the
AHB clock.

The clock multiplexer is glitch-free, during clock switching the deselected clock is turned-off
(gated) before the selected clock is enabled and selected.

Dynamic clock switching is available for Xilinx and generic technologies.

4.3.6 Configuration

xconfig

Clock ratios 2x, 3x and 4x between CPU and AHB clock are supported. Clock ratio 2x is sup-
ported for all technologies, ratios 3x and 4x are supported for ASIC technologies. Dynamic clock
switching is available for Xilinx and ASIC technologies.

leon3s2x

Double-clocked LEON3 core is configured similarly to standard LEON3 core (leon3s) through
VHDL generics. An additional VHDL genericclk2x is set to ((clock ratio - 1) + (8 *dyn)) where
dyn is 1 if dynamic clock switching is enabled and 0 if disabled.

qmod

Local qmodmodule generates AHB clock qualifier signal and optionally controls dynamic clock
switching. The module is configured through VHDL - generics defining clock ratio (clkfact),
dynamic clock switching (dynfreq) and address mapping of modules APB register (pindex, paddr,
pmask).

irqmp_2x

VHDL genericclkfact should be set to clock ratio between CPU and AHB clocks.

4.4 Clock gating

4.4.1 Overview

GRLIB contains support for using clock gating for both the processors and peripheral IP cores.
The GRCLKGATE unit described in the GRLIB IP Core User’s Manual can be used both to gate
peripherals and to provide automatic processor (and floating-point unit) clock gating.

21

4.4.2 LEON clock gating

To further reduce the power consumption of the processor, the clock can be gated-off when the
processor has entered power-down state. Since the cache controllers and MMU operate in parallel
with the processor, the clock cannot be gated immediately when the processor has entered the
power-down state. Instead, a power-down signal (DBGO.idle) is generated when all outstanding
AHB accesses have been completed and it is safe to gate the clock. This signal should be clocked
though a positive-edge flip-flop followed by a negative-edge flip-flop to guarantee that the clock is
gated off during the clock-low phase. To ensure proper start-up state, the clock should not be gated
during reset and at least 3 clocks after that reset has been de-asserted.

The processor should exit the power-down state when an interrupt become pending. The signal
DBGO.ipend will then go high when this happen, and should be used to re-enable the clock.

When the debug support unit (DSU3 or DSU4) is used, the DSUO.pwd signal should be used
instead of DBGO.idle. This will ensure that the clock also is re-enabled when the processor is
switched from power-down to debug state by the DSU. The DSUO.pwd is a vector with one
power-down signal per CPU (for SMP systems). DSUO.pwd takes DBGO.ipend into account, and
no further gating or latching needs to be done of this signal. If cache snooping has been enabled,
the continuous clock will ensure that the snooping logic is activated when necessary and will keep
the data cache synchronized even when the processor clock is gated-off. In a multi-processor sys-
tem, all processor except node 0 will enter power-down after reset and will allow immediate clock-
gating without additional software support.

Clock-tree routing must ensure that the continuous clock (CLK) and the gated clock (GCLK) are
phase-aligned. The template designleon3-clock-gateshows an example of a clock-gated system.

Figure 4. Examples of LEON clock gating

AHB CLK

GCLK

CLK

RESETN
DBGO.IDLE D Q D Q

LEON3/4 entity

AHB CLK

GCLK

CLK

RESETN
DSUO.PWD[n]

D Q

LEON3/4 entity

DBGO.IPEND

22

Please refer to the LEON signal descriptions in the GRLIB IP Core User’s Manual document for
documentation on which processor clock inputs that are allowed to be gated-off.

23

5 Core specific design recommendations

5.1 Overview

The subsections below contain system design recommendations when using specific GRLIB
cores.

5.2 AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU)

The AHB/AHB bridges can be of high value when partitioning the system into several clock
domains or when there is a need to separate bus traffic. The use of a bridge will result in increased
latencies when accesses need to traverse over the bridge.

For bi-directional bridge configurations the designer needs to be aware that collisions (attempts to
traverse the bridge both ways simultaneously) will mean that the access on the slave bridge will be
aborted and then re-attempted. This situation can potentially lead to starvation and deadlocks.

When instantiating the bridge with a prefetch buffer the buffer should be scaled so that it does not
prefetch unnecessarily large amounts of data. If the master(s) traversing the bridge have a maxi-
mum burst length of eight words, then the bridge’s prefetch buffer should not be larger than eight
words.

5.3 SVGA Controller (SVGACTRL)

The SVGA controller can consume a significant amount of the available bus bandwidth. Even if
calculations show that there is plenty of bandwidth available, the inclusion of SVGACTRL may
add bus access latencies that significantly impact computational performance. For design that
include a SVGA controller it is recommended to place the SVGA controller on a separate bus with
a dedicated frame buffer memory.

24

6 GRLIB AMBA Test Framework

6.1 Overview

GRLIB has a number of packages that can aid in verification of AMBA cores. New developments
should use the GRLIB AMBA Test Framework (ATF). The test framework consists of an AHB
master core, an AHB slave core and an AHB arbiter/controller core. The AHB master and slave
cores have debug interfaces that allow them to be controlled using external stimuli.

The sections below give an overview of the components in the framework. The test framework is
not distributed as a product and there is no complete user’s manual. The test master and slave is
controlled by procedure calls that are documented in their respective VHDL packages (described
below).

ATF files are located in the directory<grlib root>/lib/grlib/atf/ . All GRLIB distributions do not
include ATF. If theatf directory is missing from your GRLIB tree, then your version of GRLIB
does not contain the components described in this section.

NOTE: The GRLIB AMBA test framework is NOT included in the free GRLIB-GPL.

6.2 AT AHB Master

6.2.1 Description

The AT AHB Master (AT_AHB_MST) is a non-synthesizable AHB master core with a debug
interface so that the master can be controlled via function calls.

6.2.2 Initialization and Instantiation

The component for the master is defined in the packagegrlib.at_pkgand the procedure calls to
control the master is available in the packagegrlib.at_ahb_mst_pkg. In order to instantiate the
master, the following libraries should be included:
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at_pkg.all;
use grlib.at_ahb_mst_pkg.all;
use grlib.testlib.all;

The component for AT_AHB_MST has the following interface:
component at_ahb_mst is
 generic(
 hindex: in Integer := 0;
 vendorid: in Integer := 0;
 deviceid: in Integer := 0;
 version: in Integer := 0;
 grlibdatamux: in integer := 1);
 port(
 -- AMBA AHB system signals
 hclk: in std_ulogic;
 hresetn: in std_ulogic;
 --AHB Interface
 ahbi: in ahb_mst_in_type;
 ahbo: out ahb_mst_out_type;
 --Operation Scheduling Interface
 atmi: in at_ahb_mst_in_type;
 atmo: out at_ahb_mst_out_type
);
 end component;

The only VHDL generics that require proper assignment arehindexandgrlibdatamux. Thehindex
generic must match the bus index in the same way as for other GRLIB AHB masters. Thegrlib-
datamuxgeneric decides if the core should use AMBA compliant data multiplexing (grlibdatamux
=> 0) or the simplified data multiplexing scheme (grlibdatamux=> 1) commonly used in GRLIB

25

(see the GRLIB IP Library User’s Manual,grlib.pdf, for details). For use in a normal GRLIB sys-
tem the default value is recommended. An example instantiation of AT_AHB_MST can be found
in verification/at/at_tb.vhd. At the top of the file the libraries mentioned above are included. The
test bench instantiates several AMBA masters, the signals used to control the debug interfaces are
created as:
signal atmi : at_ahb_mst_in_vector(0 to 2);
signal atmo : at_ahb_mst_out_vector(0 to 2);

The masters are then instantiated using a generate loop:
-- Masters
mstrs01 : for i in 0 to 2 generate
 amst : at_ahb_mst
 generic map(
 hindex => FIRST_MASTER_INDEX+i,
 vendorid => 0,
 deviceid => 0,
 version => 0)
 port map(
 -- AMBA AHB system signals
 hclk => clk,
 hresetn => rstn,

 -- Direct Memory Access Interface
 atmi => atmi(i),
 atmo => atmo(i),

 -- AMBA AHB Master Interface
 ahbi => ahbmi,
 ahbo => ahbmo(FIRST_MASTER_INDEX+i));
end generate;

The masters are controlled by calls from the test bench process. Before use, each master debug
interface must be initialized. Inverification/at/at_tb.vhd this is done by calls toat_init(..):
testbench: process

----- variable definitions removed -----

 begin -- process testbench

 -- Testbench initialization

 Print("--");
 Print("AMBA Test Framework test bench");
 Print("--");
 for i in atmi'range loop
 at_init(i, atmi);
 end loop;
 wait until rstn = '1'

6.2.3 Simple Accesses

After initalization has been performed, as described in the previous section, the procedures defined
in grlib.at_ahb_mst_pkg(lib/grlib/atf/at_ahb_mst_pkg.vhd) can be used to command the master to
perform accesses. The procedures are either read or write procedures. A read or write procedure
can be either blocking (call will not return before the access is completed) or non-blocking (call
will return immediately and another call must be made at a later time in order to complete the com-
mand on the debug interface). All non-blocking procedures have names ending with_nb, the pro-
cedures used to complete a non-blocking call have names that end with_nb_fin.

Procedures that make single accesses are named in the following format:at_read_<size>(..)or
at_write_<size>(..). Where<size> can be 8, 16, 32, 64, 128 or 256. The non-blocking pairs are
named at_read_<size>_nb(..) / at_read_<size>_nb_fin(..) and at_write_nb(..) /
at_write_nb_fin(..). There are also procedures that make burst accesses. These have the wordburst
in their name, for instanceat_write_burst_32(..). The procedure names are overloaded and there
can be several variants of a procedure, with a different number of parameters.

The simplest way to perform a single access, in this case a write, is to use a call like:

26

at_write_32(
address => X”h40000000”,
data => X”01234567”,
atmi => atmi(0),
atmo => atmo(0));

The non-blocking variant is (here we assume that we have defined the variableid as an integer and
the variableready as a boolean):
at_write_32_nb(
 address => X”h40000000”,
 data => X”01234567”,
 waitcycles => 0,
 lock => false,
 hprot => “0011”,
 back2back => false,
 screenoutput => false,
 id => id,
 atmi => atmi(0),
 atmo => atmo(0));

-- Here other tasks can be performed

at_write_32_nb_fin(
 id => id,
 wait_for_op => true,
 screenoutput => false,
 ready => ready,
 atmi => atmi(0),
 atmo => atmo(0));

The first call initiates a write access to address 0x40000000 with data 0x01234567. The access
should start immediately, not assert HLOCK and use the specified HPROT (0b0011). The first call
will assign an access identifier to the variableid. This identifier is used by AT_AHB_MST to keep
track of the access. The same access identifier must then be used in the call to
at_write_32_nb_fin(..). The core will try to perform the write access even if the call to
at_write_32_nb_fin(..)never takes place. However, ifat_write_32_nb_fin(..)is never called, the
core will keep a record of the completed access in its internal data structures forever.

A call to at_<operation>_<size>_nb_fin(..)procedure will block if thewait_for_opparameter is
set totrue. If wait_for_opis set tofalse, the call will return immediately and thereadyvariable
must be checked to see if AT_AHB_MST completed the access.

The description given for write operations above also applies to read operations. Note that for non-
blocking reads (at_read_<size>_nb(..)/ at_read_<size>_nb_fin(..)), the data will be returned
whenat_read_<size>_nb_fin(..)is called. The first call only tells the master to initiate an access,
the at_read_<size>_nb_fin(..)call will tell you when, and if, the access has completed and the
master will have data available.

As mentioned above, the core can also generate burst accesses. In the case of non-blocking burst
accesses, the id and ready parameters will be arrays instead of single values.

The description above covers basic operation of AT_AHB_MST. Please refer to the
grlib.at_ahb_mst_pkgpackage located atlib/grlib/atf/at_ahb_mst_pkg.vhdto see all available pro-
cedure calls. Each call and its parameters are documented in the package.

6.3 AT AHB Slave

6.3.1 Description

The AT AHB Slave (AT_AHB_SLV) is an non-synthesizable AHB slave core with a debug inter-
face that allows insertion of custom AHB replies and access to the core’s internal memory struc-
tures.

27

6.3.2 Initialization and Instantiation

The component for the slave is defined in the packagegrlib.at_pkgand the procedure calls used to
access the slave via its debug interface are available in the packagegrlib.at_ahb_slv_pkg. In order
to instantiate the slave, the following libraries should be included:
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at_pkg.all;
use grlib.at_ahb_slv_pkg.all;

The component for AT_AHB_SLV has the following interface:
component at_ahb_slv is
 generic (
 hindex : integer := 0; -- Slave index
 bank0addr : integer := 0;
 bank0mask : integer := 0;
 bank0type : integer := 0; -- 0: memory area 1: I/O area
 bank0cache : integer := 0; -- Cachable
 bank0prefetch : integer := 0; -- Prefetchable
 bank0ws : integer := 0; -- Waitstates
 bank0rws : integer := 0; -- Random wait states 'ws' is the maxmimum
 bank0dataload : integer := 0; -- Load data from file
 bank0datafile : string := "none"; -- Initial data for bank
 bank1addr : integer := 0;
 bank1mask : integer := 0;
 bank1type : integer := 0; -- 0: memory area 1: I/O area
 bank1cache : integer := 0; -- Cachable
 bank1prefetch : integer := 0; -- Prefetchable
 bank1ws : integer := 0; -- Waitstates
 bank1rws : integer := 0; -- Random wait states 'ws' is the maxmimum
 bank1dataload : integer := 0; -- Load data from file
 bank1datafile : string := "none"; -- Initial data for bank
 bank2addr : integer := 0;
 bank2mask : integer := 0;
 bank2type : integer := 0; -- 0: memory area 1: I/O area
 bank2cache : integer := 0; -- Cachable
 bank2prefetch : integer := 0; -- Prefetchable
 bank2ws : integer := 0; -- Waitstates
 bank2rws : integer := 0; -- Random wait states 'ws' is the maxmimum
 bank2dataload : integer := 0; -- Load data from file
 bank2datafile : string := "none"; -- Initial data for bank
 bank3addr : integer := 0;
 bank3mask : integer := 0;
 bank3type : integer := 0; -- 0: memory area 1: I/O area
 bank3cache : integer := 0; -- Cachable
 bank3prefetch : integer := 0; -- Prefetchable
 bank3ws : integer := 0; -- Waitstates
 bank3rws : integer := 0; -- Random wait states 'ws' is the maxmimum
 bank3dataload : integer := 0; -- Load data from file
 bank3datafile : string := "none"; -- Initial data for bank
 grlibdatamux : integer := 1 -- GRLIB AMBA data MUX:ing
);
 port (
 rstn : in std_ulogic;
 clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 dbgi : in at_slv_dbg_in_type;
 dbgo : out at_slv_dbg_out_type
);
 end component;

The hindexgeneric must match the bus index in the same way as for other GRLIB cores. The
grlibdatamuxgeneric decides if the core should use AMBA compliant data multiplexing (grlib-
datamux=> 0) or the simplified data multiplexing scheme (grlibdatamux=> 1) used in GRLIB
(see the GRLIB IP Library User’s Manual,grlib.pdf, for details).

28

For use in a normal GRLIB system, the default value is recommended. The other generics define
the size and behavior of the, up to, four available AHB memory areas (banks). Each bank is con-
figured via a set of generics described in the table below:

An example instantiation of AT_AHB_SLV can be found inverification/at/at_tb.vhd. At the top of
the file the libraries mentioned above is included. The signals used to make accesses to
AT_AHB_SLV’s debug interface are created with:
signal dbgi : at_slv_dbg_in_type;
signal dbgo : at_slv_dbg_out_type;

An example instantiation of AT_AHB_SLV looks like:
ahbslv0 : at_ahb_slv
 generic map (
 hindex => 0,
 -- Bank 0 configuration;
 bank0addr => 16#000#,
 bank0mask => 16#FFF#,
 bank0type => AT_AHBSLV_MEM,
 bank0cache => 1,
 bank0prefetch => 1,
 bank0ws => 1,
 bank0rws => AT_AHBSLV_FIXED_WS,
 bank0dataload => 0,
 bank0datafile => "none")
 port map (
 rstn => rstn, clk => clk,
 ahbsi => ahbsi, ahbso => ahbso(0),
 dbgi => dbgi, dbgo => dbgo);

After the rstn signal has gone high the core will be ready to handle incoming AMBA accesses. If
no file is used to initialize the memory, all memory position will contain ‘U’.

VHDL generic Description

bank*addr Bank base address. Set in the same manner as for all GRLIB AHB slaves

bank*mask Bank mask. Decides how many of the bank*addr bits that are matched against the
incoming AMBA HADDR and thereby also determines the size of the memory area.

bank*type Selects if the bank is an AHB memory area or an AHB I/O area. The AT_AHB_SLV
package defines to constants that can be used to select the type:
AT_AHBSLV_MEM and AT_AHBSLV_IO.

bank*cache Determines if bank is cacheable. This value is only used when banktype is set to
AT_AHBSLV_MEM.

bank*prefetch Determines if the bank is prefetchable. This value is only used when banktype is set
to AT_AHBSLV_MEM.

bank*ws Number of wait states that the core will insert on each access to the bank.

bank*rws Enables random wait states. If this generic is set to AT_AHBSLV_RANDOM_WS,
the core will insert between 0 and bank*ws wait states on each access. If this generic
is set to AT_AHBSLV_FIXED_WS the core will always insert bank*ws wait states.

bank*dataload If this generics is non-zero, the core will load initial memory data from the SREC file
specified by bank*datafile.

bank*datafile See above.

TABLE 9. AT_AHB_SLV VHDL generics

29

6.3.3 Controlling AT_AHB_SLV

When the slave has left system reset (rstn input is high), the procedures defined in
grlib.at_ahb_slv_pkg(lib/grlib/atf/at_ahb_slv_pkg.vhd) can be used to control the slave’s behavior
and to access the slave’s internal memory.

Accesses to the slave’s internal memory are made via theahbslv_read(..)andahbslv_write(..)pro-
cedures. These procedures have the following interface:
 -- Subprogram: ahbslv_write
 -- Description: Write data to slave memory. The input address is masked and
 -- only the valid bits are used. This means that the full AMBA
 -- address can be used and the caller does not have to subtract
 -- the bank start address.
 procedure ahbslv_write (
 constant address : in std_logic_vector(ADDR_R);
 constant data : in std_logic_vector;
 constant bank : in integer;
 signal dbgi : out at_slv_dbg_in_type;
 signal dbgo : in at_slv_dbg_out_type);

 -- Subprogram: ahbslv_read
 -- Description: Read data from slave memory. The input address is masked and
 -- only the valid bits are used. This means that the full AMBA
 -- address can be used and the caller does not have to subtract
 -- the bank start address.
 procedure ahbslv_read (
 constant address : in std_logic_vector(ADDR_R);
 variable data : out std_logic_vector;
 constant bank : in integer;
 signal dbgi : out at_slv_dbg_in_type;
 signal dbgo : in at_slv_dbg_out_type);

These functions are useful quickly initializing memory or to check the result of AMBA accesses
made to the slave without generating traffic on the AMBA AHB bus. The width of the vector
assigned to the data parameter determines the size of the access. The width of the address vector
input must be 32 bits (31 downto 0).

A common use of AT_AHB_SLV is to specify special responses in order to test the behavior of
AHB masters in the system. Custom responses can be inserted with theahbslv_response(..)proce-
dure. This procedure name is overloaded and variants with a different number of parameters exist.
The most versatileahbslv_response(..) procedure is:
 procedure ahbslv_response (
 constant address_start : in std_logic_vector(ADDR_R);
 constant address_stop : in std_logic_vector(ADDR_R);
 constant bank : in integer;
 constant response : in std_logic_vector(1 downto 0);
 constant data : in std_logic_vector;
 constant master : in integer range 0 to NAHBMST-1;
 constant anymst : in boolean;
 variable id : out integer;
 signal dbgi : out at_slv_dbg_in_type;
 signal dbgo : in at_slv_dbg_out_type;
 constant ws : in integer := 0;
 constant repeat : in integer := 1;
 constant count : in integer := 1;
 constant splitcnt : in integer := 5;
 constant mem_access : in boolean := false;
 constant read_response : in boolean := true;
 constant write_response : in boolean := true;
 constant lock : in boolean := false;
 constant delay : in integer := 0;
 constant hprot : in std_logic_vector(3 downto 0);
 constant anyhprot : in boolean);

The parameters are documented in thegrlib.at_ahb_slv_pkgpackage. Note that several parameters
have default values, this means that they do not have to be assigned when using the procedure. A
selection of available AT_AHB_SLV procedures are listed in table 10. All procedures are further
documented in thegrlib.at_ahb_slv_pkg package located atlib/grlib/atf/at_ahb_slv_pkg.vhd.

30

6.4 AT AHB Controller

6.4.1 Description

The AT AHB Controller (AT_AHB_CTRL) is an non-synthesizable AHB arbiter/controller. Com-
pared to the standard GRLIB AHBCTRL core, AT_AHB_CTRL supports early burst termination
and forced re-arbitration

6.4.2 Usage

In order to instantiate the controller, the following libraries should be included:
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at_pkg.all;

Procedure name Description

ahbslv_response Inserts a customized response into the slaves response queue. If two
responses are inserted for the same address (range), the first response to be
inserted will be the first given. Several overloaded versions exist giving the
ability to, for instance, only replying to accesses from a specific master that
have a specific HPROT value. When a response is inserted, an unique iden-
tifier for that response is returned.

ahbslv_response_status Used to determine if a response with a specified identifier is in the slave’s
response queue.

ahbslv_response_remove Removes a response with a specified identifier from the slave’s response
queue.

ahbslv_response_clear Removes all queue responses in the slave or only for a specified bank.

ahbslv_response_unlock A response inserted with ahbslv_response(..) can be “locked” which means
that it will be valid for an unlimited number of accesses. This procedure can
be used to “unlock” the response, removing it from the slave.

ahbslv_waitforaccess This procedure will block until an access has been made to a specified
memory address.

ahbslv_waitforcomplete This procedure will block until a queued response has been triggered and
removed from the slave’s response queue.

ahbslv_setconfig Changes the default behavior of AHB slave model. Can be used to config-
ure wait states, random wait states, random RETRY and SPLIT responses,
etc.

ahbslv_getconfig Reads the current default behavior of the slave.

ahbslv_enable_split Enables SPLIT responses with a specified probability.

ahbslv_disable_split Disables SPLIT responses.

ahbslv_enable_retry Enables RETRY responses with a specified probability.

ahbslv_disable_retry Disables RETRY responses.

ahbslv_set_ws Sets the default number of wait states to be inserted by the slave.

ahbslv_get_ws Gets the default number of wait states inserted by the slave.

TABLE 10. Selection of AT_AHB_SLV procedures

31

The component for AT_AHB_CTRL has the following interface:
 component at_ahb_ctrl is
 generic (
 defmast : integer := 0; -- default master
 split : integer := 0; -- split support
 rrobin : integer := 0; -- round-robin arbitration
 timeout : integer range 0 to 255 := 0; -- HREADY timeout
 ioaddr : ahb_addr_type := 16#fff#; -- I/O area MSB address
 iomask : ahb_addr_type := 16#fff#; -- I/O area address mask
 cfgaddr : ahb_addr_type := 16#ff0#; -- config area MSB address
 cfgmask : ahb_addr_type := 16#ff0#; -- config area address mask
 nahbm : integer range 1 to NAHBMST := NAHBMST; -- number of masters
 nahbs : integer range 1 to NAHBSLV := NAHBSLV; -- number of slaves
 ioen : integer range 0 to 15 := 1; -- enable I/O area
 disirq : integer range 0 to 1 := 0; -- disable interrupt routing
 fixbrst : integer range 0 to 1 := 0; -- support fix-length bursts
 debug : integer range 0 to 2 := 2; -- report cores to console
 fpnpen : integer range 0 to 1 := 0; -- full PnP configuration decoding
 icheck : integer range 0 to 1 := 1;
 devid : integer := 0; -- unique device ID
 enbusmon : integer range 0 to 1 := 0; --enable bus monitor
 assertwarn : integer range 0 to 1 := 0; --enable assertions for warnings
 asserterr : integer range 0 to 1 := 0; --enable assertions for errors
 hmstdisable : integer := 0; --disable master checks
 hslvdisable : integer := 0; --disable slave checks
 arbdisable : integer := 0; --disable arbiter checks
 mprio : integer := 0; --master with highest priority
 mcheck : integer := 1; --check memory map for intersects
 enebterm : integer := 0; --enable early burst termination
 ebprob : integer := 10; --probability setting for of early bursttermination
 ccheck : integer range 0 to 1 := 1; --perform sanity checks on pnp config
 acdm : integer := 0 --AMBA compliant data muxing (for hsize > word)
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 msti : out ahb_mst_in_type;
 msto : in ahb_mst_out_vector;
 slvi : out ahb_slv_in_type;
 slvo : in ahb_slv_out_vector;
 testen : in std_ulogic := '0';
 testrst : in std_ulogic := '1';
 scanen : in std_ulogic := '0';
 testoen : in std_ulogic := '1';
 doarb : in std_ulogic := '0'
);
 end component;

Most of the core’s VHDL generics are the same as for the AHBCTRL core. Two generics have
been added:enebtermandebprob. Whenenebtermis set to a non-zero value the core may auto-
matically terminate burst accesses early. The normal GRLIB arbiter, AHBCTRL, does not inter-
rupt a burst by removing grant from a master. Withenebterm/= 0 andebprob set to 10 the
probability of a burst being interrupted by AT_AHB_CTRL is about 0.10 in each cycle.

Bursts may also be terminated early by assertion of thedoarb input signal. Whendoarb is
asserted, the AHB arbiter will perform arbitration.

Use of AT_AHB_CTRL is primarily recommended when a core will be used in non-GRLIB sys-
tems. The GRLIB arbiter will never interrupt a burst access and it is not a strict requirement that a
core can handle terminated bursts for the core to function in GRLIB.

32

7 Support

Aeroflex Gaisler AB provides support via support@gaisler.com for customers with support con-
tracts. Limited free support is also provided by Aeroflex Gaisler engineers on the leon_sparc
Yahoo! group found at http://tech.groups.yahoo.com/group/leon_sparc/. This group also has a
searchable archive.

http://tech.groups.yahoo.com/group/leon_sparc/
http://tech.groups.yahoo.com/group/leon_sparc/

Aeroflex Gaisler AB tel +46 31 7758650

Kungsgatan 12 fax +46 31 421407

411 19 Göteborg sales@gaisler.com

Sweden www.aeroflex.com/gaisler

Copyright © 2014 Aeroflex Gaisler AB.

Aeroflex Gaisler AB, reserves the right to make changes to any products and services described herein at any
time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in
this document is current before using this product. Aeroflex does not assume any responsibility or liability
arising out of the application or use of any product or service described herein, except as expressly agreed to
in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a
license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex
or of third parties.

GAISLER

AEROFLEX GAISLER 33

http://www.gaisler.com

	LEON/GRLIB
	Configuration and Development Guide
	1 Introduction
	1.1 Overview
	1.2 Other Resources
	1.3 Licensing

	2 System Design Guidelines
	2.1 Introduction
	2.2 Minimal System
	2.3 Memory Map
	2.3.1 Overview
	2.3.2 Typical LEON/GRLIB Memory Map
	2.3.3 Memory Map in Systems That Need 2 GiB Memory Area
	2.3.4 AHB I/O Area and GRLIB Plug&Play Areas

	2.4 Interrupt Assignments
	2.4.1 Overview
	2.4.2 Linux 2.6
	2.4.3 RTEMS
	2.4.4 VxWorks

	2.5 Device Specific Identification

	3 LEON design information
	3.1 Introduction
	3.2 General Recommendations
	3.2.1 SPARC V9 CASA
	3.2.2 Data Cache Snooping
	3.2.3 V7 and FPU

	3.3 LEON Example Configurations
	3.3.1 Overview
	3.3.2 Minimal LEON Configuration
	3.3.3 General Purpose LEON Configuration
	3.3.4 High Performance LEON Configuration

	4 Multiple Buses and Clock Domains
	4.1 Introduction
	4.2 Creating Multi-Bus Systems
	4.2.1 Overview
	4.2.2 GRLIB Facilities
	4.2.3 GRLIB AMBA Plug&Play in Multi-Bus Systems
	4.2.4 Buses in Different Clock Domains
	4.2.5 Single AHB Bus Example
	4.2.6 Multi-Bus System Example

	4.3 LEON3 Double-Clocking
	4.3.1 Overview
	4.3.2 LEON3-CLK2X Template Design
	4.3.3 Clocking
	4.3.4 Multicycle Paths
	4.3.5 Dynamic Clock Switching
	4.3.6 Configuration

	4.4 Clock gating
	4.4.1 Overview
	4.4.2 LEON clock gating

	5 Core specific design recommendations
	5.1 Overview
	5.2 AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU)
	5.3 SVGA Controller (SVGACTRL)

	6 GRLIB AMBA Test Framework
	6.1 Overview
	6.2 AT AHB Master
	6.2.1 Description
	6.2.2 Initialization and Instantiation
	6.2.3 Simple Accesses

	6.3 AT AHB Slave
	6.3.1 Description
	6.3.2 Initialization and Instantiation
	6.3.3 Controlling AT_AHB_SLV

	6.4 AT AHB Controller
	6.4.1 Description
	6.4.2 Usage

	7 Support

