

Universidade Federal de Santa Catarina Centro Tecnológico – CTC Departamento de Engenharia Elétrica

"EEL7020 – Sistemas Digitais"

Prof. Eduardo Augusto Bezerra

Eduardo.Bezerra@eel.ufsc.br

Florianópolis, março de 2013.

Plano de Aula

"Projeto de Sistemas Digitais com VHDL"

- Objetivos:
 - Apresentar uma visão geral de VHDL
 - Exemplo de descrição VHDL
 - Introdução ao Quartus II ferramentas de desenvolvimento
 - Estudo de caso / exercício

VHDL - Visão Geral

- VHDL linguagem para descrição de hardware
- VHDL = VHSIC Hardware Description Language
- VHSIC = Very High Speed Integrated Circuits. Programa do governo dos USA do início dos anos 80.
- No final da década de 80, VHDL se tornou um padrão IEEE (Institute of Electrical and Electronic Engineers).
- Existem diversas ferramentas para simular e sintetizar (gerar hardware) circuitos descritos em VHDL.
- Outras linguagens de descrição de hardware: Verilog, SystemC, AHDL, Handel-C, System Verilog, Abel, Ruby, ...

VHDL - Visão Geral

- O projeto de um circuito digital pode ser <u>descrito</u> em VHDL em diversos níveis de abstração (estrutural, comportamental).
- Descrições no nível de transferência entre registradores (RTL, Register Transfer Level) são bastante utilizadas.
- VHDL <u>NÃO</u> é uma linguagem de programação, e as ferramentas de síntese (não são de "compilação") não geram códigos executáveis a partir de uma descrição VHDL.
- Descrições em VHDL podem ser simuladas (executadas em um simulador).
- Descrições em VHDL podem ser utilizadas para gerar um hardware (arquivo para configuração de um FPGA, por exemplo).
- A geração de estímulos para simulação VHDL é realizada por intermédio de testbenches.
- Um testbench define os estímulos externos a serem utilizados como entrada para o circuito (definição do comportamento externo ao circuito sob teste).
- O testbench pode ser escrito em VHDL ou em diversas outras linguagens (ex. C, C++, ...).

Descrição de circuito digital em VHDL

<u>ENTITY</u> – define os "pinos" do circuito digital (sinais), ou seja, a interface entre a lógica implementada e o mundo externo.

Descrição de circuito digital em VHDL


```
architecture circuito_logico of halfadd is
begin
  F1 <= A xor B;
  F2 <= A and B;
end circuito logico;
```

<u>ARCHITECTURE</u> – define a funcionalidade do circuito digital, utilizando os "pinos" de entrada e saída listados na ENTITY em questão. Uma ENTITY pode possuir diversas implementações diferentes (diversas ARCHITECTURES).

Descrição completa do circuito em VHDL (Entity e Architecture)

```
library IEEE;
use IEEE.Std_Logic_1164.all;
entity halfadd is
port (A: in std_logic;
B: in std_logic;
F1: out std_logic;
F2: out std_logic
);
end halfadd;
```


Para utilizar o tipo std_logic é necessário incluir um pacote da biblioteca IEEE.

```
architecture circuito_logico of halfadd is begin
```

```
F1 <= A xor B;
F2 <= A and B;
end circuito_logico;</pre>
```

Plataforma de prototipação FPGA Altera - DE2

Kit DE2 da Altera

Interface com o usuário (entrada e saída)

- Placa DE2 possui 18 LEDs vermelhos denominados LEDR17-0 e 18 chaves denominadas SW17-0
- As conexões entre esses componentes e os pinos do FPGA da placa estão definidas no arquivo DE2_pin_assignments.csv
- São utilizados "vetores" para facilitar o acesso aos LEDs e chaves da placa
- Exemplo: SW[0] é o elemento 0 do vetor SW, e está conectado ao pino PIN_N25 do FPGA
- No código em VHDL, usar sempre os nomes definidos no arquivo DE2_pin_assignments.csv (ver Pinos.csv no site da disciplina)

Interface com o usuário (entrada e saída)

• Código VHDL para "leitura" das chaves e "escrita" nos LEDs

```
library ieee;
   use ieee.std logic 1164.all;
   entity part1 is
       port ( SW : in std_logic_vector(17 downto 0);
             LEDR : out std logic vector(17 downto 0)
   end part1;
   architecture behavior of part1 is
   begin
       LEDR(7 downto 0) <= SW(15 downto 8);
       LEDR(15 downto 8) <= "01010101";
       LEDR(17) \le (SW(17) AND SW(0)) OR (SW(16) AND '1');
   end behavior;
EEL CTC UFSC
                          EEL7020 – Sistemas Digitais
                                                             11/26
```

Tarefa a ser realizada na aula prática

Tarefa a ser realizada na aula prática

- 1. Utilizando a ferramenta Quartus II da Altera, criar um projeto VHDL que implemente o circuito apresentado no slide 7 (*and* e *xor*).
- 2. Realizar a simulação do circuito (VHDL) por intermédio de diagramas de formas de onda, e obter a tabela verdade.
- 3. Visando fixar o conhecimento do fluxo de ferramentas de projeto, seguir o tutorial descrito no livro texto, e detalhado na última aula.
- Utilizando as dicas do slide 11, alterar o projeto de forma a realizar a entrada dos dados A e B a partir das chaves SW(0) e SW(1), e a apresentação dos resultados F1 e F2 no LEDR(0) e LEDR(1).
- 5. Testar o circuito no kit DE2, usando as chaves SW(0) e SW(1) para entrar com os operandos, e observar os resultados nos LEDs.

Resumo do tutorial: *Etapa 1 - Design Entry*

- 1. [Quartus II] File -> New Project Wizard
- 2. No "project wizard", seguir exatamente os passos do tutorial da última aula.
- 3. File -> New -> VHDL File (Essa é a principal diferença!).
- 4. Copiar o fonte VHDL do slide 7 para o novo arquivo, e salvar.

Resumo do tutorial: Etapa 2 - Simulação

- [ModelSim] Simulação Funcional Teste do circuito
 -> não considera informação de temporização.
 - Seguir o tutorial de simulação da última aula.
- 6. Resultado esperado da simulação:

Resumo do tutorial: *Etapa 3 – prototipação FPGA*

7. Adaptar o fonte para os nomes de sinais da DE2:

```
1
      library IEEE;
 2
      use IEEE.Std Logic 1164.all;
 3
 4
    entity halfadder is
 5
    port (
                                                        -- A -> SW(0)
 6
          SW : in std logic vector(17 downto 0); -- B -> SW(1)
 7
          LEDR: out std logic vector(17 downto 0) -- sum -> LEDR(0)
 8
                                                        -- carry -> LEDR(1)
          );
 9
      end halfadder;
10
11
    architecture ha stru of halfadder is
12
    begin
13
        LEDR(0) \le SW(0) \text{ xor } SW(1); \quad -- \text{ sum } \le A \text{ xor } B
        LEDR(1) \leq SW(0) and SW(1); -- carry \leq A and B
14
15
      end ha stru;
```

Resumo do tutorial: Etapa 3 – prototipação FPGA

8. Assignments -> Import Assigments (procurar no site e usar o arquivo DE2_pin_assignments.qsf ou Pinos.qsf)

Marka Import Assignments	×
Specify the source and categories of assignments to import.	
Eile name: C:/LabSessions/DE2_pin_assignments.qsf	Categories
Copy existing assignments into halfadder.qsf.bak before importing	Advanced
OK Cancel	Help

- 9. Com isso, os pinos do FPGA foram associados aos sinais da entity do VHDL
- 10. Compilar o VHDL (síntese)
- **11. ATENÇÃO!!!** Verificar se o nome da entity é o mesmo nome do projeto, para evitar erros na síntese.
- 12. A compilação resulta em cerca de 400 warnings devido aos pinos não conectados do arquivo *.qsf*

Resumo do tutorial: Etapa 3 – prototipação FPGA

13. Programação – FPGA é carregado com circuito, configurando fisicamente elementos de processamento e roteamento. *Tools – Programmer. Hardware Setup – USB-Blaster. Start!*

Programmer - C:/Li	abSessions/lab1/halfadder	- halfadder - [Chai	n1.cdf]*	_		_					l	- 0	x
<u>File Edit View Pr</u>	ocessing <u>T</u> ools <u>W</u> indow	Help 🐬									Search alter;	a.com	
Hardware Setup	USB-Blaster [USB-0]				Mode	JTAG		•	Progress:		100% (Suc	cessful)	
Enable real-time ISF	P to allow background progran	nming (for MAX II and	d MAX V devices)										
Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit	Erase	ISP CLAMP		
Stop	output_files/halfadder.sof	EP2C35F672	002F8B53	FFFFFFF									
Auto Detect													
🔀 Delete													
Add File													
Change File													
Save File													
Add Device													
1 ¹⁰ Up	SEI IN												
J [™] Down													E
	EP2C35F6	72											
	•												+

Para ir além: uso do LCD

Escrita no LCD da placa DE2 da Altera

```
library ieee;
   use ieee.std_logic_1164.all;
   entity LCD is
   port (
   LCD DATA:
                   out std_logic_vector(7 downto 0);
                   out std_logic;
   LCD RW:
   LCD EN:
                   out std logic;
                   out std_logic;
   LCD RS:
                   out std_logic;
   LCD ON:
   LCD<sup>BLON</sup>:
                   out std_logic;
   SW : in std_logic_vector(17 downto 0)
   );
   end LCD;
   architecture LCD WR of LCD is
   begin
          LCD_ON <= SW(17);
          LCDBLON <= SW(16);
          LCD_DATA
                       <= SW(7 downto 0);
           LCD RS
                      <= SW(8);
           LCD EN \leq SW(9);
           LCD_RW <= SW(10);
          end LCD_WR;
EEL CTC UFSC
                              EEL7020 – Sistemas Digitais
```

20/26

Passos para inicializar (CONFIGURAR) o LCD

PASSO 1: envia comando 1 (38H).

Esse comando liga o LCD, liga o cursor, e faz o cursor piscar.

Chave (SW)	Valor (posição da chave)	Efeito	
17	1	LCD_ON	
16	1	LCD_BLON	- ligar I CD
70	0011 1000	Comando	- ativar cursor
8	0	LCD_RS (0 = controle)	e piscar
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN	
10	0	LCD_RW	

Passos para inicializar (CONFIGURAR) o LCD

PASSO 2: envia comando 2 (0FH).

Esse comando liga o LCD, liga o cursor, e faz o cursor piscar.

Chave (SW)	Valor (posição da chave)	Efeito	
17	1	LCD_ON	
16	1	LCD_BLON	- ligar I CD
70	0000 1111	Comando	- ativar cursor
8	0	LCD_RS (0 = controle)	e piscar
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN	
10	0	LCD_RW	

Passos para inicializar (CONFIGURAR) o LCD

PASSO 3: envia comando 3 (06H).

Esse comando liga o LCD, liga o cursor, e faz o cursor piscar.

Chave (SW)	Valor (posição da chave)	Efeito	
17	1	LCD_ON	
16	1	LCD_BLON	- ligar I CD
70	0000 0110	Comando	- ativar cursor
8	0	LCD_RS (0 = controle)	e piscar
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN	
10	0	LCD_RW	

Procedimento de ESCRITA de caracteres no LCD

<u>PASSO 4</u>: envio de dados para o LCD O LCD aceita caracteres da tabela ASCII (ver <u>http://asciitable.com</u>). No exemplo a seguir está sendo escrito o caracter A, ou seja, 41H, ou 01000001 em binário.

Chave (SW)	Valor (posição da chave)	Efeito
17	1	LCD_ON
16	1	LCD_BLON
70	0100 0001	Dado 'A'
8	1	LCD_RS (1 = dados)
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN
10	0	LCD_RW

Procedimento para limpar (apagar) o LCD

PASSO 5: comando para limpar (apagar) o LCD

Chave (SW)	Valor (posição da chave)	Efeito
17	1	LCD_ON
16	1	LCD_BLON
70	0000 0001	Comando
8	0	LCD_RS (0 = controle)
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN
10	0	LCD_RW

Escrita no LCD da placa DE2 da Altera

Tutorial

http://www.feng.pucrs.br/~jbenfica/curso/tutorial_lcd.pdf

http://www.lisha.ufsc.br/~bezerra/disciplinas/Microprocessadores/tools/LCD/LCD_APLICATIVO.html

