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Abstract  

N-version programing is defined a s  t h e  independent 
generation of N2 2 func t iona l ly  equiva len t  prograns 
f r an  the  sme i n i t i a l  spec i f ica t ion .  A methodology of 
N-version programing has been devised and th ree  types  
o f  spec ia l  mechanisms have been iden t i f i ed  tha t  are 
needed to coordinate t h e  execution of an N-version 
software un i t  and to canpare t h e  correspondent r e s u l t s  
generated by each version. Two experiments have been 
conducted to test t h e  f e a s i b i l i t y  of N-version 
programing. The r e s u l t s  o f  these experiments a r e  
discussed. In addi t ion ,  c o n s t r a i n t s  a r e  iden t i f i ed  t h a t  
must be met f o r  e f f e c t i v e  appl ica t ion  of N-version 
programing. 

1. Approaches to Software Fault-Tolerance 

The usual method to a t t a i n  r e l i a b i l i t y  of software 
operation is fault-avoidance (or in to le rance)  [ l  I. A l l  
software defec ts  a r e  eliminated pr ior  to operation. If 
m e  defec ts  remain, t he  operation is r e l i a b l e  only as 
long a s  t he  d e f e c t s  a r e  not  involved i n  progran 
execution. In most l a rge  and canplex software systems 
these  fault-avoidance condi t ions  have not  been 
successfu l ly  a t t a ined ,  regard less  of a very l a r g e  
investment of  e f f o r t  and resources,  and software 
crashes  have occurred during operation. "his 
observation leads  to the  conjec ture  t h a t  for r e l i a b l e  
software operation, redundant software i n  m e  form is 
required t o  de t ec t ,  to i s o l a t e ,  or to recover fran 
effects of  t he  thus f a r  uneliminated software defec ts .  

Achievement of  high r e l i a b i l i t y  o f  opera t ion  through 
t h e  use of redundant system elements is a f u n d a e n t a l  
p r i n c i p l e  i n  fault-tolerance of hardware (phys ica l )  
f a u l t s  141. "he use of  redundant software to  recover 
from software malfunction, however, r e q u i r e s  spec ia l  
caution due to the  id iosyncra t ic  c h a r a c t e r i s t i c s  o f  
software. I n  cont ras t  with hardware, i n  which physical 
f a u l t s  predominate, software d e f e c t s  a r e  t ime-invariant 
defec ts .  Errors a r e  produced by using the  sane inpu t s  
which t r igge r  t he  same d e f i c i e n t  elements o f  a progran. 
Therefore, executing dupl ica te  copies  of a program does 
n o t  improve t h e  r e l i a b i l i t y  of  opera t ion  with respect 
to software defec ts .  Furthermore, while t h e  main cause 
of hardware u n r e l i a b i l i t y  is a randan f a i l u r e . t h a t  o f  
software is its complexity. The canplexi ty  o f  software 
l eads  t o  several  d i f f i c u l t i e s .  F i r s t ,  it is d i f f i c u l t  
to cons t ruc t  error-free software. Second, software is 
unl ike ly  t o  perform canple te  self-checking on its own 
outputs.  Third, it i s ' d i f f i c u l t  t o  perform run-time 
d iagnos is  o f  software i n  order  to  l o c a t e  t h e  source of 
a software error. These observa t ions  lead to the  
conclusion t h a t  i f  redundant software is used i n  an 
attempt t o  achieve software fault-tolerance,  then it 
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should t r y  t o  meet the  following cons t ra in ts :  (1 )  It 
does not  r e q u i r e  complete self-checking; (2) it does 
not r e l y  upon run-time software d iagnos is ;  and ( 3 )  it 
m u s t  conta in  independently developed a l t e r n a t i v e  
rout ines  for the  sane func t ions ,  

Experience with fau l t - to le rance  of hardware 
(phys ica l )  f a u l t s  suggests t h a t  func t iona l ly  equivalent 
a l t e r n a t i v e  rout ines  may be employed to improve 
r e l i a b i l i t y  of software opera t ion .  Recently, two 
d i s t i n c t  approaches have been inves t iga ted  which anploy 
a l t e r n a t e  software rout ines  a s  a means to achieve 
software fault-tolerance.  In t h e  approach o f  recovery 
blocks [2, 33 these rout ines  a r e  organized i n  a manner 
s imi l a r  to t he  dynamic redundancy (standby sparing) 
technique i n  hardware [41. The prime o b j e c t i v e  is to 
perform run-time software error de tec t ion  and to 
implement error recovery by tak ing  an a l t e r n a t e  path 
o f  operation. 

A po ten t i a l  a l t e r n a t i v e  to recovery blocks is to use 
software redundancy analogously t o  the  s t a t i c  
( r ep l i ca t ion  and voting) redundancy approach i n  
hardware 143. The prime o b j e c t i v e  here  is t o  mask t h e  
e f f e c t s  o f  software d e f e c t s  a t  t h e  boundaries o f  
designated program modules. The f i r s t  t echnica l  
discussion of t h i s  approach i n  which one of  t he  au thors  
took pa r t  occurred i n  February 1966 a t  t h e  IEEE 
Workshop on t h e  Organization of Reliable Automata i n  
Pac i f ic  Palisades,  Ca. Several suggestions t h a t  t h i s  
approach might be a v i a b l e  method of  software fau l t -  
tolerance were published a few years l a t e r  
[ l ,  5, 6,  7, 81. In 1975, an experimental research 
pro jec t  e n t i t l e d ,  "N-Version programing" was i n i t i a t e d  
a t  UCLA to sys temat ica l ly  i n v e s t i g a t e  the  f e a s i b i l i t y  
o f  t h i s  approach [ l ,  9, 103. 

2. Concepts o f  N-Version Programming 

N-version programing is defined a s  t h e  independent 
generation o f  N L  2 f u n c t i o n a l l y  equivalent prograns, 
ca l led  "versions", f r an  the  same i n i t i a l  spec i f ica t ion  
[91. (This term is prefer red  to " d i s t i n c t  software,ft  
[81, s ince  it bears no implication about t h e  

which is vague and d i f f i c u l t  t o  
quantify or even qua l i fy ,  among the  N versions o f  a 
program. ) "Independent generation o f  programs" here 
means tha t  t h e  programing efforts a r e  car r ied  o u t  by N 
ind iv idua ls  or groups t h a t  do not  i n t e r a c t  with respect 
to the  programing process. Wherever possible,  
d i f f e r e n t  algorithms and programing languages or 
t r ans l a to r s  a r e  used in each e f f o r t .  

The i n i t i a l  s p e c i f i c a t i o n  is a formal spec i f ica t ion  
i n  a s p e c i f i c a t i o n  language. The goal o f  t he  i n i t i a l  
spec i f ica t ion  is to s t a t e  t h e  func t iona l  requirements 
canple te ly  and unanbiguously, while leaving the  widest 
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poss ib l e  choice of implementations t o  the  N programing 
efforts. It a l s o  s t a t e s  a l l  t h e  spec ia l  f e a t u r e s  t h a t  
a r e  needed in  order  to execute  t h e  set of N vers ion i n  
a faul t - tolerant  manner. An i n i t i a l  spec i f i ca t ion  
should.def ine:  ( 1 )  the funct ion to  be implemented by an 
N-version software un i t ;  (2) da ta  f o n a t s  for t h e  
special mechanisms: comparison vec to r s  (,k-vectors") , 
comparison s t a t u s  i n d i c a t o r s  (ltcs-indicators"), and 
synchronization mechanisms; (3) t h e  cross-check po in t s  
k kc-points") for c-vector generation; (4 )  t h e  
canparison (matching or vot ing)  a lgori thn;  and (5) t h e  
response to t h e  possible  outcanes of matching or 
voting. We note t h a t  "canparison" is used a s  a general  
term, while "matching" r e f e r s  to the  N = 2 case ,  and 
"voting', to a majori ty  dec i s ion  with N 2. The 
canparison a lgo r i thn  e x p l i c i t l y  s t a t e s  t h e  al lowable 
range o f  discrepancy i n  nunerical  r e s u l t s ,  i f  such a 
range exists. 

N vers ions of t h e  program a r e  independently 
generated with r e spec t  to t h e  i n i t i a l  spec i f i ca t ion .  
Though d i f f e ren t  i n  t h e i r  implmentat ion,  t h e  N 
vers ions a r e  assmed to b e  func t iona l ly  equivalent .  
Together, these N versions a r e  s a i d  to form an N- 
version software un i t .  h r i n g  the  developnent o f  an 
N-version progran, t h e  performance of each vers ion must 
s a t i s f y  some acceptance criteria of its own before it 
can be integrated i n t o  t h e  N-version software u n i t .  An 
acceptance progran can be used to d r i v e  a s i n g l e  
version fo r  its acceptance t e s t i n g .  To d r i v e  an N- 
version software mi t  a supervisory progran c a l l e d  a 
d r i v e r ,  is n e e d e d .  It is a modified acceptance 
program with add i t iona l  c a p a b i l i t i e s  to coordinate  t h e  
execution of N ve r s ions  and to vo te  or to match t h e i r  
correspondent r e s u l t s .  The integrated set of an N- 
version software u n i t  and its d r i v e r  is sa id  to be an 
N-version progran. 

Three types of spec ia l  mechanisms a r e  needed to 
execute an N-version software u n i t  and to match or vo te  
t h e  correspopndent r e s u l t s  generated by each vers ion.  
These spec ia l  mechanisms a re :  (1) comparison (c-) 
vectors ,  (2 )  comparison s t a t u s  (cs-) ind ica to r s ,  and 
(3)  synchronization mechanisms. The points  a t  which 
c-vectors a r e  generated and employed for matching or 
voting a r e  ca l l ed  cross-check (cc-) p i n t s .  

a r e  d a t a  s t r u c t u r e s  represent ing a subset  
of a vers ion 's  local program s t a t e  which is 
in t e rp re t ab le  by t h e  d r ive r .  Meaningful i n t e r p r e t a t i o n  
of a c-vector, however, can only  be achieved when a 
cc-point condi t ion has been s a t i s f i e d .  A c-vector 
generated by a version a t  a cc-point contains  tw  types 
of information. The canparison va r i ab le s  (c-var iables)  
of a c-vector point  t o  values  of va r i ab le s  which a r e  t o  
be matched with t h e i r  coun te rpa r t s  from other  vers ions.  
The s t a t u s  flags of a c-vector i nd ica t e  whether or no t  
some s ign i f i can t  events  have taken place during t h e  
generation of these  c-var iables .  Exanples of such 
events  are:  end of f i le,  exception condi t ions detected 
by t h e  system, or cond i t ions  defined i n  t h e  i n i t i a l  
spec i f i ca t ion .  When majori ty  of vers ions produces t h e  
r e s u l t s  t h a t  agree ( i .e ,  f a l l  within t h e  al lowable 
range of discrepancy) ,  these r e s u l t s  a r e  t r ea t ed  a s  
acceptable r e s u l t s  fran t h i s  N-version software un i t .  
Any version which generates  results t h a t  d i f f e r  frcm 
the  acceptable results is designated a s  a disagreeing 
version. 

Cs-indicators a r e  used to i n d i c a t e  ac t ions  to be 
taken a f t e r  matching or vot ing o f  correspondent c- 
vec to r s  when a cc-point condi t ion is s a t i s f i e d .  The 
ac t ions  to be taken a t  t h e  c c - p i n t s  a f t e r  t h e  exchange 
of c-vectors depend on: (1) whether a l l  ve r s ions  
d e l i v e r  t he  c-vectors within specif ied time, and (2)  
whether the c-vectors agree or disagree.  Possible  
outcanes a re :  (1) cont inuat ion,  (2) termination of one 
or more vers ions,  and (3) cont inuat ion a f t e r  changes i n  

C-vectors 

t h e  c-vectors of one or more vers ions on t h e  b a s i s  of a 
ma jo r i ty  decis ion.  

Synchronization mechanisms a r e  used to synchronize 
t h e  execution s t e p s  of an N-version software un i t .  
Each vers ion uses  these mechanisms to  s igna l  to t h e  
d r i v e r  t h a t  a c-vector is ready. The d r i v e r  uses these  
mechanisms to con t ro l  h e n  a version should be 
ac t iva t ed .  They a r e  a l s o  used by t h e  d r i v e r  t o  prevent 
vot ing or matching before  a l l  correspondent c-vectors 
a r e  ready. Original ly ,  a version is i n  an i n a c t i v e  
s t a t e .  When invoked by t h e  d r i v e r ,  it e n t e r s  i n t o  a 
wai t ing s t a t e .  A t  t h i s  s t a t e  it wa i t s  f o r  a 
synchronization s igna l  represent ing a request  for 
se rv ice  f r an  the  d r ive r .  When t h i s  s igna l  is received,  
it t r a n s f e r s  i n t o  a running s t a t e .  If any terminat ing 
condi t ion is signaled by t h e  cs- indicators ,  then t h e  
execution of t h i s  version is terminated and it goes 
back t o  i n a c t i v e  s t a t e .  Otherwise, it gene ra t e s  a c- 
vector  upon t h e  s a t i s f a c t i o n  of a cc-point condi t ion,  
then it uses  a synchronization s igna l  to n o t i f y  t h e  
d r i v e r  t h a t  a c-vector is ready, and then r e t u r n s  to 
wai t ing s t a t e .  The s t a t e  t r a n s i t i o n s  for a version a r e  
i l l u s t r a t e d  i n  Figure 1. It should be noted t h a t  s t a t e  
t r a n s i t i o n s  due t o  system resource a l loca t ion  and 
dea l loca t ion  a r e  not of d i r e c t  concern to  N-version 
programing and a r e  not  discussed here. 

INVOKED ( INACTIVE ) INVOKED 

SERVICE REQUIRED-, 

CROSS-CHECK POINT 
CONDITION 
SATISFIED \ 
CROSS-CHECK POINT 
CONDITION 
SATISFIED \ 

TERMINATING CONDITION 

RUNNING 

Figure 1 S t a t e  Transi t ions o f  a version 

A l imi t a t ion  o f  t h e  N-version approach r e s u l t s  f r a n  
the f a c t  t h a t  a l l  N vers ions o f  t he  program o r ig ina te  
f r a n  the  same i n i t i a l  spec i f i ca t ion ,  which is 
e f f e c t i v e l y  t h e  "hard core" o f  t h i s  method. Its 
co r rec tness ,  completeness, and unambiguity have to  be 
assured p r io r  to  the  N-version programing e f f o r t .  It 
is our  conjecture  t h a t  e i t h e r  formal co r rec tness  
proofs ,  or exhaust ive va l ida t ions  of i n i t i a l  
spec i f i ca t ions  when they a r e  s t a t ed  in  compact, formal 
spec i f i ca t ion  languages 1111 a r e  much more l i k e l y  t o  
succeed within acceptable  c o s t  bounds than proofs or 
va l ida t ions  of t h e  d e t a i l e d  implementations t h a t  
o r i g i n a t e  f r an  such spec i f i ca t ions .  Once t h e  
spec i f i ca t ions  have been accepted a s  c o r r e c t ,  t h e  
proofs  or va l ida t ions  of t h e  programs can be replaced 
by t h e  run-time software faul t - tolerance provisions. 

The second major observat ion concerning N-version 
programing is t h a t  its success  a s  a method for run- 
time to l e rance  of software f a u l t s  depends on whether 
t h e  r e s idua l  software f a u l t s  i n  each version a r e  
d i s t ingu i shab le .  We de f ine  d i s t ingu i shab le  sof tware 
f a u l t s  a s  f a u l t s  t h a t  w i l l  cause a disagreenent  between 
c-vectors a t  t h e  spec i f i ed  cc-points during t h e  
execution o f  t h e  N-version program t h a t  was generated 
fran t h e  i n i t i a l  spec i f i ca t ion .  f i s t i n g u i s h a b i l i t y  is 
affected by t h e  choice o f  c-vectors and cc-points, a s  
well a s  by t h e  nature  o f  t he  f a u l t s  thmselves .  It is 
a fundamental conjecture  of t h e  N-version approach t h a t  
t h e  independence of programing e f f o r t s  w i l l  g r e a t l y  
reduce t h e  p robab i l i t y  o f  i den t i ca l  software d e f e c t s  

114 



occuring i n  two or more versions.  Together with a 
reasonable choice of  c-vectors and c c - p i n t s  t h i s  is 
expected to turn N-version programming i n t o  an 
e f f e c t i v e  method t o  achieve to le rance  o f  software 
f a u l t s .  The e f fec t iveness  o f  t h e  e n t i r e  approach 
depends on the  v a l i d i t y  of  t h i s  conjec ture ,  t h e r e f o r e  
it is c r i t i c a l l y  important t o  keep the  i n i t i a l  
spec i f ica t ion  f r e e  of  any flaws t h a t  would b i a s  t h e  
independent programers  toward introducing the  same 
software defec ts .  

The research e f f o r t  a t  UCLA addresses two thus  f a r  
unanswered questions:  ( 1 )  Which c o n s t r a i n t s  (e.g., 
need for  formal spec i f i ca t ions ,  s u i t a b l e  types  of 
problems, na ture  of  algorithms, timing c o n s t r a i n t s ,  
i-tc.) have t o  be s a t i s f i e d  to make N-version 
programing f eas ib l e  a t  a l l  regard less  o f  t he  c o s t ?  
( 2 )  How does the  cost-effectiveness of t h e  N-version 
programing approach compare to  the  t w o  a l t e r n a t i v e s :  
non-redmdant (" fau l t - in to le ran t" )  programing [l], and 
the  "recovery block" [ 2 ,  31 approach? The s c a r c i t y  of 
previous results and an absence of  formal t h e o r i e s  on 
C-version programing has led us to choose an 
experimental approach i n  t h i s  inves t iga t ion .  ?he 
approach has been to choose m e  conveniently 
access ib le  programing problems, t o  a s s e s s  t h e  
app l i cab i l i t y  of N-version programing, and then to 
proceed to generate a set o f  programs. Cnce generated,  
t h e  prcgrans are executed i n  a simulated mul t ip le -  
hardware system, and the  r e su l t i ng  observations a r e  
applied to re f ine  the  methodology and to build up 
theo re t i ca l  concepts o f  N-version programing. A more 
de ta i l ed  discussion o f  t h e  research approach and g w l s  
can be found i n  191, and a de t a i l ed  d iscuss ion  of 
experimental results i n  [ lo] .  

3 .  A Comparison of  Approaches 

In canparison to N-version programing the  recovery 
block approach has one apparent advantage. In sane 
s i tua t ions ,  a mf tware  system evolves by replacement o f  
m e  of  its modules with newly developed ones. The 
replaced modules can be used as supplmentary  
a l t e rna te s  t o  the  new modules. 'Ihe production cost is 
lower i n  t h i s  case.  

However, t he re  a r e  a l s o  ce r t a in  disadvantages 
associated with the  recovery block approach. Fir-st ,  
t h e  system s t a t e  before e n t r y  i n t o  a recovery block 
must be saved u n t i l  sane reasonable r e s u l t s  are 
obtained fran the block. Considerable s torage  overhead 
may then be involved for  nested recovery block 
structures. Second, spec ia l  precautions a r e  needed to 
coordinate pa ra l l e l  processes within a nested recovery 
block s t ruc tu re .  Ctherwise t h e  interdependencies anong 
these processes may requi re  tha t  a long chain of 
process e f f e c t s  should be undone a f t e r  a process has 
f a i l ed  [ZI. Third, some intermediate output  frcxn a 
recovery block may not be r e v e r s i b l e  in  a real-t ime 
environment. Therefore, no recovery ac t ion  can be 
performed before the  incor rec t  output causes i ts  
daaage. Fourth, spec ia l  system support is necessary t o  
a l l e v i a t e  t he  above weaknesses. This limits t h e  
genera l i ty  o f  appl ica t ions  o f  t h e  recovery block 
technique. 

t h a t  i n  most cases  only qlreasor~ableness" ra ther  than 
"correctness" may be checked for  by acceptance tests. 
The lack  o f  established procedures to es t imate  the  
e f fec t iveness  of  acceptance tests leaves  it hard to 
determine i f  it is s u f f i c i e n t  t o  use a given acceptance 
test f o r  a v e r y  c r i t i c a l  appl ica t ion .  

In view o f  t he  above d i f f i c u l t i e s ,  t h e  N-version 
programing approach o f f e r s  some advantages over t h e  
recovery blocks. In t h i s  approach, self-checking is 
not  required.  Some redundant software can be 
eliminated; t h i s  seems a t t r a c t i v e  f r an  the  coverage 
p i n t  of  view [12].  It a l s o  o f f e r s  t he  p o s s i b i l i t y  o f  
imnediately masking sane software f a u l t s  so t h a t  t he re  
is no delay i n  operation. 

In c e r t a i n  appl ica t ions ,  N-version programing a l so  
makes b e t t e r  use of  e x i s t i n g  hardware fault-tolerance 
resources.  For ins tance ,  t he re  a r e  recent system 
des igns  f o r  aerospace appl ica t ions  t h a t  use redundant 
hardware a t  t he  system l eve l  to a t t a i n  fault-tolerance.  
The SIFT design [ 133, t h e  Symnetric Multiprocessor [ 141 
and the  cen t r a l  computer complex i n  t h e  Space Shu t t l e  
[151 are some exanples. In  these  systems, copies o f  
iden t i ca l  programs a r e  executed i n  t h ree  o r  more 
iden t i ca l  processor-memory u n i t s ,  and voting of t he  
results allows de tec t ion  and masking of  hardware 
f a u l t s .  Since f u l l  system r e l i a b i l i t y  requi res  the  
r e l i a b l e  operation o f  both hardware and software,  these  
des igns  a r e  vulnerable to  software def ic ienc ies .  The 
adoption of  N-version p r o g r m i n g  may allow such 
systems t o  t o l e r a t e  both hardware and software f a u l t s  
without de lays  caused by t h e  acceptance t e s t i n g  used i n  
t he  recovery block approach. 

4. Implementation of  N-Version Programing 

For the  reason o f  convenience , t h e  following 
discussion w i l l  a s s m e  t h a t  N-3. An extension to N > 3 
is q u i t e  straightfoward. 

4.1 Special  Mechanisms 

Implementation of  s p e c i a l  mechanisms (c-vectors,  
cs - ind ica tors ,  and synchronization mechanisms), i n  a 
3-version progran is i l l u s t r a t e d  by Figures 2, 3, and 
4. The schemata shown i n  these  f igu res  have been 
written w i t h  t he  PL/I compiler i n  mind. It should be 
noted t h a t  a s  a result of  emphasis on r eadab i l i t y ,  t he  
length  of some i d e n t i f i e r s  or l a b e l s  may n o t  be allowed 
i n  m e  implementations. 

VERSIONi : PROCEDURE OPTIONS (TASK) ; 

} . E X T E R N A L '  

DCL 1 C-VECTORi 

T {  s t a tus  f l ags  
DCL ( D i S A G R E E i  , G O O D B Y E )  
DCL (SERVICEi , C O M P L E T E i )  EVENT 
DCL FINIS BIT(I) I N I T ( ' O ' B ) ;  
o ther  dec lara t ions ;  
DO WHILE (TFINIS); 

WAIT (SERVICE1 ) ; 
COMPLETION (SERVICEi) = 'O'B; 
I F  1 G O O D B Y E  & TDISAGREEi 

comparison var iab les  

EIT(1 ) ' E X T E R N A L ;  
EXTERNAL; 

THEN CALL PRODUCE; 
ELSE FINIS = ' 1 'B;  
COMPLETION (COMPLETEi )  = ' 1 'B;  

F ina l ly ,  we a l s o  note t h a t  t h e  e f fec t iveness  o f  t h e  
acceptance test is of ten  qu i t e  d i f f i c u l t  t o  measure. 
In many cases ,  t h e  procedure used to v e r i f y  r e s u l t s  
f r an  the  execution of  a program can be a s  canplex a s  PRODUCE : PROCEDURE ; 
t he  program itself. For exanple, it is easy to check produce C-VECTORi ; 
t he  consistency o f  t he  nunber of  elements i n  a set E N D  P R O D U C E ;  
before and a f t e r  execution of a sorting routine.  It. is 
more d i f f i c u l t  t o  ver i fy  t h a t  a l l  o f  t he  da ta  i tems a r e  
indeed sorted a s  spec i f ied .  It  is even more d i f f i c u l t  Figure 2 A Schema f o r  the i - t h  Version t o  ver i fy  t h a t  the  e l m e n t s  of  t he  set before and a f t e r  
t h e  sor t ing  a re  the  same. Therefore, it is obvi.ous 

E N D ;  

END VERSIONi 

of Code 
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ACCEPTANCE: PROCEDURE OPTIONS (MAIN) ;  
DCL VERSIONi  ENTRY; 
DCL 1 C VECTORi EXTERNAL, 

GOODBYE B I T (  1 ) EXTERNAL ; 
DCL S E R V I C E i  EVENT EXTERNAL, 

COMPLETEi EVENT EXTERNAL; 
o t h e r  declarat ions ; 
COMPLETION ( S E R V I C E i )  = ' 1 ' B ;  
COMPLETION (COMPLETEi)  = ' O ' B ;  
CALL  VERSIONi  TASK EVENT ( F I N I S i )  ; 
DO WHILE (need more s e r v i c e ) ;  

W A I T  (COMPLF?Ei )i 
COMPLETION (COMPLETEi)  = ' O ' B ;  
process C VECTORi; 
IF -~need  gore se rv ice  THEN GOODBYE = ' 1 ' B ;  
COMPLETIGN ( S r R V I C E i )  = ' 1  'B ;  

END; 
WAIT  ( F I N I S i ) ;  
END ACCEPTANCE ; 

F i g u r e  3 A Schema for an Acceptance Program 

DRIVER:  PROCEDURE OPTIONS (MAIN)  ; 
DCL (VERSION1 , VERSIONZ, VERSION3) ENTRY; 
declare  ( C  VECTOR1 , C VECTORZ, C VECTOR3); 
DCL (D ISAGFEEl  , DISAGEEEZ, DISAGEEE3,  GOODBYE) 

B I T ( 1 )  EXTERANL; 
DCL (SERVICEI ,  COMPLETE1 , 

SERVICEZ,  COMPLETEZ, 
SERVICE3,  COMPLETE3) EVENT EXTERNAL; 

other  declarat ions;  
i n i t i a l i z e  ( S E R V I C E i .  COMPLETE11 as  i n  ACCEPTANCE: 
CALL V E R S I O i 1  TASK EVENT ( F I N I S l )  ; 
CALL VERSIONZ TASK EVENT ( F I N I S Z ) ;  
CALL VERSION3 TASK EVENT ( F I N I S 3 ) ;  
DO WHILE (need more s e r v i c e ) :  

WAIT  (COMPLETE1 ,-COMPLETE2, COMPLETE3) ; 
process ( C  VECTOR1 , C VECTORZ, C VECTOR3) ; 
I F  l D I S A G R r E 1  THEN CORPLETIONICOf lPLETEl  ) = ' O ' B :  
I F  .DISAGREE2 THEN COMPLETI3N (COMPLETEZ) = 0 '  B f 
I F  l D I S A G R E E 3  THEN COMPLETION(COMPLETE3)='O'B; 
I F  ineed-more-service THEN GOODBYE='l ' B ;  
COMPLETION(SERVICE1 ) = I 1  '6; 
COMPLETION( SERVICEZ)= '  1 ' B  ; 
COMPLETION (SERVI  CE 3) = ' 1 ' B ; 

END ; 
WAIT  ( F I N I S 1  , F I N I S Z ,  F I N I S 3 )  ; 
END DRIVER; 

F i g u r e  4 A Schema f o r  a Driver 

When Figures  2, 3, and 4 are appl ieo "i" m u l d  be 
replaced by 1 ,  2, or 3. VERSIONi is t h e  i - t h  vers ion 
of a 3-version software u n i t ,  ACCEPTANCE is the  
acceptance progran with r e spec t  t o  VERSIONi and D R I V E R  
r ep resen t s  a d r ive r  which exe rc i se s  a +version 
sof tware un i t .  C-VECTORi r ep resen t s  a c-vector t o  be 
produced by t h e  i-th vers ion.  The cs-indicator 
DISAGREEi shows whether or no t  C-VECTORi ag rees  with 
t h e  correspondent acceptable  r e s u l t s .  Another cs- 
i n d i c a t o r ,  GOODBYE, r ep resen t s  wbether or no t  a normal 
terminat ing condi t ion is s a t i s f i e d .  The 
synchronization pr imit ive,  SERVICEi, is used to s igna l  
a request  fran the  d r ive r  for t h e  se rv ice  of t h e  i - t h  
vers ion.  Another synchronization p r imi t ive ,  CCMPLETEi, 
is used by t h e  i - th  version t o  s i g n a l  t h e  t h a t  
C-VECTORi is ready. 

d r i v e r  

From Figures  2, 3, and 4 ,  it is evident  t h a t  t h e  
implementation of spec ia l  mechanisms for N-version 
programing is r e l a t i v e l y  simple. This is i l l u s t r a t e d  
by t h e  exanple i n  Appendix 1. 

4.2 Inexact  Votinz 

For nunerical  computations, twu types of dev ia t ions  
may appear i n  t h e  r e s u l t s .  The first type is an 
"expected" dev ia t ion  due to  t h e  inexact  hardware 
r ep resen ta t ion  or t h e  d a t a  s e n s i t i v i t y  of a p a r t i c u l a r  
algoritfnn. The second type is an Ymexpected" 
dev ia t ion  due t o  e i t h e r  inadequate design or 
implementation of an algorithm, or a malfunction of 
hardware. E i the r  type of dev ia t ion  may cause r e s u l t s  
obtained fran d i f f e r e n t  nunerical  a lgori thms to 
d i sag ree  with each o the r .  me standard vot ing process 
which r equ i r e s  t h a t  t h e  majori ty  of correspondent 
r e s u l t s  should have exac t ly  t h e  same values  to  
determine an acceptable  result is not  app l i cab le  here .  
Different  vot ing processes need t o  be devised t o  handle 
vot ing with non-identical results. These vot ing 
processes  will be ca l l ed  " inexact  voting". 

In  general ,  adap t ive  and non-adaptive vot ing a r e  t w o  
a l t e r n a t i v e s  which may be appl ied to perform inexact  
vot ing.  Assune t h a t  R1, R2, and R3 a r e  correspondent 
r e s u l t s  used to determine t h e  voted r e s u l t ,  R. Then i n  

t h e  approach of adapt ive vot ing,  a s  suggested i n  [161, 

where (1 )  W1, W2, W3, a r e  weights of R1, R2, R3 
re spec t ive ly ;  (2) W1, W2, W3 a r e  p o s i t i v e  values;  and 
(3 )  Wl+W2+W3=1. These weights may be dynamically 
ca l cu la t ed  based on t h e  values  of R1, R2, and R3. The 
major i n t e n t  is to favor acceptable  r e s u l t s  and to  
minimize t h e  effect of a disagreeing r e s u l t .  In o t h e r  
w r d s ,  R is constructed to be a continuous funct ion of 
R1, R2, and R3, t h a t  w i l l  s n w t h  o u t  t h e  e f f e c t  of a 
disagreeing r e s u l t .  To c m p u t e  t h e  weights of 
correspondent r e s u l t s ,  s eve ra l  schemes a r e  ava i l ab le .  
The performance of a scheme is influenced by its 
"tolerance" parameter, which is a measure of t h e  
allowable noise  l e v e l  and could be opt imal ly  determined 
f r a n  the  magnitudes of expected r e s u l t s  and noisy 
r e s u l t s .  

R = Wl*Rl + W2rR2 + W3aR3, 

The adapt ive vot ing approach may s u f f e r  from t h e  
following disadvantages: ( 1 )  The optimal t o l e rance  
parameter is d i f f i c u l t  t o  determine unless t h e  
c h a r a c t e r i s t i c s  of t h e  expected values  and noisy values  
a r e  knom well i n  advance. ( 2 )  The remaining e f f e c t  of 
noise  may no t  b e  acceptable  i n  m e  cases .  (3) If t h e  
voted r e s u l t  w i l l  be used a s  input  for nex t  cyc le  of 
canputat ion then t h e  accunulation o f  r e s idua l  e f f e c t s  
of noise  may cause a s e r ious  problem. (4) If 
implemented i n  sof tware,  t h e  adapt ive voter  may be 
q u i t e  slow. 

As a c o n t r a s t ,  t h e  non-adaptive vot ing approach uses  
an allowable discrepancy range and d i f f e rences  of p a i r s  
of correspondent results i n  determining R. Assume t h a t  
6 is t h e  al lowable discrepancy range, and D i j  is t h e  
absolute  value of t h e  d i f f e rence  between R i  and R j .  
Then an acceptable  R may be reached by adopting one of 
t h e  following tm  s t r a t e g i e s :  ( 1 )  i f  maximun (D12, D23, 
D31) 6 or ( 2 )  if  minimimun (D12, D23, D31) <_ 6. 
The first s t r a t e g y  r equ i r e s  D12, D23, D3l be known 
before  R can be determined. I n  t he  second s t r a t egy ,  
however, i f  D12 L 6 R can be determined without 
knowing D23 and C Y .  

The non-adaptive voting approach is no t  without 
flaws. F i r s t ,  t h e  value of 6 is very d i f f i c u l t  to  
determine dynamically for each instance o f  voting. 
Second, t h e  s t r a t e g y  which uses  t h e  p r inc ip l e  of 
maximun (D12, D23, D32) L 6 is too r i g i d  s ince  an 
erroneous r e s u l t  may e a s i l y  cause a D i j  which is l a r g e r  
than S .  Acceptable r e s u l t s  may no t  be reached even 
when two of t h e  th ree  correspondent r e s u l t s  a r e  
reasonably close. Third, t h e  s t r a t e g y  which uses t h e  
p r inc ip l e  of minimun (D12, D23, D31) 6 may encounter 
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s i t u a t i o n s  where each version may have d i f f e r e n t  
effects on the  outcane of voting. These s i t u a t i o n s  a r e  
i l l u s t r a t e d  be t t e r  with the  following exanples. AsSUlle 
t h a t  t he  allowable discrepancy range is 0.9 and ( i )  
expected R I  = 117.0, (ii) expected R2 = 116.5, and 
(iii) expected R3 = 115.8. In t h i s  case ,  (i) i f  Only 
Rl or A3 is erroneous, an acceptable R can still be 
generated,  (ii) but i f  R2 is erroneous then no 
acceptable R can be generated. 

'herefore ,  t he re  is no inexac t  voting approach which 
can be applied s a t i s f a c t o r i l y  t o  a l l  cases.  The 
success of an approach usua l ly  depends o n  t h e  
des igner ' s  knowledge about ( 1 )  t he  d a t a  s e n s i t i v i t y  of 
each algorithm, (2) the  l i m i t a t i o n s  o f  hardware 
representa t ions ,  and (3) the allowable ranges o f  
d i screpancies  fo r  each instance o f  voting. 

5. F e a s i b i l i t y  S tudies  o f  N-version Programming 

A t  an e a r l y  s t a g e  of t h e  inves t iga t ion  of  N-version 
prograrming, it was decided to conduct a few 
experiments to gain m e  ins igh t  i n t o  the  f e a s i b i l i t y  
of  t h i s  technique. Three o b j e c t i v e s  were set for the  
experiments. They were: (1) to study t h e  g e n e r a l i t y  
and the  ease of t h e  implementation o f  N-version 
programing; (2) to gain q u a l i t a t i v e  and q u a n t i t a t i v e  
da ta  on e f fec t iveness  of 3-version programing; and ( 3 )  
to observe and iden t i fy  problems or d i f f i c u l t i e s  i n  
using 3-version programing. 

Three c r i t e r i a  were used to select t a r g e t  problems 
f o r  f e a s i b i l i t y  s tud ie s .  F i r s t ,  a t a r g e t  problem needs 
to be r e l a t ive ly  complex 50 t h a t  t h e r e  is reasonably 
good poss ib i l i t y  t h a t  res idua l  software d e f e c t s  w i l l  
occur i n  i t s  implementing programs. Second, t h e  
progran implementing a t a r g e t  problem should be o f  
manageable s i z e  to f a c i l i t a t e  t h e  ins t runenta t ion  
e f f o r t s .  Third, s ince  programing is an expensive 
a c t i v i t y ,  it is very d e s i r a b l e  t h a t  a t a r g e t  problem 
should allow convenient generation of mul t ip le  vers ions  
of  a progrzn. 

5.1 The 3-version Y E S  Frogran Experiment 

MESS Qini-Text Editing Sygtem) was a program 
assignnent for the  graduate seminar course E2262, 
offered a t  UCLA i n  t h e  Spring quar te r  o f  1976. A 
preliminary repor t  on Y S S  is contained in [91. The 
spec i f ica t ion  of  M E S S  and 2 de t a i l ed  descr ip t ion  of t h e  
r e s u l t s  can be found in  [lo!. 

From the  experience and the  results o f  t h e  HESS 
experiment t h e  following conclusions were reached: ( 1 )  
The methodology used to implement N-version 
programing (see Sections 2 and 4 )  is r e l a t i v e l y  simple 
and can be generalized to other  s i m i l a r  appl ica t ions .  
(2) The r e s u l t s  a t ta ined  f ran  executing +version 
programs a re  encouraging. The ef fec t iveness  of 
3-version programing seems to warrant fu r the r  
inves t iga t ion .  (3 )  The 3-version redundancy was 
succesfu l ly  applied a t  subroutine (module) l e v e l ,  
r a the r  than a t  canple te  program leve l .  This s h o w  t h a t  
s e l e c t i v e  appl ica t ion  of N-version redundancy t o  
ce r t a in  c r i t i c a l  parts o f  longer programs can be a 
p rac t i ca l  a l t e rna t ive .  

5.2 

RATE, standing for  Region Approximation and 
Temperature Estimation, is a program for computing 
dynamic changes of  temperatures a t  d i s c r e t e  poin ts  i n  a 
pa r t i cu la r  region of  a plain.  The temperature changes 
a r e  governed by the  followi?g equation: 

The 3-version R4TE FV0gt-F Experiment 

where the  coe f f i c i en t s  A ,  B, C, D, E, and F a r e  some 
cons tan ts ,  

The problem s p e c i f i c a t i o n  fo r  RATE (given i n  [ lo ] )  
s t a t e s  t h e  requirements for a stand-alone RATE program 
lhis s p e c i f i c a t i o n  is wr i t ten  to make a RATE program 
e a s i l y  ins t runentab le  fo r  t h e  p u r p s e  o f  conducting 
experiments on 3-version programing. 

There are four types  o f  output d a t a  s t r u c t u r e s  
described i n  t h e  problem spec i f ica t ion  fo r  RATE. The 
MESSAGE type of da ta  informs the  d r i v e r  about 
execution termination condi t ions  or the time a t  which 
r e s u l t s  a r e  produced. The FAClDR type o f  d a t a  
represents  t h e  s i z e  and the  u n i t s  o f  t h e  spec i f ied  
region. The G R I D  type of d a t a  represents  a point i n  
t h e  concerned region and its previous and Current 
temperatures. ?he CUTPUT-REWEST type of d a t a  
i n d i c a t e s  t h e  p i n t s  and the  times fo r  which outputs  
a r e  requested.  Each o f  these  types  o f  d a t a  can be 
t r ea t ed  a s  a c-vector t h a t  represents  r e s u l t s  t o  be 
voted upon. 

The problen s p e c i f i c a t i o n  fo r  RATE a l s o  g ives  an 
algorithm s p e c i f i c a t i o n  fo r :  ( 1 )  terminating condi t ions  
for program execution; ( 2 )  cc-points a t  which r e s u l t s  
should be produced; and ( 3 )  an algorithm t h a t  
implements a nunerical  approximation for solving t h e  
p a r t i a l  d i f f e r e n t i a l  equation shown above. Three 
a l g o r i t h s ,  (ALCI, ALC2, Affi3) were se lec ted  t h a t  
implemented th ree  d i f f e r e n t  nunerical  methods to so lve  
the  partial d i f f e r e n t i a l  equation. While an ind iv idua l  
RATE s p e c i f i c a t i o n  can employ only one of these  
a l g o r i t h s .  t h e  ex is tence  of  t h ree  d i f f e r e n t  choices 
provides a higher probabi l i ty  of  avoiding r e l a t ed  
programing e r r o r s  i n  t h e  N-version programing 
experiment. 

The problem of RATE was given a s  a programing 
assignnent f o r  t he  greduate seminar course,  E2262, 
of fe red  a t  UCLA i n  the  Spring quar te r  of 1977. The 
s tudents  were asked to form teams o f  two  people t o  
so lve  t h e  RATE problem. There were th ree  s tudents  who 
preferred to w r k  alone and t h e i r  reques ts  were 
granted. Tota l ly ,  t he re  were 18 teams thus  formed. 
Two of these  teams fa i l ed  t o  turn in  t h e i r  programs. 
That l e f t  16 programs a v a i l a b l e  for  t h i s  inves t iga t ion .  
The RATE s p e c i f i c a t i o n  was d i s t r ibu ted  to a l l  18 
programing teuns.  Algorithms 1, 2, and 3 were 
spec i f ied  i n  s i x  cases.  Each of  t he  RATE programs was 
wr i t ten  i n  P l / I ( F ) ,  and executed on the  IBM 360/91. 
Each program consisted of more than 600 P l / I  
s tatements.  The period allowed for  the  developnent of 
t h e  R4TE programs was four weeks. 

The R4TE programs were col lec ted  and tes ted  aga ins t  
s i x  text cases .  Based on the  results of these  tests, 
the  bes t  four programs were selected for  fu r the r  
experiments. Besides, t h e r e  were th ree  programs 
developed by t h e  authors.  Hence, we had 7 programs 
a v a i l a b l e  for subsequent s tud ie s  on the  f e a s i b i l i t y  o f  
3-version programing. 

Three of t h e  se lec ted  programs implemented ALG1. 
Two each o f  t h e  remaining four programs implemented 
ALC2 and ALC3 respec t ive ly .  The seven programs were 
ins t runented ,  grouped in to  12 combinations, and tes ted  
with 32 test cases .  Tota l ly ,  there  were 384 cases  
tes ted .  Among them: 
( 1 )  290 cases  contained 
( 2 )  71 cases  contained one bad version, 
(3 )  18 cases  contained two bad versions,  and 
( 4 )  5 cases  contained three  bad versions.  

no bad version, 

Naturally,  t h e  290 cases  o f  th ree  good versions 
generated acceptable r e s u l t s ,  and the  18 cases  
containing two  bad versions and the  5 cases  containing 
three  bad versions generated unacceptable r e s u l t s .  For 
the  71 cases  containing a s i n g l e  bad version, 59 cases  

117 



generated acceptable results and 12 cases  generated 
unacceptable results. These 12 cases  contained a 
version which malfunctioned i n  a way t o  cause t h e  
system to abor t  t he  execution o f  t he  involved +version 
uni t .  

Based on these r e s u l t s ,  we have observed t W  
d i f f i c u l t i e s  which requi re  spec ia l  a t t en t ion  i n  N- 
version programing: ( 1 )  In  m e  s i tua t ions ,  one 
version of code developed an e r ro r  t h a t  caused the  
operating system of the  IBM 360/91 canputer t o  take 
over execution, An exanple is the  improper handling of  
conversion e r r o r s  by a version. A s  a r e s u l t ,  both t h e  
involved version and its associated 3-version program 
were aborted by t h e  operating system. Even though t h e  
o ther  tm versions were executing properly,  t he  
3-version program could not proceed fu r the r  pas t  t h i s  
point to  generate c o r r e c t  r e s u l t s .  (2) The log ic  being 
implemented by one version o f  t h e  code may be correct, 
inco r rec t ,  or it may be a l toge ther  missing. For cases  
in  which missing log ic  is t h e  cause o f  i n c o r r e c t  
software operation, error symptoms f r an  f au l ty  versions 
tend to be t he  same. There is a p o s s i b i l i t y  t h a t  
f a u l t y  but i den t i ca l  results (due to missing log ic )  may 
outvote cor rec t  r e s u l t s .  

6. Conclusions 

The r e s u l t s  obtained f r m  the  MESS and the  RATE 
experiments a re  of  mixed nature.  There a r e  severa l  
encouraging points:  (1 ) The methodology f o r  
implementing N-version programming is r e l a t i v e l y  simple 
and can be generalized to other  s imi la r  appl ica t ions ;  
(2) In m e  cases ,  +version p r o g r m i n g  has been 
e f f e c t i v e  in  preventing f a i l u r e  due t o  d e f e c t s  
loca l ized  i n  one version o f  code; and (3)  tJ-version 
programing can be a p rac t i ca l  approach i f  it is 
s e l e c t i v e l y  applied a t  subroutine leve l .  On t h e  o ther  
hand, t he re  a re  sane negat ive  points:  ( 1 )  I n  t h e  
envi roment  of sane opera t ing  systems, c e r t a i n  
implementation d e f e c t s  of a version may cause i ts  
associated +version progran to be aborted by t h e  O.S.; 
and ( 2 )  I f  missing program functions a r e  t h e  
predminant  software de fec t s ,  then N-version 
programing may not  be an e f f e c t i v e  approach. 

I n  addi t ion  t o  the  experimental r e s u l t s ,  we have 
. ident i f ied  Sane s i t u a t i o n s  i n  which N-version 
programing appears to be n o t  e f f e c t i v e  or is n o t  
appl icable .  The most s i g n i f i c a n t  l i m i t a t i o n s  a r e  
discussed below. 

(1 )  In  a real-t ime environment a system f a i l u r e  may 
be caused by performance l i m i t a t i o n s  r a the r  than 
functional problems. TWO typ ica l  exmples  a r e  timing 
c o n s t r a i n t  v i o l a t i o n s  and resource contentions.  A 
l i k e l y  source for  these  problems is systen overload. 
N-version programing may produce adverse e f f e c t s  i n  
these  s i t ua t ions .  

( 2 )  In ce r t a in  o ther  c i rcuns tances ,  t he re  e x i s t s  no 
unique path t o  the  so lu t ion  of a problem. Step-by-step 
matching or voting of correspondent results cannot be 
used a s  a c r i t e r i o n  o f  cor rec tness .  Therefore, N- 
version programing is not  appl icable  for  s i t u a t i o n s  i n  
which d i s t i n c t  mul t ip le  s o l u t i o n s  (or intermediate 
so lu t ions)  exist .  

(3 )  In still o ther  cases  a long sequence of  ou tputs  
may n o t  lend itself t o  be spec i f ied  in  a spec i f i c  
order.  In these cases ,  t he  outputs  from the  component 
vers ions  cannot be r e a d i l y  compared. 

(4 )  In m e  s i t u a t i o n s  t h e  sequence of  ou tputs  from 
a version is context-dependent. Any e r ro r  t h a t  pushes 
the  rest o f  output o f f  its proper pos i t ion  makes the  
subsequent comparison of  r e s u l t s  meaningless. 

(5)  I n  t h e  event t h a t  an allowable range o f  
discrepancy cannot be e a s i l y  determined, t h e  problem of 
inexac t  voting is d i f f i c u l t  t o  handle. Acceptable 
r e s u l t s  a r e  d i f f i c u l t  to reach i n  t h i s  case.  

Although t h e  above conclusions have a s i g n i f i c a n t  
nunber of negative poin ts ,  it should be noted t h a t  only 
a very small  portion of the  f i e l d  o f  N-version 
programing has been touched. Some negative results 
might be due t o  inexperience of programmers, inadequate 
s e l e c t i o n  o f  problems, or improper cont ro l  of 
environment for conducting these s tud ie s .  Furthermore, 
t he re  a r e  severa l  v a r i a t i o n s  of N-version programing. 
This approach might be more e f f e c t i v e  when it is 
applied to t he  s p e c i f i c a t i o n  or design o f  a program 
1171. It is a l s o  poss ib le  t h a t  N-version programming 
can aid progran t e s t ing  more e f f e c t i v e l y  than it can 
perform run-time software d e f e c t  masking. Therefore,  
it is believed t h a t  a t  t h e  present s t a g e  o f  t h e  
inves t iga t ion  N-version programing remains an 
i n t e r e s t i n g  and p o t e n t i a l l y  e f f e c t i v e  approach t o  
software fault-tolerance.  
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Appendix 

Assume t h a t  a +version software u n i t  has heen 
iden t i f i ed  t o  implement a function which can be 
act ivated repeatedly t o  convert  an a r r ay  of 10 ASCII 
coded d i g i t s  i n to  a binary nunber. Possible  
implementation of 3 vcrsions of a program for  t h i s  
function are shown i n  Figures 5, 6 ,  and 7. It. is 
evident t h a t  these implementations a r e  simple 
de r iva t ions  of t h a t  i n  Figure 2. 

CONVERSION1 : PROCEDURE OPTIONS (TASK)  ; 
DCL NUMBERl BINARY F I X E D ( 3 1 )  EXTERNAL; 
DCL (SERVICE1 , COMPLETEl)  EVENT EXTERNAL; 
DCL (DISAGREE1 , GOODBYE) B I T ( 1 )  EXTERNAL; 
DCL D I G I T S ( 1 0 )  BINARY F I X E D ( 6 )  EXTERNAL; 
DCL F I N I S  B I T ( 1 )  I N I T (  ' O ' B )  ; . .  
DO WHILE ( > F I N I S ) ;  

WAIT  (SERVICE1 ) ; 
COMPLETION (SERVICE1)  = ' O ' B ;  
NUMBERl = 0:  
I F  lGOODBYE.& 1DISAGREE1 
THEN DO I = 1 TO 10; 

NUMBERl = NUMBER1 *1 D+ 
D I  G I  TS ( I - 60 ; 

END; 
ELSE F I N I S  = ' 1 ' B ;  
COMPLETION (COMPLETE1 ) = '1  ' B  ; 

END; 
END CONVERSION7 ; 

Figure 5 

CONVERSION2: PROCEDURE OPTIONS (TASK)  ; 
OCL NUMBER 2 BINARY F I X E D ( 3 1 )  EXTERNAL; 
OCL (DISAGREEZ. GOODBYE) B I T ( 1 )  EXTERNAL; 
DCL (SERVICE2,  .COMPLETE2) EVENT 
DCL ( D I G I T S ( 1 0 )  EINARY F I X E D ( 6 )  EXTERNAL; 
OCL F I N I S  B I T ( 1 )  I N I T (  ' O ' B ) ;  
DO WHILE ( 7 F I N I S ) ;  

EXTERNAL ; 

WAIT  (SERVICE2)  ; 
COMPLETION (SERVICEL)  = ' O ' B ;  
NUMBER2 = 0; 
I F  TGOODBYE & l D I S A G R E E 2  
THEN DO I = 1 TO 10; 

NUMBER2 = NUMBER2 + 

END; 
( D I G I T S  (I )-60)*1 O**( 1 0 - 1  ) ; 

ELSE F I N I S  = ' 1 ' B ;  
COMPLEION (COMPLETE2) = '1  ' B ;  

END; 
END CONVERSIONZ; 

Figure 6 

CONVERSIONJ: PROCEDURE OPTIONS ( M A I N )  ; 
DCL NUMBER3 B INARY F I X E D ( 3 1 )  EXTERNAL; 
DCL (DISAGREE3. GOODBYE) B I T ( 1 )  EXTERNAL; 
DCL C SERVICE^,   COMPLETE^) EVENT EXTERNAL; 
DCL D I G I T S ( 1 0 )  B INARY F I X E D ( 6 )  EXTERNAL; 
OCL F I N I S  B I T ( 1 )  I N I T ( ' 0 ' B ) ;  
DO WHILE (,FINIS); 

WAIT  (SERVICE3) ;  
COMPLETION ( S E R V I C E 3 )  :: ' O ' B ;  
NUMBER3 = 0; 
I F  TGOODBYE & l D I S A G R E E 3  
THEN DO I = 1 TO 10; 

NUMBER3 = NUMBER3*1 O+ 

END ; 
MOD(DIGXTS(I), 60) ; 

ELSE F I N I S  = ' 1 ' 6 ;  
COMPLETION(COMPLETE3) 2: ' 1  ' B ;  

END; 
END CONVERSIONS; 

Figure 7 
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