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Abstract

N-version programming is defined as the independent
generation of N22 functionally equivalent programs
from the same initial specification. A methodology of
N-version programning has been devised and three types
of special mechanisms have been identified that are
needed to coordinate the execution of an N-version
software unit and to compare the correspondent results
generated by each version. Two experiments have been
conducted to test the feasibility of N-version
programming. The results of these experiments are
discussed. In addition, constraints are identified that
must be met for effective application of N-version
programming .

1. Approaches to Software Fault-Tolerance

The usual method to attain reliability of software
operation is fault-avoidance (or intolerance) [1]. All
software defects are eliminated prior to operation. If
some defects remain, the operation is reliable only as
long as the defects are not involved in program
execution. In most large and complex software systems
these fault-avoidance conditions have not been
successfully attained, regardless of a very large

investment of effort and resources, and software
crashes have occurred during operation. This
observation leads to the conjecture that for reliable

software operation, redundant software in some form is
required to detect, to isolate, or to recover from
effects of the thus far uneliminated software defects.

Achievement of high reliability of operation through
the use of redundant system elements is a fundamental
principle in fault-tolerance of hardware (physical)
faults [A]. The use of redundant software to recover
from software malfunction, however, requires special
caution due to the idiosyncratic characteristics of
software. In contrast with hardware, in which physical
faults predominate, software defects are time-invariant
defects. Errors are produced by using the same inputs
which trigger the same deficient elements of a program.
Therefore, executing duplicate copies of a program does
not improve the reliability of operation with respect
to software defects. Furthermore, while the main cause
of hardware unreliability is a random failure,that of
software is its complexity. The complexity of software
leads to several difficulties. First, it is difficult
to construct error-free software. Second, software is
unlikely to perform complete self-checking on its own
outputs. Third, it is'difficult to perform run-time
diagnosis of software in order to locate the source of

a software error. These observations lead to the
conclusion that if redundant software is used in an
attempt to achieve software fault-tolerance, then it
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should try to meet the following constraints: (1) It
does not require complete self-checking; (2) it does
not rely upon run-time software diagnosis; and (3) it

must contain independently developed alternative
routines for the same functions.
Experience with fault-tolerance of hardware

(physical) faults suggests that functionally equivalent
alternative routines may be employed to improve
reliability of software operation. Recently, two
distinct approaches have been investigated which employ
alternate software routines as a means to achieve
software fault-tolerance. In the approach of recovery
blocks [2, 3] these routines are organized in a manner
similar to the dynamic redundancy (standby sparing)
technique in hardware [4]. The prime objective is to
perform run-time software error detection and to
implement error recovery by taking an alternate path
of operation.

A potential alternative to recovery blocks is to use
software redundancy analogously to the static
(replication and voting) redundancy approach in
hardware [4]. The prime objective here is to mask the
effects of software defects at the boundaries of
designated program modules, The first technical
discussion of this approach in which one of the authors
took part occurred in February 1966 at the IEEE
Workshop on the Organization of Reliable Automata in
Pacific Palisades, Ca. Several suggestions that this
approach might be a viable method of software fault-
tolerance were  published a few years later
[1, 5,6, 7, 8l. In 1975, an experimental research
project entitled, "N-Version programming" was initiated
at UCLA to systematically investigate the feasibility
of this approach (1, 9, 10].

2. _Concepts of N-Version Programming

N-version programming is defined as the independent
generation of N2>2 functionally equivalent programs,

called "versions", from the same initial specification
[9]. (This term is preferred to "distinct software,"
[8], since it bears no implication about the

"distinctness," which is vague and difficult to
quantify or even qualify, among the N versions of a
program.) "Independent generation of programs" here
means that the programming efforts are carried out by N
individuals or groups that do not interact with respect
to the programming process. Wherever  possible,
different algorithms and programming languages or
translators are used in each effort.

The initial specification is a formal specification
in a specification language. The goal of the initial
specification is to state the functional requirements
completely and unambiguously, while leaving the widest



possible choice of implementations to the N programming
efforts. It also states all the special features that
are needed in order to execute the set of N version in
a fault-tolerant manner. An initial specification
should .define: (1) the function to be implemented by an

N-version software unit; (2) data formats for the
special mechanisms: comparison vectors ("c-vectors"),
comparison status indicators ("cs-indicators™), and

synchronization mechanisms; (3) the cross-check points
("cc-points") for c-vector generation; (4) the
comparison (matching or voting) algorittm; and (5) the
response to the possible outcomes of matching or
voting. We note that "comparison" is used as a general
term, while "matching" refers to the N = 2 case, and
"voting" to a majority decision with N> 2. The
comparison algorithm explicitly states the allowable
range of discrepancy in numerical results, if such a
range exists.

N versions of the program are independently
generated with respect to the initial specification.
Though different in their implementation, the N
versions are assumed to be functionally equivalent.
Together, these N versions are said to form an N-
version software unit. During the developmment of an
N-version program, the performance of each version must
satisfy some acceptance criteria of its own before it
can be integrated into the N-version software unit. An
acceptance program can be used to drive a single
version for its acceptance testing. To drive an N-
version software unit 2 supervisory program called a
driver, is neeeded. It is 2 modified acceptance
program with additional capabilities to coordinate the
execution of N versions and to vote or to match their
correspondent results. The integrated set of an N-
version software unit and its driver is said to be an
N-version program.

Three types of special mechanisms are needed to
execute an N-version software unit and to match or vote
the correspopndent results generated by each version.
These special mechanisms are: (1) comparison (c-)
vectors, (2) comparison status (es-) indicators, and
(3) synchronization mechanisms. The points at which
c~vectors are generated and employed for matching or
voting are called cross-check (ce-) points.

C-vectors are data structures representing a subset
of a version's local program state which is
interpretable by the driver. Meaningful interpretation
of a c-vector, however, can only be achieved when a
cc-point condition has been satisfied. A c-vector
generated by a version at a cc-point contains two types
of information. The comparison variables (c-variables)
of a c-vector point to values of variables which are to
be matched with their counterparts from other versions.
The status flags of a c-vector indicate whether or not
some significant events have taken place during the
generation of these c-variables. Examples of such
events are: end of file, exception conditions detected
by the system, or conditions defined in the initial
specification. When majority of versions produces the
results that agree (i.e, fall within the allowable
range of discrepancy), these results are treated as
acceptable results from this N-version software unit.
Any version which generates results that differ from
the acceptable results is designated as a disagreeing
version.

Cs-indicators are used to indicate actions to be
taken after matching or voting of correspondent c-
vectors when a cc-point condition is satisfied. The
actions to be taken at the cc-points after the exchange
of c-vectors depend on: (1) whether all versions
deliver the c-vectors within specified time, and (2)
whether the c-vectors agree or disagree. Possible
outcomes are: (1) continuation, (2) termination of one
or more versions, and (3) continuation after changes in
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the c-vectors of one or more versions on the basis of a
majority decision.

Synchronization mechanisms are used to synchronize
the execution steps of an N-version software unit.
Each version uses these mechanisms to signal to the
driver that a c-vector is ready. The driver uses these
mechanisms to control when a version should be
activated. They are also used by the driver to prevent
voting or matching before all correspondent c~-vectors
are ready. Originally, a version is in an inactive
state. When invoked by the driver, it enters into a
waiting state. At  this state it waits for a
synchronization signal representing a request for
service from the driver. When this signal is received,
it transfers into a running state. If any terminating
condition 1is signaled by the cs-indicators, then the
execution of this version is terminated and it goes
back to inactive state. Otherwise, it generates a c-
vector upon the satisfaction of a ce~point condition,
then it wuses a synchronization signal to notify the
driver that a c-vector is ready, and then returns to

waiting state. The state transitions for a version are
illustrated in Figure 1. It should be noted that state
transitions due to system resource allocation and
deallocation are not of direct concern to N-version
programming and are not discussed here.
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Figure 1 State Transitions of a Version

A limitation of the N-version approach results from
the fact that all N versions of the program originate
from the same initial specification, which is
effectively the "hard core" of this method. Its
correctness, completeness, and unambiguity have to be

assured prior to the N-version programming effort., It
is our conjecture that either formal correctness
proof’s, or exhaustive wvalidations of “initial
specifications when they are stated in compact, formal

specification languages [11] are much more likely to
succeed within acceptable cost bounds than proofs or
validations of the detailed implementations that
originate from such specifications. Once the
specifications have been accepted as correct, the
proofs or validations of the programs can be replaced
by the run-time software fault-tolerance provisions.

The second major observation concerning HN-version
programming 1is that its success as a method for run-
time tolerance of software faults depends on . whether
the residual software faults in each version are
distinguishable. We define distinguishable software
faults as faults that will cause a disagreement between

c-vectors at the specified ce-points during the
execution of the N-version program that was generated
from the initial specification. Distinguishability is

affected by the choice of c-vectors and ce-points, as
well as by the nature of the faults themselves. It is
a fundamental conjecture of the N-version approach that
the independence of programming efforts will greatly
reduce the probability of identical software defects



occuring in two or more versions. Together with a
reasonable choice of c-vectors and cc-points this is
expected to turn MN-version programming into an
effective method to achieve tolerance of software
faults. The effectiveness of the entire approach
depends on the validity of this conjecture, therefore
it is critically important to keep the initial
specification free of any flaws that would bias the
independent programmers toward introducing the same
software defects.

The research effort at UCLA addresses two thus far
unanswered questions: (1) Which constraints (e.g.,

need for formal specifications, suitable types of
problems, nature of algorithms, timing constraints,
ctc.) have to be satisfied to make N-version

programing feasible at all regardless of the cost?
(2) How does the cost~effectiveness of the N-version
programming approach compare to the two alternatives:
non-redundant ("fault-intolerant") programming [1], and
the "recovery block" [2, 3] approach? The scarcity of
previous results and an absence of formal theories on
N-version

programming has led us to choose an
experimental approach in this investigation. The
approach has been to choose some conveniently
accessible  programing problems, to assess the

applicability of N-version programming, and then to
proceed to generate a set of programs. Once generated,
the programs are executed in a simulated multiple-
hardware system, and the resulting observations are
applied to refine the methodology and to build up
theoretical concepts of N~version programming. A more
detailed discussion of the research approach and goals
can be found in [9], and a detailed discussion of
experimental results in [10].

3. A Comparison of Approaches

In comparison to N-version programming the recovery
block approach has one apparent advantage. In some
situations, a software system evolves by replacement of
some of its modules with newly developed ones. The
replaced modules can be used as supplementary
alternates to the new modules. The production cost is
lower in this case.

However, there are also certain disadvantages
associated with the recovery block approach. First,
the system state before entry into a recovery block
must be saved until some reasonable results are
obtained from the block. Considerable storage overhead
may then be involved for nested recovery block
structures. Second, special precautions are needed to
coordinate parallel processes within a nested recovery
block structure. Ctherwise the interdependencies among
these processes may require that a long chain of

process effects should be undone after a process has
failed [2). Third, some intermediate output from a
recovery block may not be reversible in a real-time
environment. Therefore, no recovery action can be
performed befere the incorrect output causes its
darage. Fourth, special system support is necessary to
alleviate the above weaknesses. This limits the
generality of applications of the recovery block
technique.

Finally, we also note that the effectiveness of the
acceptance test is often quite difficult to measure.
In many cases, the procedure used to verify results

from the execution of a program can be as complex as
the program itself. For example, it is easy to check
the consistency of the number of elements in a set
before and after execution of a sorting routine. It is
more difficult to verify that all of the data items are
indeed sorted as specified. It is even more difficult
to verify that the elements of the set before and after
the sorting are the same. Therefore, it is obvious

115

that in most cases only "reasonableness" rather than
"correctness" may be checked for by acceptance tests.
The lack of established procedures to estimate the
effectiveness of acceptance tests 1leaves it hard to
determine if it is sufficient to use a given acceptance
test for a very critical application.

In view of the above difficulties, the N-version
programming approach offers some advantages over the

recovery blocks. In this approach, self-checking is
not required. Some redundant software can be
eliminated; this seems attractive from the coverage

point of view [12], It also offers the possibility of
immediately masking some software faults so that there
is no delay in operation.

In certain applications, N-version programming also
makes better use of existing hardware fault-tolerance
resources. For instance, there are recent system
designs for aerospace applications that use redundant
hardware at the system level to attain fault-tolerance.
The SIFT design [13], the Symmetric Multiprocessor [14]
and the central computer complex in the Space Shuttle
[15] are some examples. In these systems, copies of
identical programs are executed in three or more
identical processor-memory units, and voting of the
results allows detection and masking of hardware
faults. Since full system reliability requires the
reliable operation of both hardware and software, these
designs are vulnerable to software deficiencies. The
adoption of N-version programming may allow such
systems to tolerate both hardware and software faults
without delays caused by the acceptance testing used in
the recovery block approach.

4, Implementation of N-Version Programming
For the reason of convenience, the following
discussion will assume that N=z3. An extension to N> 3

is quite straightfoward.

4.1 Special Mechanisms

Implementation of special mechanisms (c-vectors,
cs-indicators, and synchronization mechanisms), in a

3-version program is illustrated by Figures 2, 3, and
4. The schemata shown in these figures have been
written with the PL/I compiler in mind., It should be

noted that as a result of emphasis on readability, the
length of some identifiers or labels may not be allowed
in some implementations.

VERSIONi: PROCEDURE OPTIONS (TASK);

DCL T C-VECTORi

2 § comparison variables

H {status flags R
DCL (DISAGREEi, GOODBYE) BIT(1) EXTERNAL;
DCL (SERVICEi, COMPLETEi) EVENT EXTERNAL;
DCL FINIS BIT(1) INIT('0'B);
other declarations;
DO WHILE (OFINIS);

WAIT (SERVICEi);

COMPLETION (SERVICEi) = '0'B;

IF JGOODBYE & 7DISAGREE

THEN CALL PRODUCE;

ELSE FINIS = '1'B;

COMPLETION (COMPLETEi) = '1'B;
END;
PRODUCE :

EXTERNAL,

PROCEDURE ;

produce C-VECTORi;
END PRODUCE;

END VERSION{

Figure 2 A Schema for the i-th Version
of Code



ACCEPTANCE: PROCEDURE OPTIONS (MAIN);
DCL VERSIONi ENTRY;
DCL 1 C_VECTORi EXTERNAL,
2 f comparison variab]es}
1\ status flag 5
DCL DISAGREEi BIT(1) EXTERNAL,
GOODBYE BIT(1) EXTERNAL ;
DCL SERVICEi EVENT EXTERNAL,
COMPLETE EVENT EXTERNAL ;

other declarations;
COMPLETION (SERVICEi) = '1'B;
COMPLETION (COMPLETEi) = '0'B;
CALL VERSIONi TASK EVENT (FINISi);
DO WHILE (need more_service);
WAIT (COMPLETEi);
COMPLETION (COMPLETEi) = '0'B;
process C_VECTORi;
IF need_more_service THEN GOODBYE = '1'B;
COMPLETION (SERVICEi) = '1'B;
END;
WAIT (FINISE);
END ACCEPTANCE;

Figure 3 A Schema for an Acceptance Program

DRIVER: PROCEDURE OPTIONS (MAIN);
DCL (VERSION1, VERSION2, VERSION3) ENTRY;
declare (C_VECTOR1, C_VECTOR2, C_VECTOR3);
DCL (DISAGREEY, DISAGREE2, DISAGREE3, GOODBYE)
BIT(1) EXTERANL;
DCL (SERVICE1, COMPLETET,
SERVICEZ, COMPLETEZ2,
SERVICE3, COMPLETE3) EVENT EXTERNAL;
other declarations;
initialize (SERVICEi, COMPLETEi) as in ACCEPTANCE;
CALL VERSION1 TASK EVENT (FINIS1);
CALL VERSIONZ2 TASK EVENT (FINIS2);
CALL VERSION3 TASK EVENT (FINIS3);
DO WHILE (need more_service);
WAIT (COMPLETEY, COMPLETE2, COMPLETE3);

process (C_VECTOR1, C_VECTOR2, C_VECTOR3);
IF DISAGREE1 THEN COMPLETION(COMPLETE1)='0'B;
IF TDISAGREE2 THEN COMPLETION({COMPLETE2)='0'B;
IF 7DISAGREE3 THEN COMPLETION(COMPLETE3)='0'B;
IF need more_service THEN GOODBYE='1'B;
COMPLETION(SERVICE1)="'1'B;
COMPLETION(SERVICEZ)="1'B;
COMPLETION(SERVICE3)='1'B;
END;
WAIT (FINIS1, FINIS2, FINIS3);
END DRIVER;
Figure 4 A Schema for a Driver
When Figures 2, 3, and 4 are appliea "i" would be

replaced by 1, 2, or 3. VERSIONi is the i-th version
of a 3-version software unit, ACCEPTANCE is the
acceptance program with respect to VERSIONi and DRIVER
represents a driver which exercises a 3-version
software unit. C-VECTORi represents a c-vector to be
produced by the i-th version. The c¢s-indicator
DISAGREEi shows whether or not C-VECTORi agrees with
the correspondent acceptable results. Another c¢s=-

indicator, GOODBYE, represents whether or not a normal
terminating condition is satisfied. The
synchronization primitive, SERVICEi, is used to signal

a request from the driver for the service of the i-th
version. Another synchronization primitive, COMPLETEi,
is used by the i-th version to signal the driver that
C-VECTORi is ready.

From Figures 2, 3, and 4, it 1is evident that the
implementation of special mechanisms for N-version
programming is relatively simple. This is illustrated
by the example in Appendix 1.

4,2 Inexact Voting

For numerical computations, two types of deviations
may appear in the results. The first type is an
"expected" deviation due to the inexact hardware
representation or the data sensitivity of a particular
algorithm. The second type is an  "unexpected"
deviation due to either inadequate design or
implementation of an algorithm, or a malfunction of
hardware. Either type of deviation may cause results
obtained from different numerical algorithms to
disagree with each other. The standard voting process
which requires that the majority of correspondent
results should have exactly the same values to
determine an acceptable result is not applicable here.
Different voting processes need to be devised to handle
voting with non-identical results. These voting
processes will be called "inexact voting".

In general, adaptive and non-adaptive voting are two
alternatives which may be applied to perform inexact
voting. Assume that R1, R2, and R3 are correspondent
results used to determine the voted result, R. Then in

the approach of adaptive voting, as suggested in {161,
R = W1xR1 + W2xR2 + W3aR3,

where (1) W1, W2, W3, are weights of R1, R2, R3
respectively; (2) Wi, W2, W3 are positive values; and
(3) Wi+W2+W3=1. These weights may be dynamically
calculated based on the values of R1, R2, and R3. The
major intent is to favor acceptable results and to
minimize the effect of a disagreeing result. In other
words, R is constructed to be a continwous function of
R1, R2, and R3, that will smooth out the effect of a
disagreeing result. To compute the weights of
correspondent results, several schemes are available.
The performance of a scheme is influenced by its
"tolerance" parameter, which is a measure of the
allowable noise level and could be optimally determined

from the magnitudes of expected results and noisy
results.
The adaptive voting approach may suffer from the

following disadvantages: (1) The optimal tolerance
parameter is difficult to determine wunless the
characteristics of the expected values and noisy values
are known well in advance. (2) The remaining effect of
noise may not be acceptable in some cases. (3) If the
voted result will be used as input for next cycle of
computation then the accumulation of residual effects
of noise may cause a serious problem. (4) Ir
implemented in software, the adaptive voter may be
quite slow.

As a contrast, the non-adaptive voting approach uses
an allowable discrepancy range and differences of pairs
of correspondent results in determining R. Assume that
§ is the allowable discrepancy range, and Dij is the
absolute value of the difference between Ri and Rj.
Then an acceptable R may be reached by adopting one of
the following two strategies: (1) if maximum (D12, D23,
D31) ¢ 6 or (2) if minimimum (D12, D23, D31) < 6.
The first strategy requires D12, D23, D31 be known
before R can be determined. In the second strategy,
however, 1if D12 £ § R can be determined without
knowing D23 and D31.

The non-adaptive voting approach is not without
flaws. First, the value of § is very difficult to
determine dynamically for each instance of voting.
Second, the strategy which uses the principle of
maximum (D12, D23, D32) ¢ § is too rigid since an
erroneous result may easily cause a Dij which is larger
than &. Acceptable results may not be reached even
when two of the three correspondent results are
reasonably close. Third, the strategy which uses the
principle of minimum (D12, D23, D31) < ¢ may encounter
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situations where each version may have d;fferent
effects on the outcome of voting. These situations are
illustrated better with the following examples. Assume
that the allowable discrepancy range is 0.9 and (i)
expected R1 = 117.0, (ii) expected R2 = 1‘!6.5, and
(iii) expected R3 = 115.8. In this case, (i) if only
R1 or R3 is erroneous, an acceptable R can still be
generated, (ii) but if R2 is erroneous then no
acceptable R can be generated.

Therefore, there is no inexact voting approach which
can be applied satisfactorily to 2ll cases. The
success of an approach usually depends on the
designer's knowledge about (1) the data sensitivity of
each algorithm, (2) the 1limitations of hardware
representations, and (3) the allowable ranges of
discrepancies for each instance of voting.

5. Feasibility Studies of N-version Programming
At an early stage of the investigation of N-version
programming, it was decided to conduct a few

experiments to gain some insight into the feasibility
of this technique. Three objectives were set for the
experiments. They were: (1) to study the generality
and the ease of the implementation of N-version
programming; (2) to gain qualitative and quantitative
data on effectiveness of 3-version programming; and (3)
to observe and identify problems or difficulties in
using 3-version programming.

Three criteria were used to select target problems
for feasibility studies. First, a target problem needs
to be relatively complex so that there is reasonably
good possibility that residual software defects will
oceur in its implementing programs. Second, the
program implementing a target problem should be of
manageable size to facilitate the instrumentation
efforts. Third, since programing is an expensive
activity, it is very desirable that a target problem
should allow convenient generation of multiple versions
of a program.

5.1 The 3-version MESS Program Experiment

MESS (Mini-Text Editing System) was a program
assigment for the graduate seminar course E226Z,
offered at UCLA in the Spring quarter of 1976. A
preliminary report on MESS is contained in [9]. The
specification of MESS and a detailed description of the
results can be found in [10].

From the experience and the results of the MESS
experiment the following conclusions were reached: (1)
The methodology used to implement N-version
programming (see Sections 2 and 4) is relatively simple
and can be generalized to other similar applications.
(2) The results attained from executing 3-version

programs are encouraging. The effectiveness of
3-version programming seems to warrant further
investigation. (3) The 3-version redundancy was
succesfully applied at subroutine (module) level,

rather than at complete program level. This shows that
selective application of N-version redundancy to
certain critical parts of longer programs can be a
practical alternative.

5.2 The 3-version RATE Program Experiment

RATE, standing for Region  Approximation and
Temperature Estimation, is a program for computing
dynamic changes of temperatures at discrete points in a
particular region of a plain. The temperature changes
are governed by the f‘ollowir_)g equation:

32 32 3¢ 3
Ao TBEt Cgp v o -k

X

where the coefficients 4, B, C, D, E, and F are some

constants,
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The problem specification for RATE (given in [10))
states the requirements for a stand-alone RATE program
This specification is written ¢to make a RATE program
easily instrumentable for the purpose of conducting
experiments on 3-version programming.

There are four types of output data structures
described in the problem specification for RATE. The
MESSAGE type of data informs the driver about
execution termination conditions or the time at which
results are produced. The FACTOR type of dgta
represents the size and the units of the speciﬁ?d
in

region. The GRID type of data represents a point
the concerned region and its previous and current
temperatures. The OUTPUT-REQUEST type of data

points and the times for which outputs
Each of these types of data can be
c-vector that represents results to be

indicates the
are requested.
treated as a
voted upon.

The problem specification for RATE also giv?s an
algorithm specification for: (1) terminating conditions
for program execution; (2) cc-points at which results

should be produced; and (3) an algorithm that
implements a numerical approximation for solving the
partial differential equation shown above. Three
algorithms, (ALG1, ALG2, ALG3) were selected that
implemented three different numerical methods to solve
the partial differential equation. While an individual
RATE specification can employ only one of these
algorithms. the existence of three different choices
provides a higher probability of avoiding related
programing errors in the N-version programming
experiment.

The problem of RATE was given as a programming
assigmment for the graduate seminar course, E226Z,
offered at UCLA in the Spring quarter of 1977. The
students were asked to form teams of two people to
solve the RATE problem. There were three students who
preferred to work alone and their requests were
granted. Totally, there were 18 teams thus formed.
Two of these teams failed to turn in their programs.
That left 16 programs available for this investigation.
The RATE specification was distributed to all 18
programming teams. Algorithms 1, 2, and 3 were
specified in six cases. Each of the RATE programs was
written in P1/I(F), and executed on the IBM 360/91.
Each program consisted of more than 600 P1/I
statements. The period allowed for the development of
the RATE programs was four weeks.

The RATE programs were collected and tested against
six text cases. Based on the results of these tests,
the best four programs were selected for further
experiments. Besides, there were three programs
developed by the authors. Hence, we had 7 programs
available for subsequent studies on the feasibility of
3-version programming.

Three of the selected programs implemented ALG1.
Two each of the remaining four programs implemmented
ALG2 and ALG3 respectively. The seven programs were
instrumented, grouped into 12 combinations, and tested
with 32 test cases. Totally, there were 384 cases
tested. Among them:
(1) 290 cases contained
(2) 71 cases contained

no bad version,
one bad version,

(3) 18 cases contained two bad versions, and

(4) 5 cases contained three bad versions.
Naturally, the 290 cases of three good versions

generated  acceptable results, and the 18 cases

containing two bad versions and the 5 cases containing
three bad versions generated unacceptable results. For
the 71 cases containing a single bad version, 59 cases



generated acceptable results and 12 cases geper‘ated
unacceptable results. These 12 cases contained a
version which malfunctioned in a way to cause the

system to abort the execution of the involved 3-version
unit.

Based on these results, we have obser:ved . two
difficulties which require special attention in N-
version programming: (1) In somme situations, one

version of code developed an error that caused the
operating system of the IBM 360/91 computer to take
over execution, An example is the improper handling of
conversion errors by a version. As a result, both the

involved version and its associated 3-version program
were aborted by the operating system. Even though the
other two versions were executing properly, the

3-version program could not proceed further past this
point to generate correct results. (2) The logic being
implemented by one version of the code may be correct,
incorrect, or it may be altogether missing. For cases
in which missing logic is the cause of incorrect
software operation, error symptoms from faulty versions
tend to be the same, There is a possibility that
faulty but identical results (due to missing logic) may
outvote correct results.

6. Conclusions

The results obtained from the MESS and the RATE
experiments are of mixed nature. There are several
encouraging points: (1) The methodology for
implementing N-version programming is relatively simple
and can be generalized to other similar applications;
(2) In some cases, 3-version programming has been
effective in preventing failure due to defects
localized in one version of code; and (3) N-version
programming can be a practical approach 1if it is
selectively applied at subroutine level. On the other
hand, there are some negative points: (1) In the
environment of some operating systems, certain
implementation defects of a version may cause its
associated 3-version program to be aborted by the 0.S.;

and  (2) If missing program functions are the
predaminant software defects, then N-version
programming may not be an effective approach.

In addition to the experimental results, we have
identified some situations in which N-version
programming appears to be not effective or is not

applicable. The most significant limitations are
discussed below.

(1) In a real-time environment a system failure may

be caused by performance limitations rather than
functional problems. Two typical examples are timing
constraint violations and resource contentions. A
likely source for these problems is system overload.
N-version programing may produce adverse effects in
these situations.

(2) 1In certain other circumstances, there exists no
unique path to the solution of a problem. Step-by-step
matching or voting of correspondent results cannot be
used as a criterion of correctness. Therefore, N-
version programming is not applicable for situations in
which distinct multiple solutions (or intermediate
solutions) exist.

(3) In still other cases a long sequence of outputs
may not 1lend itself to be specified in a specific
order. In these cases, the outputs from the component

versions cannot be readily compared.

(4) 1In some situations the sequence of outputs from
a version is context-dependent. Any error that pushes
the rest of output off its proper position makes the
subsequent comparison of results meaningless.
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(5) In the event that an allowable range of
discrepancy cannot be easily determined, the problem of

inexact voting 1is difficult to handle. Acceptable
results are difficult to reach in this case.
Although the above conclusions have a significant

number of negative points, it should be noted that only
a very small portion of the field of N-version
programing has been touched. Some negative results
might be due to inexperience of programmers, inadequate
selection of problems, or improper control of
enviromment for conducting these studies. Furthermore,
there are several variations of N-version programming.
This approach might be more effective when it is
applied to the specification or design of a program
{17]. It is also possible that N-version programming
can aid program testing more effectively than it can
perform run-time software defect masking. Therefore,
it is believed that at the present stage of the
investigation N-version programming remains an
interesting and potentially effective approach to
software fault-tolerance.
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Appendix

Assume that a 3-version software
identified to implement a function
activated repeatedly to convert an array of 10 ASCII
coded digits into a binary number. Possible
implementation of 3 versions of a program for this
function are shown in Figures 5, 6, and 7. It is
evident that these implementations are simple
derivations of that in Figure 2.

unit has been
which can be

PROCEDURE OPTIONS (TASK);
BINARY FIXED(31) EXTERNAL;

CONVERSIONI :
DCL NUMBER1

DCL (SERVICE1, COMPLETE1) EVENT EXTERNAL ;
DCL (DISAGREET, GOODBYE) BIT(1) EXTERNAL ;
DCL DIGITS(10) BINARY FIXED(6) EXTERNAL;
DCL FINIS BIT(1) INIT('0'B);

DO WHILE (TFINIS);
WAIT (SERVICE1);
COMPLETION (SERVICET) = '0'B;
NUMBER] = 0;
IF TIGOODBYE & “IDISAGREE1
THEN DO I = 1 TO 103
NUMBER] = NUMBER1*10+
DIGITS(1)-60;
END;
ELSE FINIS = '1'B;
COMPLETION (COMPLETE1) = '1'B;

END CONVERSION? ;

Figure 5

PROCEDURE OPTIONS (TASK);
BINARY FIXED(31) EXTERNAL;

CONVERSION2:
DCL NUMBER 2

DCL (DISAGREE2, GOODBYE) BIT(1) EXTERNAL ;
DCL (SERVICE2, COMPLETEZ) EVENT EXTERNAL 5
DCL (DIGITS(10) BINARY FIXED(6) EXTERNAL;
DCL FINIS BIT(1) INIT('0'B);

DO WHILE (DFINIS);
WAIT (SERVICE2);
COMPLETION (SERVICE2) = '0'B;
NUMBERZ = 0;
IF "GOODBYE & TDISAGREE2
THEN'DO I =1 70 10;
NUMBER2 = NUMBER2 +
(DIGITS{I)-60)*10%*(10-1);

END;
ELSE FINIS = '1'B;
COMPLEION (COMPLETE2) = ‘1'B;

END;
END CONVERSIONZ;

Figure 6

PROCEDURE OPTIONS (MAIN);
BINARY  FIXED(31) EXTERNAL;

CONVERSION3:
DCL NUMBER3

DCL (DISAGREE3, GOODBYE) BIT(1) EXTERNAL ;
DCL (SERVICE3, COMPLETE3) EVENT EXTERNAL
DCL DIGITS(10) BINARY FIXED(6) EXTERNAL;
DCL FINIS BIT(1) INIT('0'B);
DO WHILE (TFINIS);

WAIT (SERVICE3);

COMPLETION {SERVICE3) = ‘0'B;

NUMBER3 = 0;
IF TGOODBYE & TDISAGREE3
THEN DO I = 1 TO 10;
NUMBER3 = NUMBER3*10+
MOD(DIGITS(I), 60);
END;
ELSE FINIS = '1'B;
COMPLETION(COMPLETE3) = '1'B;
END;
END CONVERSION3;

Figure 7
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