
Hints on Test Data Selection:
Help for the Practicing Programmer
Richard A. DeMillo
Georgia Institute of Technology

Richard J. Lipton and Frederick G. Sayward
Yale University

In many cases tests of a program that uncover simple
errors are also effective in uncovering much more complex
errors. This so-called coupling effect can be used to save
work during the testing process.

Much of the technical literature in software
reliability deals with tentative methodologies and
underdeveloped techniques; hence it is not surpris-
ing that the programning staff responsible for debug-
ging a large piece of software often feels ignored.
It is an economic and political requirement in most
production programming shops that programmers
shall spend as little time as possible in testing. The
programmer must therefore be content to test
cleverly but cheaply; state-of-the-art methodologies
always seem to be just beyond what can be afford-
ed. We intend to convince the reader that much
can be accomplished even under these constraints.
From the point of view of management, there is

some justification for opposing a long-term view of
the testing phase of the development cycle. Figure 1
shows the relative effect of testing on the remain-
ing system bugs for several medium-scale systems
developed by System Development Corporation.'
Notice that in the last half of the test cycle, the
average change in the known-error status of a
system is 0.4 percent per unit of testing effort,
while in the first half of the cycle, 1.54 percent of
the errors are discovered per unit of testing effort.
Since it is enormously difficult to be convincing in,
stating that the testing effort is complete, the
apparently rapidly decreasing return per unit of
effort invested becomes a dominating concern. The
standard solution, of course, is to limit the amount
of testing time to the most favorable part of the
cycle.

Programmers have one great advantage
that is almost never exploited: they

create programs that are close to being
correct!

How, then, should programmers cope? Their
more sophisticated general methodologies are not
likely to be applicable.2 In addition, they have the
burden of convincing managers that their software
is indeed reliable.

The coupling effect

Programmers, however, have one great advantage
that is almost never really exploited: they create
programs that are close to being correct! Program-
mers do not create programs at random; competent
programmers, in their many iterations through the
design process, are constantly whittling away the
distance between what their programs look like
now and what they are intended to look like. Pro-
grammers also have at their disposal

* a rough idea of the kinds of errors most likely
to occur;
* the ability and opportunity to examine their
programs in detail.

Error classifications. In attempting to -formulate
a comprehensive theory of test data selection, Susan
Gerhart and John Goodenough3 have suggested
that errors be classified as follows:

(1) failure to satisfy specifications due to imple-
mentation error;
(2) failure to write specifications that correctly
represent a design;
(3) failure to understapd a requirement;
(4) failure to satisfy a requirement.

But these are global concerns. Errors are always
reflected in programs as

* missing control paths,
* inappropriate path selection, or
* inappropriate or missing actions.

0018-9162/78/0400-0034$00.75 © 1978 IEEE COMPUTER34

We do not explicitly address classifications (2)
and (3) in this article, except to point out that even
here a programmer can do much without fancy
theories. If we are right in our perception of pro-
grams as being close to correct, then these errors
should be detectable as small deviations from the
intended program. There is an amazing lack of
published data on this subject, but we do have
some idea of the most common errors. E. A. Youngs,
in his PhD dissertation,4 analyzed 1258 errors in
Fortran, Cobol, PL/I, and Basic programs. The
errors were distributed as shown in Table 1.
In addition to these errors, certain other errors

were present in negligible quantities. There were,
for instance, operating system interface errors,
such as incorrect job identification and erroneous
external I/O assignment. Also present were errors
in comments, pseudo-ops, and no-ops which for
various reasons created detectable error conditions.

Complex errors coupled. How, then, do the rela-
tively simple error types discovered by Youngs
connect with the Gerhart-Goodenough error classi-
fication? Well, the naive answer is that since arbi-
trarily pernicious errors may be responsible for a
given failure, it must be that simple errors com-
pound in more massive error conditions. For the
practical treatment of test data, the Youngs error
statistics, therefore, do not seem to help much at
all. Fortunately though, the observation that pro-
grams are "close to correct" leads us to an assump-
tion which makes the high frequency of simple
errors very important:

The coupling effect: Test data that distinguishes
all programs differing from a correct one by only
simple errors is so sensitive that it also implic-
itly distinguishes more complex errors.

In other words, complex errors are coupled to
simple errors. There is, of course, no hope of "prov-
ing" the coupling effect; it is an empirical principle.
If the coupling effect can be observed in "real-world"
programs, then it has dramatic implications for
testing strategies in general and domain-specific,
limited testing in particular. Rather than scamper
after errors of undetermined character, the tester
should attempt a systematic search for simple
errors that will also uncover deeper errors via the
coupling effect.

Path analysis. This point seems so obvious that
it's not worth making: test to uncover errors. Yet
it's a point that's often lost in the shuffle. In a
common methodology known as path analysis, the
point of the test data is to drive a program through
all of its control paths. It is certainly hard to criti-
cize such a goal, since a thoroughly tested program
must have been exercised in this way. But unless
one recognizes that the test data should also dis-
tinguish errors, he might be tempted to conclude,
for example, that the program segment diagrammed
in Figure 2 can be tested by exercising paths 1-2
and 1-3, even though one of the clauses P and Q

may not have been affected at all! In general, the
relative ordering of P and Q may be irrelevant or
partially unknown and side effects may occur, so
that actually the eight paths shown in Figure 3 are
required to ensure that the statement has been
adequately tested.

100

80 1-

60 _-

40 _-

20

0 10 20 30 40 50 60 70
PERCENT OF TESTING EFFORT

(MAN-MONTHS, COMPUTER HOURS, ETC.)

80 90 100

Figure 1. More programming errors are found in the early part of the
test cycle then in the final part.

Table 1. Frequency of occurrence of 1258 errors
in Fortran, Cobol, PL/l, and Basic programs.

Relative
Frequency

Error Type of Occurrence

Error in assignment or computation .27
Allocation error .15
Other, unknown, or multiple errors .11
Unsuccessful iteration .09
Other l/O error .07
I/O formatting error .06
Error in brahching

unconditional .01
conditional .05

Parameter or subscript violation .05
Subprogram invocation error .05
Misplaced delimiter .04
Data error .02
Error in location or marker .02
Nonterminating subprogram .01

Figure 2. Sample program segment with two paths.

April 1978

I

I

I

I

I

1.
I

I

I

MI

0

35

Two examples given below indicate that test
data derived to uncover simple errors can, in fact,
be vastly superior to, say, randomly chosen data or
data generated for path analysis. A byproduct of
the discussion will be some evidence for the coupling
effect. A third example reveals another advantage
of selecting test data with an eye on coupling:
since it's a problem-specific aetivity, there are
enhanced possibilities for discovering useful heu-
ristics for test data selection. This example will
lead to useful advice for generating test vectors for
programs that manipulate arrays.
Our groups at Yale University and the Georgia

Institute of Technology have constructed a system
whereby we can determine the extent to which a
given set of test data has adequately tested a
Fortran program by direct measurement of the
number and kinds of errors it is capable of uncover-
ing. This method, known as program mutation, is
used interactively: A programmer enters from a
terminal a program, P, and a proposed test data
set whose adequacy is to be determined. The muta-
tion system first executes the program on the test
data; if the program gives incorrect answers then
certainly the program is in error. On the other
hand, if the program gives correct answers, then it
may be that the program is still in error, but the
test data is not sensitive enough to distinguish
that error: it is not adequate. The mutation system
then creates a number of mutations of P that differ
from P only in the occurrence of simple errors (for
instance, where P contains the expression "B.LE.C"
a mutation will contain "B.EQ.C"). Let us call
these mutations P,, P2, . . .,Pk.
Now, for the given set of test data there are only

two possibilities:
(1) on that data P gives different results from
the Pi mutations, or

(2) on that data P gives the same results as
some Pi.

In case (1) Pi is said to be dead: the "error" that
produced Pi from P was indeed distinguished by
the test data. In case (2), the mutant P1 is said to
be live; a mutant may be live for two reasons:

(1) the test data does not contain enough sensi-
tivity to distinguish the error that gave rise to
Pi, or
(2) P, and P are actually equivalent programs
and no test data will distinguish them (i.e., the
"error" that gave rise to Pi was not an error at
all).

Test data that leaves no live mutants or only live
mutants that are equivalent to P is adequate in the
following sense: Either the program P is correct or
there is an unexpected error in P, which-by the
coupling effect-we expect to happen seldom if the
errors used to create the mutants are carefully
chosen.
Now, it is not completely apparent that this

process is computationally feasible. But, as we
describe in more detail elsewhere, there is a very
good choice of methodology for generating muta-
tions to bring the procedure within attractive
economic bounds.5
Apparently, the information returned by the

mutation system can be effectively utilized by the
programmer. The programmer looks at a negative
response from the system as a "hard question"
concerning his program (e.g., "The test data you've
given me says it doesn't matter whether or not this
test is for equality or inequality; why is that?")
and is able to use his answers to the question as a
guide in generating more sensitive test data.

Figure 3. Eight paths may be required for an adequate test.

COMPUTER36

A simple example

Our first example is very simple; it involves the
MAX algorithm used for other purposes by Peter
Naur in the early 1960's. The task is to set a vari-
able R to the index of the first occurrence of a
maximum element in the vector A(1), ..., A(N).
For example, the following Fortran subroutine
might be offered as an implementation of such an
algorithm:

SUBROUTINE MAX (A,N,R)
INTEGER A(N),I,N,R

1 R=1
2 DO31=2,N,1
3 IF (A(I).GT.A(R))R=I
RETURN
END

We will choose for our initial set of test data three
vectors (Table 2).

Table 2. Three vectors constitute the initial
set of test data.

A(1) A(2) A(3)
data 1 1 2 3
data 2 1 3 2
data 3 3 1 2

How sensitive is this data? By inspection, we
notice that if an error had occurred in the relational
operation of the IF statement, then either data 1,
data 2, or data 3 would have distinguished those
errors, except for one case. None of these data
vectors distinguishes .GE. from .GT. in the IF state-
ment. Similarly, these vectors distinguish all simple
errors in constants except for starting the DO loop
at "1" rather than "2." All simple errors in vari-
ables are likewise distinguished except for the
errors in the IF statement which replace "A(I)" by
"I" or by "A(R)."
That is, if we run the data set above in any of the

following mutants of MAX, we get the same results.

SUBROUTINE MAX (A,N,R)
INTEGER A(N),I,N,R

1 R=1
2 DO31=1,N,j
3 IF(A(I).GT.A(R))R=1
RETURN
END

SUBROUTINE MAX (A,N,R)
INTEGER A(N),I,N,R

1 R=1
2 DO 3 I=2,N,1
3 IF(I.GT.A(R))R = 1
RETURN
END

SUBROUTINE MAX (A,N,R)
INTEGER A(N),I,N,R

1 R=1
2 DO 3 I=2,N,1

3 IF(A(I).GE.A(R))R = 1
RETURN
END

SUBROUTINE MAX (A,N,R)
INTEGER A(N),I,N,R

1 R=1
2 DO 3 I=2,N,1
3 IF(A(R).GT.A(R))R = 1
RETURN
END

Let us try to kill as many of these mutants as
possible. In view of the first difficulty, we might
guess that our data is not yet adequate because it
does not contain repeated elements. So, let us add

A(1) A(2) A(3)
data 4 2 2 1

Now, replacing .GT. by .GE. and running on
data 4 gives erroneous results so that all mutants
arising from simple relational errors are dead. Sur-
prisingly, data 4 also distinguishes the two errors
in A(I); so, we are left with only the last mutant
arising from the "constant" error: variation in begin-
ning the DO loop. But closer inspection of the pro-
gram indicates that starting the DO loop at "1"
rather than "2" has no effect on the program, other
than to trivially increase its running time. So no
choice of test data will distinguish this "error,"
since it results in a program equivalent to MAX. So
we conclude that since the test data 1-4 leaves only
live mutants that are equivalent to MAX, it is
adequate.

Comparisons with path analysis

This example illustrates hidden paths in a program
which should also be exercised by the test data. To
illustrate what hidden paths are, consider the
Fortran program-call it P-suggested by C. V.
Ramamoorthy and his colleagues:6

INTEGER A,B,C,D
READ 10,A,B,C

10 FORMAT(4I10)
5 IF((A.GE.B) .AND.(B.GE.C)) GOTO 100
PRINT 50

50 FORMAT(1H ,*LENGTH OF TRIANGLE NOT IN
1ORDER*)
STOP

100 IF((A.EQ.B) .OR. (B.EQ.C)) GOTO 500
A=A*A
B=B*B
C=C**2
D=B+C
IF (A.NE.D) GOTO 200
PRINT 150

150 FORMAT(1H ,*RIGHT ANGLED TRIANGLE*)
STOP

200 IF (A.LT.D). GOTO 300
PRINT 250

250 FORMAT(1H ,*OBTUSE ANGLED TRIANGLE*)
STOP

300 PRINT 350

350 FORMAT(lH,*ACUTE ANGLED TRIANGLE*)

April 1978 37

STOP
500 IF ((A.EQ.B) .AND. (A.EQ.C)) GOTO 600

PRINT 550
550 FORMAT(lH,*ISOCELES TRIANGLE*)

STOP
600 PRINT 650
650 FORMAT(1H ,*EQUILATERAL TRIANGLE*)

STOP
END

The intent of this program is to categorize triangles,
given the lengths of their sides. A typical path
analysis system will derive test data-call it T-
which exercises all paths of P (Table 3).

Table 3. Test data T to exercise the Fortran program P.

TEST CASE A B C TRIANGLE TYPE
1 2 12 27 ILLEGAL
2 5 4 3 RIGHT ANGLE
3 26 7 7 ISOSCELES
4 19 19 19 EQUILATERAL
5 14 6 4 OBTUSE
6 24 23 21 ACUTE

Now consider the following mutant program P':

INTEGER, A,B,C,D
READ 10,A,B,C

10 FORMAT(4110)
5 IF(A.GE.B) GOTO 100
PRINT 50

50 FORMAT(1H ,*LENGTH OF TRIANGLE NOT IN
1ORDER*)
STOP

100 IF(B.EQ.C) GOTO 500
A=A*A
B=B*B
C=C**2
D=B+C
IF (A.NE.D) GOTO 200
PRINT 150

150 FORMAT(1H ,*RIGHT ANGLED TRIANGLE*)
STOP

200 IF (A.LT.D) GOTO 300
PRINT 250

250 FORMAT(1H ,*OBTUSE ANGLED TRIANGLE*)
STOP

300 PRINT 350
350 FORMAT(1H ,*ACUTE ANGLED TRIANGLE*)

STOP
500 IF ((A.EQ.B) .AND. (A.EQ.C)) GOTO 600

PRINT 550
550 FORMAT(1H ,*ISOCELES TRIANGLE*)

STOP
600 PRINT 650
650 FORMAT(1H ,*EQUILATERAL TRIANGLE*)

STOP
END

P' prints the same answers as P on T but P' is
clearly incorrect since it categorizes the two test
cases showti in Table 4 as acute angle triangles:

Table 4. Two test cases are acute angle triangles.

TEST CASE A B C TRIANGLE TYPE
7 7 5 6 ILLEGAL
8 26 26 7 ISOSCELES

P and P' differ only in the logical expressions
found at statements 5 and 100.* The test data T
does not sufficiently test the compound logical
expressions of P; T only tests the single-clause
logicals found in the corresponding statements of
P'. Hence, T' is a stronger test of P than is T (i.e.,
for P we have more confidence in the adequacy of
T' than in the adequacy of 7). Note that the logical
expression in statement 5 of P could be replaced
by B.GE.C to yield a program P" which produces
correct answers on T'. The test case A=5, B=7,
C=6 will remedy this and provide still a stronger
test of P.

A more substantial example

Our last example involves the FIND program of
C.A.R. Hoare.7 FIND takes, as input, an integer array

A, its size N > 1, and an array index F, 1 < F < N.
After execution of FIND, all elements to the left of
A(F) have values no larger than A(F) and all elements
to the right are no smaller. Clearly, this could be
achieved by sorting A; indeed, FIND is an inner
loop of a fast sorting algorithm, although FIND
executes faster than any sorting program. The
Fortran version of FIND, translated directly from
the Algol version, is given below:

C
C
C
C
C
C

C
C
C
C
C
C
C

SUBROUTINE FIND(A,N,F)

FORTRAN VERSION OF HOARE'S FIND
PROGRAM (DIRECT TRANSLATION OF
THE ALGOL 60 PROGRAM FOUND IN
HOARE'S "PROOF OF FIND" ARTICLE
IN CACM 1971).

INTEGER A(N),N,F
INTEGER M,NS,R,I,J,W
M=1
NS=N

10 IF(M.GE.NS) GOTO 1000
R=A(F)
I=M
J=NS

20 IF(I.GT.J) GOTO 60
30 IF(A(I).GE.R) GOTO 40

1=1+1
GOTO 30

40 IF(R.GE.A(J)) GOTO 50
J=J-1
GOTO 40

50 IF(I.GT.J) GOTO 20

COULD HAVE CODED GO TO 60 DIRECTLY
-DIDN'T BECAUSE THIS REDUNDANCY
IS PRESENT IN HOARE'S ALGOL
PROGRAM DUE TO THE SEMANTICS OF
THE WHILE STATEMENT.

W=A(I)
A(I)=A(J)
A(J)=W
I=1+1
J=J-1
GO TO 20

*The clause A.EQ.B in statement 500 is redundant.

COMPUTER38

60 IF(F.GT.J) GOTO 70
NS=J
GOTO 10

70 IF(I.GT.F) GOTO 1000
M=I
GOTO 10

1000 RETURN
END

FIND is of particular interest for us because a
subtle multiple-error mutant of FIND, called BUGGY-
FIND, has been extensively analyzed by SELECT, a
system that generates test data by symbolic execu-
tion.8 In FIND, the elements of A are interchanged
depending on a conditional of the form

X.LE. A(F) .AND. A(F) .LE. Y

Since A(F) itself may be exchanged, the effect of
this test is preserved by setting a temporary vari-
able R = A(F) and using the conditional

X .LE. R .AND. R .LE. Y

In BUGGYFIND, the temporary variable R is not
used; rather, the first form of the conditional is
used to determine whether the elements of A are
to be exchanged. The SELECT system derived the
test data A (3,2,0,1) and F = 3, on which BUGGY-
FIND fails. The authors of SELECT observed that
BUGGYFIND fails on only 2 of the 24 permutations
of (0,1,2,3), indicating that the error is very subtle.*
We will first describe a simple-error analysis of

the mutants of FIND, beginning with initially naive
guesses of test data and finishing with a surpris-
ingly adequate set of 7 A vectors. This data will
be called D,. The detailed analysis needed to deter-
mine how many errors are distinguished by a data
set were carried out on the Mutation system at
Yale University.
We have asked several colleagues how they

would test FIND, and they have nearly unanimously
replied that they would use permutations. We first
describe analysis which we have done using permu-
tations of the array indices as data elements. In
one case, we use all permutations of length 4 and
in another case, we use random permutations of
lengths 5 and 6. Surprisingly, the intuitively appeal-
ing choice of permutations as test data is a very
poor one.
We then describe analysis in which another

popular intuitive method is used: random data. We
show that the adequacy of random data is very
dependent on the interval from which the data is
drawn (i.e., problem-specific information is needed
to obtain good results).

Finally, we find evidence for the coupling effect (i.e.,
adequate simple-error data kills multiple-error mu-
tants) in two ways. First, the multiple-error mutant
BUGGYFIND fails on the test data D,. Next, we
describe the very favorable results of executing
random multiple-error mutants of FIND on D,.
We begin the analysis with the 24 permutations

of (0,1,2,3) with F fixed at 3. The results are sur-

*We found that BUGGYFIND failed on only the aforementioned
permutation.

prisingly poor, as 58 live mutants are left. That is,
with these 24 vectors there are 58 possible changes
that could have been made in FIND that would have
yielded identical output. Eventually, by increasing
the number of A vectors to 49, only 10 live mutants
remain. Using a data reduction heuristic, the 49 A
vectors can be reduced to a set of seven A vectors,
leaving 14 live mutants. These vectors appear in
Table 5.

Table 5. D1-The simple-error adequate data for FIND.

TEST CASE A F
1 (-19,34,0, -4,22, 5

12,222, - 57,17)
2 (7,9,7) 3
3 (2,3,1,0) 3
4 (-5,-5,-5,-5) 1
5 (1,3,2,0) 3
6 (0,2,3,1) 3
7 , (0) 1

In constructing the initial data, after the 24 per-
mutations, the 49 A vectors were chosen somewhat
haphazardly at first. Later, A vectors were chosen
specifically to eliminate a small subset of the
remaining errors. There were some interesting
observations concerning the 49 vectors:

(1) The average A vectors kills about 550 mutants.
(2) The "best" A vector kills 703 mutants (test
case 1 of Table 5).
(3) The "worst" A vector kills only 70 mutants.
This was the degenerate A = (0).

The data reduction heuristic uses both the best
and the worst A vectors to pare the 49 A vectors
to seven.
The final step in showing that the data of Table 5

is indeed adequate is to show that the 14 remain-
ing mutants are programs that are actually equiva-
lent to FIND. That is, the 14 "errors" that could
have been made are not really errors at all. One
might be surprised at the large number of equiva-
lent mutants (approximately 2 percent). This we
attribute to FIND's long history (it was first pub-
lished in 1961). Over the years, FIND has 'been
"honed" to a very efficient state-so efficient that
many slight variations result in equivalent but
slower programs. For example, the conditional

I. GT. F

in the statement labeled 70 in the FIND can be
replaced by any logically false conditional, or the
IF statement can be replaced by a CONTINUE state-
ment, to result in an equivalent but slower program.
It is not likely that this phenomenon will occur
in programs which haven't been "fine-tuned." We
estimate that production programs have well under
1 percent equivalent mutants.
Let us now compare D, with exhaustive tests on

permutations of (0,1,2,3) and then with tests on

April 1978 39

random permutations of (0,1,2,3,4) and (0,1,2,3,4,5).
Table 6 describes the results for all permutations
of (0,1,2,3).

Table 6. Results of all permutations of (1,2,3,4).

NUMBER OF NUMBER OF
TEST CASES VALUES OF F LIVE MUTANTS

24 1 158
24 2 60
24 3 58
24 4 141
96 1,2,3,&4 38

In Table 7 the same information is provided for
the case of random test data.

Table 7. Results of random permutations.

NUMBER OF
RANDOM NUMBER OF

TEST CASES SIZE OF A VALUE OF F LIVE MUTANTS
10 UNIFORM FROM UNIFORM FROM 88

[5,6] 1 TO SIZE OF A
25 65
50 54

100 54
1000 V 53

As the data indicates, permutations give rather
poor results compared with D1.
Our analysis with random data can be divided

into two cases: runs in which the vectors were
drawn from poorly chosen intervals and runs in
which the vectors were chosen from a good interval
(-100,100). The results are described in Tables 8
and 9.

Table 8. Results of random data from poorly chosen intervals.

NUMBER OF RANGE OVER RANGE OVER
RANDOM WHICH VECTOR WHICH SIZE VALUE NUMBER OF
VECTORS VALUES DRAWN OF A DRAWN OF F LIVE MUTANTS

10 [100,200] [1,20] UNIFORM 28
10 [-200,-100] [1,20] FROM 28
10 [-100,-90] [1,20] SIZE 25

OF
VECTOR

Table 9. Results of random data drawn from [- 100,1001;
other parameters as in Table 8.

NUMBER OF
RANDOM NUMBER OF
VECTORS LIVE MUTANTS

10 22
50 17

100 11
1000 10

Although the intervals in Table 8 are poor, one
could conceive of worse intervals. For example,
draw A from [1, size of A]. However, in view of the
permutation results, such data will surely behave
worse than that of Table 8.
Three points are in order. First, even with very

bad data, D, is much better than simple permuta-
tions. Second, it took 1000 very good random
vectors to perform as well as Di. Third, using
random vectors yields little insight. The insight
gained in constructing D, was crucial to detecting
the equivalent versions of FIND.
The coupling effect shows itself in two ways.

First, BUGGYFIND fails on the adequate D,; hence,
we have a concrete example of the coupling effect.
Although the second observation involves random-
ness, and thus is indirect, it is perhaps mbre
convincing than the "one point" concrete BUGGYFIND3D
example. We have randomly generated a large
number of k-error mutants for k > 1 (called higher
order mutants) and executed them on D1.
Because the number of mutants produced by com-

plex errors can grow combinatorially, it is hopeless
to try the complete mutation analysis on complex
mutants, but it is possible to select mutants at
random for execution on Di. Of more than 22,000
higher-order errors encountered, only 19 succeed
on D. These 19 have been shown to be equivalent
to FIND. Indeed, we have yet to produce an incor-
rect higher-order mutant which suceeds on Di!

Conclusions

Our first conclusion is that systematically pur-
suing test data which distinguishes errors from a
given class of errors also yields "advice" to be
used in generating test data for similar programs.
For instance, the examples above lead us to the
following principles for creating random or non-
random test data for Fortran-like programs which
manipulate arrays (i.e., programs in which array
values can also be used as array indices):

(1) Include cases in which array values are out-
side the size of the array.
(2) Include cases in which array values are
negative.
(3) Include cases in which array values are re-
peated.
(4) Include such degenerate cases as D,'s A = (0)
and A = (-5,-5,-5,-5).

Principle (4) was also noticed by Goodenough and
Gerhart.3

It is important that a testing strategy be con-
ducive to the formation of hypotheses about the
way test data should be selected in future tasks.
Information transferred between programming tasks
provides a source of "virtual resources" to be used
in subsequent work. Since the amount of available
resources is limited by economic and political
barriers, experience-which has the effect of expand-
ing resources-takes on a special importance. It is,

COMPUTER40

Seemingly simple techniques can be
quite sensitive via the coupling effect.

of course, helpful to have available such mechanical
aids as the mutation system, but as we have shown
even in the absence of the appropriate statistical
information, a programmer can be reasonably con-
fident that he is improving his test data selection
strategy.
A second conclusion is that until more general

strategies for systematic testing emerge, program-
mers are probably better off using the tools and
insights they have in great abundance. Instead of
guessing at deeply rooted sources of error, they
should use their specialized knowledge about the
most likely sources of error in their application.
We have tried to illustrate that seemingly simple
tests can be quite sensitive, via the coupling effect.
The techniques we advocate here are hardly ever

general techniques. In a sense, they require one to
deal directly in the details of both coding and the
application-a notion that is certainly contrary to
currently popular methodologies for validating
software. But we believe there is ample evidence in
man's intellectuaI history that he does not solve
important problems by viewing them from a dis-
tance. In fact, there is an Alice In Wonderland
quality to fields which claim they can solve other
people's problems without knowing anything in
particular about the problems.

So, there is certainly no need to apologize for
applying ad hoc strategies in program testing. A
programmer who considers his problems well and
skillfully applies appropriate techniques to their
solution-regardless of where the techniques arise-
will succeed. *

References

1. A. E. Tucker, "The Correlation of Computer Program
Quality with Testing Effort," System Development
Corporation, TM 2219/000/00, January 1965.

2. R. A. DeMillo, R. J. Lipton, A. J. PerHls, "Social Pro-
cesses and Proofs of Programs and Theorems," Proc.
Fourth ACM Symposium on Principles of Program-
ming Languages, pp. 206-214. (To appear in CACM)

3. John B. Goodenough and Susan L. Gerhart, "Toward
a Theory of Test Data Selection," Proc. International
Conference on Reliable Software, SIGPLAN Notices,
Vol. 10, No. 6, June 1975, pp. 493-510.

4. E. A. Youngs, Error-Proneness in Programming, PhD
thesis, University of North Carolina, 1971.

5. T. A. Budd, R. A. DeMillo, R. J. Lipton, F. G. Sayward,
"The Design of a Prototype Mutation System for Pro-
gram Testing," Proc., 1978 NCC.

6. C. V. Ramamoorthy, S. F. Ho, and W. T. Chen, "On
the Automated Generation of Program Test Data,".
IEEE Trans. on Software Engineering, Vol. SE-2, No.
4, December 1976, pp. 293-300.

7. C. A. R. Hoare, "Algorithms 65; FIND," CACM, Vol. 4,
No. 1, April 1961, pp. 321.

8. R. S. Boyer, B. Elspas, K. N. Levitt, "SELECT-A
System for Testing and Debugging Programs by
Symbolic Execution," Proc. Intern4tional Conference
on Reliable Software, SIGPLAN Notices, Vol. 10,
No. 6, June 1975, pp. 234-245.

Richard DeMillo has been an associate
professor of computer science at the
Georgia Institute of Technology since
1976. During the four years prior
to that he was assistant professor of
computer science at the University of
Wisconsin-Milwaukee.
A technical consultant to several

government and research agencies and
to private industry, he is interested

in the theory of computing, programming languages,
and programming methodology.
DeMillo received the BA in mathematics from the

College of St. Thomas, St. Paul, Minnesota, and the
PhD in information and computer science from the
Georgia Institute of Technology. He is a member of
ACM, the American Mathematical Society, AAAS, and
the Association for Symbolic Logic.

Richard J. Lipton is an associate professor of computer
science at Yale University. A faculty member since 1973,
he pursues research interests in computational complexity
and in mathematical modeling of computer systems. He
is also a technical consultant to several government
agencies and to private industry.
Lipton received the BS in mathematics from Case

Western Reserve University and the PhD from Carnegie-
Mellon University.

Frederick G. Sayward is an assistant professor of com-
puter science at Yale University, where he pursues
research interests in semantical methods for program-
ming languages, the theory of parallel computation as
applied to operating systems, the development of pro-
gramming test methods, and techniques for fault-tolerant
computation. Earlier, he worked as a scientific and sys-
tems programmer at MIT Lincoln Laboratory.
A member of ACM, the American Mathematical Society,

and Sigma Xi, Sayward received the BS in mathematics
from Southeastern Massachusetts University, the MS in
computer science from the University of Wisconsin-
Madison, and the PhD in applied mathematics from
Brown University.

April 1978 41

