
1

Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informática

Programa de Pós-Graduação em Ciência da Computação

N-Version Programming – A Fault-
Tolerant approach to reliability of
Software operation

• Limin Chen & Algirdas Avizienis

Rafael Medaglia – 2008/2

Agenda

• Fault-Tolerance SW

• Concepts of N-Version Programming

• N-Version vs. Recovery blocks

• Implementation

• Feasibility Studies

• MESS Program Experiment

• RATE Program Experiment

• Conclusions

Fault-Tolerance SW

“… executing duplicated copies of a program does
not improve the reliability of operation with respect
to software defects.”

Using redundant software to achieve fault-tolerance
constraints:

1 – Complete self-checking is not required;

2 – Does not rely on run time diagnosis;

3 – Same function counts on independently
developed alternative routines.

Agenda

• Fault-Tolerance SW

• Concepts of N-Version Programming

• N-Version vs. Recovery blocks

• Implementation

• Feasibility Studies

• MESS Program Experiment

• RATE Program Experiment

• Conclusions

Concepts of N-Version Prog. (1/4)

Uses N >= 2 independent implementations of the
same program, where each N is called a “version”
from the specification.

Who it works?

The program is defined (in a specification
language) as completely, unambiguously and
trying not to narrow down the possible
implementations.

Concepts of N-Version Prog. (2/4)

To allow the use of N-version programming, some
points must be define:

1. The function to be implemented must be clearly
defined;

2. Data format (Comparison Vectors (C-Vectors)
and Comparison Status Indicators (CS-
Indicators))* and synchronization mechanisms;

3. The Cross-Check Points (CC-Points)*;

4. The comparison algorithm (that also defines the
acceptable discrepancy range for numerical
comparisons);

5. The voting;

2

Concepts of N-Version Prog. (3/4)

The performance criteria must be taken in
consideration prior to integrate each version.

A program to manages the N-Versions is required,
it is called the drivers. The N-version program is
composed by the driver and the versions.

Concepts of N-Version Prog. (4/4)

Mechanisms for the N-Version programming:

1. C-Vectors – Data structure for one version local state;

2. CS-Indicators – Provide instructions after
voting/matching C-Vectors. Those instructions can imply
in

1. Continue execution;

2. Terminate execution in 1+ versions;

3. Continue after changing values in the C-Vector, based on the
majorities’ decision.

3. CC-Points – Synchronization points in the N-Versions.

The initial specification must be reliable to the
point that two versions cannot present the same
defect.

Agenda

• Fault-Tolerance SW

• Concepts of N-Version Programming

• N-Version vs. Recovery blocks

• Implementation

• Feasibility Studies

• MESS Program Experiment

• RATE Program Experiment

• Conclusions

N-Version vs. Recovery blocks(1/2)

• Recovery blocks

• Advantage:
− Lower cost, once the replaced modules can be used as

alternatives.

• Disadvantages:
− Considerable storage overhead (system states prior to

achieve a result);
− Needed precautions to coordinate process within a

nested recovery block structure;
− Some intermediate outputs might not be reversible in

real-time environments;
− Due to the potential flaws listed above, the recovery

blocks technique is limited to some types of applications.

N-Version vs. Recovery blocks(2/2)

• N-Version Programming

• Advantages:
− No self-checking is required;
− Some redundancy can be eliminated;
− It’s possible to immediately mask some software faults

(no delays);
− For aerospace application, that count on replication of

HW, the use of N-Version Programs may allow the
systems to tolerate both HW and SW faults.

• Disadvantages: ???

Agenda

• Fault-Tolerance SW

• Concepts of N-Version Programming

• N-Version vs. Recovery blocks

• Implementation

• Feasibility Studies

• MESS Program Experiment

• RATE Program Experiment

• Conclusions

3

Implementation (1/4)

Special Mechanisms

• The three mechanisms mentioned before (C-
Vector, CS-Indicators and CC-Points) must be
implemented in a way that:
− The driver must be able to access/manipulate the C-

Vector of each version;
− The CS-Indicators must be followed;
− The CC-Points are equivalents.

Implementation (2/4)

Inexact Voting

• Dealing with numerical values there are two
possible deviations:
− The “expected” ones, that will happen due to inexact HW

representation or data sensitivity of an algorithm;
− The “unexpected” ones, which are a consequence of

inadequate design/implementation.

• As independently of the deviations being expected
or not it will cause the versions results to disagree,
an inexact voting mechanism must take place
when handling non-identical results (Adaptive/Non-
Adaptive).

Implementation (3/4)

Adaptive: A weight value is calculated dynamically
to each one of the results.
− Favors acceptable results;
− Determining the optimal tolerance parameter is difficult;
− If the results are used as input for the other cycles the

accumulation of residual noise can be unacceptable;
− Implemented in software it can be quite slow.

Implementation (4/4)

Non-Adaptive: Uses an allowable discrepancy range
and differences of pairs.
− The allowable discrepancy range is hard to calculate;
− Have two possible strategies:

• Finding the minimal difference between pairs;

• Or the finding maximum difference between pairs.

The two alternatives, adaptive and non-adaptive
voting, have pros and cons and to use it
successfully the designer must know:

1. How data sensitive is the algorithm;

2. HW limitations;

3. Allowable range of discrepancies for each instance.

Agenda

• Fault-Tolerance SW

• Concepts of N-Version Programming

• N-Version vs. Recovery blocks

• Implementation

• Feasibility Studies

• MESS Program Experiment

• RATE Program Experiment

• Conclusions

Feasibility Studies

Doing some experiments with this technique the followings
objectives were kept in mind:

1. Generality and ease of use of N-Version programming;

2. Gain qualitative and quantitative data on effectiveness;

3. Identify problems and difficulties with the technique.

The experiments problems were selected aiming to:

1. Have enough complexity to present residual defects;

2. Be of manageable size, so that the instrumentation is facilitated;

3. Problems should allow convenient generation of multiple versions.

For convenience of the experiments, N is assumed as 3
(versions).

4

Agenda

• Fault-Tolerance SW

• Concepts of N-Version Programming

• N-Version vs. Recovery blocks

• Implementation

• Feasibility Studies

• MESS Program Experiment

• RATE Program Experiment

• Conclusions

MESS Program Experiment

The 3-version MESS Program Experiment

The MESS (Mini-Text Editing System) was an assignment to
a 1976 UCLA graduate seminar course. Observations from
the results:

1. The methodology is relatively simple and can be
generalized to similar applications;

2. The results encourage further investigation on its
effectiveness;

3. The 3-Version programming was applied at subroutine
level, showing that applying N-Version to certain critical
parts of programs can be a valid alternative.

Agenda

• Fault-Tolerance SW

• Concepts of N-Version Programming

• N-Version vs. Recovery blocks

• Implementation

• Feasibility Studies

• MESS Program Experiment

• RATE Program Experiment

• Conclusions

RATE Program Experiment (1/3)

The 3-version RATE Program Experiment

The RATE (Region Approximation and Temperature
Estimation) also was given as an assignment in the UCLA,
but in the 1977. The problem consists of using a pre-
determinate equation for the temperature.

All versions where implemented in the same language and
ran in the same computer.

RATE Program Experiment (2/3)

Results:

For more details check the article.

#Cases #Bad Versions
Acceptable

Results

Not

Acceptable

Results

290 0 290 0

71 1 59 12*

18 2 0 18

5 3 0 5

RATE Program Experiment (3/3)

Observations from the results:

1. *Sometimes one of the version developed an error that
caused the O.S. system to take over the execution,
halting not execution of the 3 versions involved, even only
one was causing it;

2. The logic implemented for each version may be correct,
incorrect or missing, when it’s missing, the combination of
one version missing something, one incorrect and one
correct might outvote the correct version.

5

Agenda

• Fault-Tolerance SW

• Concepts of N-Version Programming

• N-Version vs. Recovery blocks

• Implementation

• Feasibility Studies

• MESS Program Experiment

• RATE Program Experiment

• Conclusions

Conclusions (1/2)

As mention before some results encourage the utilization of
the N-Version programming, among the more relevant
there is the fact that it seems applicable to similar
applications and using in the subroutines levels is
functional. As negative aspects some sort of failures can
lead to no/bad results.

Conclusions (2/2)

Some other observations:

1. In real-time environments a system failure may be caused
by performance limitations other than functional
problems;

2. When there is not an unique path for the solution the N-
Version programming may not be applicable;

3. In some cases the sequence of outputs may not follow a
specific order, in that case the versions cannot be readily
compared;

4. If the allowable range of discrepancy for inexact voting
cannot be easily determinate, it’s difficult to reach the
acceptable results.

Perguntas?

